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Abstract—. Relative fundamental frequency (RFF) is an acous-
tic measure used to quantify vocal effort in voice science. Since
it seeks to capture transitions between (i.e. to/from) steady-state
vowels and unvoiced consonants, any machine learning approach
to recognize patterns in these transitions should require time
properties capable of identifying the sequence of phonemes. At
the same time, Neural Networks (NN) have become a ubiquitous
solution for data-driven problems, and Recursive NNs (RNN) pro-
vide a time-series schema to address time-dependent problems.
Indeed, typical Neural Network solutions require either a time-
series schema like in RNN or some spectral transformation to
be able to handle time-dependent data. In this study, we decided
to ignore – at least momentarily – any time-series dependency
of the data and employed a simple NN to classify elements of
the speech. Later, a State-Machine was used to identify their
sequence with the purpose of localizing the transitions between
voiced and unvoiced sounds in vowel-consonant-vowel (VCV)
productions. The goal of this study was to demonstrate that a
pipeline consisting of time-agnostic (Neural Network) and time-
dependent (State Machine) components can be used to recognize
time-dependent patterns in VCV productions.

Index Terms—Neural Networks, Recursive NN, RFF, time-
series, vocal hyperfunction

I. INTRODUCTION

Relative fundamental frequency (RFF) was developed as an
acoustic measure to quantify baseline laryngeal tensions in
terms of short-term changes in fundamental frequency [7].
Research has shown that RFF differs between individuals
with and without vocal hyperfunction [1], and while different
individuals may produce vibrations at different frequencies, the
relationship between fundamental frequencies (f0) at different
moments of the vowel-consonant-vowel (VCV) productions
promotes the viability of RFF to capture information relating
to muscle tension [7] – and to our knowledge, there has
not been any work in the literature to date that identified

regional accents or native language of the speaker of the VCV
productions as factors in RFF calculation.

Fig. 1. Sample input data with three consecutive vowel-consonant-vowel
productions.

So, in order to calculate RFF, a trained person assesses
acoustic waveforms using an acoustic analysis software such
as Praat [6], [17]. The waveforms, like in Fig. 1, must contain
transitions between voiced sonorants (vowels) and voiceless
consonants (fricatives), as the clinician examines them to
locate 10 glottal cycles in the voiced sonorant immediately
preceding the voiceless consonant (offset cycles), as well as 10
glottal cycles in a voiced sonorant immediately following the
voiceless consonant (onset cycles) as shown in Fig. 2. Once the
onset and offset cycles are identified, RFF is computed as the
relative change in the frequency of the glottal cycles from the
onset or offset with respect to their steady-states. In that sense,
determining the exact voicing offset and onset is a crucial and
yet challenging problem since research has shown that in order



to extract meaningful RFF at least six samples are required
(six onsets and six offsets) from VCV productions such as in
/afa afa afa ifi ifi ifi ufu ufu ufu/ [1]. Recently, researchers

Fig. 2. Sample relative fundamental frequency utterance with one vowel-
consonant-vowel production

in [2] have developed a tool for calculating RFF using an
automated MATLAB program named aRFF-AP. Authors in
[2] were interested in how fundamental frequency estimation
and sample characteristics impacted the relationship between
manual and semi-automated RFF estimates. When compared
to the manual RFF method, their algorithm achieved high
correspondence with root mean square error (RMSE) of 0.28
semitones (ST) and mean bias error (MBE) of 0.01 ST. While
they achieved good results, after testing their method on our
own data set, it was observed that 43% of the time their system
required human intervention to correctly detect fricatives in
VCV productions, even though it required only 4% interven-
tion on another one of our data sets with continuous speech
[9]. It is important to mention some limitations in our data
set pertaining to the training of participants: to speak slowly
with pauses in between sets (/afa afa afa/); and without vocal
fry. We also did not use a pop screen during data collection,
which we sought to amend by performing a 120 Hz highpass
filtering on individual audio files. Nonetheless, this aspect of
the aRFF-AP, while expected to be “semi-automated”, caused
too many human interventions and sparked our interest in
developing a more reliable tool using Machine Learning and
Finite Automata.

In typical time-series problems, the continuous nature of
the signals challenges us to find an appropriate representation
of the time-dependency of the data when setting up learning
tasks. Using amplitude-domain, frequency-domain or hybrid-
domain [20] features are the three possible choices when it
comes to feature extraction and selection. When using Neural
Networks (NNs) as the learning paradigm, another choice to be
made is whether to use convolution, and then the dimension
on which to perform it: e.g. 1-D and 2-D convolutions are
typically done on the raw signal or on the spectrogram,
and used as inputs to the NN-based classifier [13] [20].
Typically, Hidden Markov Models, Markov Chains, Monte

Carlo Simulation, and Recurrent Neural Networks are useful
paradigms to capture time-dependent patterns in input signals
[16]. In this work, we got away with not using such paradigms
and instead relied on the periodic nature of the phonemes in the
speech for extracting time-independent windows which were
classified as distinct elements of the same speech. Next, we
used a finite automata to actually predict the time-dependent
relationships between phonemes. This pipeline was applied to
VCV productions (e.g /afa/) which, as explained earlier, are
useful in speech science for estimation of vocal strain. In our
approach, a neural network was used to analyze and identify
each distinct phoneme in the VCV productions contained
in a comprehensive dataset from a larger study [5]. The
VCV productions were generated by ninety-two (92) female
participants with and without symptoms of vocal fatigue and
no phono-trauma. Data retrieved from four participants were
unusable and thus discarded following collection, leaving only
eighty-eight participants. Twelve out of whom came for repeat
sessions. The subjects were native English speakers between
ages 21 and 39 years – they repeated a series of three
consectutive VCV’s at a time e.g ( /afa afa afa ifi ifi ifi
ufu ufu ufu/) and three times throughout the course of the
experiment (beginning, middle, end). These productions are
typical utterances in voice analysis using RFF as they contain
the necessary transitions between steady state vowels and
fricatives [15]. In this sense, neural networks should be well
suited for the task of recognizing phonemes given their ability
to extract salient features that can aid in the individual, time-
independent classification of vowels and consonants in any
speech production. Our system also employs a state machine to
process the neural network predictions and extract the temporal
organization of these phonemes. That is, the emerging output
labels from the NN were fed into the state machine and the
output of the state machine is the location in time of the
fricatives given the input signal corresponding to the VCV
production. We tested our method by applying the proposed
pipeline to audio signals containing three (3) consecutive
VCV’s. The goal was to “segment” the audio file into vowels,
fricatives and regions of silence. The accuracy of the system
was measured based on the classifier accuracy, as well as the
accuracy of the state machine in fricative detection. The main
contribution of this work is, a pipeline consisting of classifier
and finite automata to detect voice productions and the location
of their elements (phonemes).

II. BACKGROUND AND RELATED WORK

A. Vocal Hyperfunction (VH)

Vocal hyperfunction (VH) has been defined as “conditions
of abuse and/or misuse of the vocal mechanism due to ex-
cessive and/or ‘imbalanced’ muscular forces” [18] [19]. It is
associated with many instances of voice disorders [19] which
affect populations such as school teachers [11]. Research
shows that vocal hyperfunction is linked with laryngeal muscle
tension, which establishes a relationship between VH and RFF
[2]. Both acoustic data [9], [2] and surface electromyography
(sEMG) data [5], [8] collected from the anterior neck surface



have been used in computationally oriented research for the
study of vocal dysfunctions.

B. Time-Series Data for Studying Vocal Hyperfunction and
Other Speech Related Tasks

Some studies have been conducted using sEMG data to
classify signals emerging from vocally fatigued individuals
and vocally healthy individuals [5] [8]. Both [5] and [8]
used pattern recognition methods to deal with time-series data
in the form of sEMG. In [8], a technique called Guided
Under-determined Source Signal Separation or GUSSS was
used to detect whether or not a previously learned, unique
signature is present in the sEMG signal. This signature is
injected into the signal and the GUSSS method returns a ratio.
A small ratio indicates that the signature is likely present
and a high ratio indicates its absence. In [5], features were
extracted from the sEMG signal to train a Support Vector
Machine (SVM) classifier which discriminates feature vectors
arising from sEMG captured from fatigued and non-fatigued
individuals using a leave-one out approach. Both [9] and
[2] (the semi-automated algorithm, aRFF-AP) approached the
problem of vocal hyperfunction using acoustic data, however,
in [2], classical signal processing methods were used. In
that case, the authors used high-to-low energy ratios in the
acoustic waveform to locate fricatives. The fricative locations
were used in latter steps of their algorithm to compute the
RFFs. It is important to note that the work done in [2]
served as the rationale for the development of [9],which uses
a more traditional machine learning approach. The proposed
pipeline utilized a Hidden Markov Model toolkit for Speech
Recognition (HTK) which identified fricatives in the acoustic
waveform. Similar to the other systems, once the fricatives
are identified and located, they are used in subsequent steps
to calculate RFF using the onset and offset cycles around
them. The authors in [20] use a 1D CNN (1-Dimensional
convolutional neural networks) trained on the TIMIT speech
corpus for identifying fricatives. They compute the posterior
probability for the event that the sample at the center of a
given speech segment belongs to one of three phoneme classes.
They achieve 92.79% unweighted average recall on the TIMIT
core test set. The authors point out that methods using 1D
CNNs or RNNs require some temporal context (both future
and past) of the speech for the network to make a proper
prediction. Here, we tackle the problem with a much simpler
approach, given the limitations of our dataset in comparison
to the speech examples in the TIMIT corpus; while also
bypassing the nature of deep neural networks in terms of their
stringent requirements in terms of large datasets, computation
requirements for learning, etc. Indeed, our method uses a
simple multi-layer perceptron, agnostic to context, leaving to
the state machine the tasks of capturing the temporal dynamics
and needed context.

III. PROPOSED METHOD

We propose a pipeline consisting of a pair of time-agnostic
(Neural Network) and time-dependent (State Machine) com-

ponents for classifying speech – i.e. time-series data. The first
step in the construction of the classifier required some consid-
eration on the best practice for sampling and labelling the data
used for training and testing of the NN. In that sense, intervals
in the waveforms (Figure 1) were manually labeled as: vowel,
fricative, and silence. Next, multiple windows within those
intervals were automatically sampled and assigned the same
labels.

In order to automatically sample the labeled intervals, a
cycle detection algorithm was applied to the input signal to
determine the beginning of each cycle of the signal. The
starting points of the cycles were used as markers to set the
beginning of the fixed-length windows (1700 sample points or
approximately 38 ms) which were used as the actual sampled
data for training and testing. The idea here was to generate
windows of the signal derived from the same intervals of the
speech (vowel, consonant or silence) and hence which retain
a strong resemblance to each other. Since each subject’s voice
has approximately the same frequency (pitch), the fix-length
windows should also contain approximately the same number
of cycles. Performing the window extraction in this fashion
was beneficial because it: 1) increased the number of training
samples; 2) maintained the properties of intervals with same
label (i.e. vowel, fricative, or silence); and 3) resulted in three
corresponding sets of samples with low within-class scatter.
Next, a Neural Network was trained to recognize the windows
of speech independently of their temporal arrangement within
the speech (time-agnostic). The state machine received the
predicted class from the NN as input and performed their
temporal analysis. Since some sequences of vowel, fricative
and silence are not allowed (i.e. are not expected in the
productions), the state machine can further reject and/or ignore
false predictions provided by the classifier – increasing the
accuracy in the detection of VCV productions and hence
the better localization of fricatives in each one of the three
consecutive VCV’s in the waveform (e.g. /ifi ifi ifi/ in Figure
1). Figure 3 shows an overview of the proposed pipeline.

Fig. 3. Overview of the pipeline.

A. Relative Fundamental Frequency (RFF)

RFF is computed in semitones using the following equation:

RFF (ST) = 39.86× log10

(
fo

frefo

)
(1)

For the voice offset, the 1st cycle is the steady-state ref-
erence cycle frefo in the RFF calculation [7]. It is used to
normalize all offset RFF values. The 10th cycle here is the
cycle closest to the fricative. Ten offset RFF values calculated
in semitones can be acquired using (1) [2]. For the voice



onsets, the 1st cycle is the cycle closest to the fricative and the
10th cycle is the steady-state reference cycle frefo – similar
to the case with the offsets. Also, ten onset RFF values can
be acquired, just like for the offsets. The RFF of the reference
will always be zero due to the property of logarithms.

B. Neural Network (NN)

The classifier used in this research was a simple multilayer
perceptron with two hidden layers. The NN architecture was as
follows: 42 neurons on the input layer followed by two hidden
layers with 128 and 32 neurons respectively. Finally, the output
layer consisted of 3 neurons for each one of our 3 classes –
vowel, fricative and silence. The NN architecture is depicted
in Figure 4. The network architecture can be represented in
canonical form with the following equation:

yn (x,w) =

σ

(
N∑

k=1

w(3)
nk h

 M∑
j=1

w(2)
kj h

(
D∑
i=1

w(1)
ji xi

+w(1)
j0

)
+ w(2)

k0

)
+ w(3)

n0

) (2)

where N=32, M=128 and D=42. The vector w contains the
combined weight and bias parameters. The network uses a
ReLU activation function on the hidden layers and a SoftMax
on the output layer.

Fig. 4. Neural Network Architecture

C. State Machine (SM)

A finite automata or a state machine is a mathematical
model of computation [12]. It processes a sequence of regular
expressions as input and it changes its states as it recognizes
the elements in the regular expression. So, a finite automata
has a finite number of states and hence it can be in exactly one
of its finite set of states at any given time. The state transition
in a state machine is triggered as a response to an input.

The proposed state machine consisted of a total of eight (8)
states with three (3) of those states being “terminal states” and
five (5) ”internal states”. As the machine parses a sequence of
labels extracted by the NN from the VCV productions, the
terminal states recognize the end of a sequence of windows
with the same label (e.g. a sequence of vowel windows in the

Fig. 5. State Machine Structure

speech), at which point, they output the label of that entire
sequence. On the other hand, internal states are used to accept
a certain level of false-predictions from the NN. For example,
if a single window is identified as fricative by the NN during a
sequence of vowel windows, the SM can reject such fricative
window as ”spurious noise”. These internal states behave as
”tolerance” states to make the state machine robust to spurious,
erroneous predictions by the NN in the sequence of windows –
and hence, correcting misclassifications from the NN classifier.
The number of acceptable spurious errors in classification by
the NN and consequently the required number of internal
states were determined after an analysis of the performance
of the NN and the probability of errors in classification to
happen in sequence. It was observed that the NN very rarely
makes two mistakes in a row, and even more rarely makes
three mistakes. Also, those same misclassifications happened
more frequently, and only affected the parsing of the VCV
productions during vowels. So, the internal states were set
accordingly, as explained further below. Figure 5 depicts the
structure of the proposed state machine. The arrows in the
figure represent the state transitions while the boxes represent
the states of the machine. The terminal states are indicated by
”VOWEL1”,”FRICATIVE”, and ”VOWEL2”, corresponding
to the offset vowel, fricative, and onset vowel, respectively
– ’silence’, even though an output class from the NN, did not
need to be a terminal state of the SM since it is only used to
reset the same SM to its initial state. Due to the way in which
the SM was constructed, the same group of four ’tolerance’
states were able to capture spurious errors in classification
during the parsing of both offset and onset vowels. These
internal states are marked as ”EV1”, ”EV2”, EV3”, and ”EV4”
( which stands for ”expecting vowel 1” etc.) in Figure 5. A
fifth internal state, ”WAITV2” (wait vowel 2), was used for the
same purpose during the parsing of fricatives. The vertices of
the SM – i.e. the inputs of the SM that cause it to transition
between states – are the three output classes of the NN, in
Figure 5: VOW, SIL, and FRIC. Once the machine reaches a
terminal state, it returns to the initial state where the process
of recognizing the next VCV in the speech is retaken.



IV. EXPERIMENTAL EVALUATION

We used the nonsense VCV production (/afa/, /ifi/ and,
/ufu/) [14] for this research. As mentioned earlier, these
VCV’s capture the natural transitions between steady state
vowels and fricatives which are necessary for measuring
RFF. The sampling frequency of the audio recordings was
set to 44.1kHz. The Neural Network was trained using the
following features: zero-crossing, median frequency, differ-
ence autoregressive coefficients, autoregressive coefficients,
histogram values, cepstral coefficients, mean absolute value,
modified mean absolute value 1, modified mean absolute value
2, root mean square value, standard deviation, sum of squared
integral, temporal moment, variance, waveform length and
Mel-frequency cepstral coefficients.

Fig. 6. Training curve showing the model accuracy and loss for both training
(red) and validation (blue)

A total of 14958 samples were generated after applying the
window sampling algorithm described above. A total of 4986
samples belonged to class Vowel; 4986 to class Fricative; and
4986 to class Silence. The 14958 samples were partitioned
into training (80%), and testing (20%). The training set was
further split into training (80%) and validation (20%) – using
the same proportion between the classes, i.e. 1/3 for each.

During training, the Neural Network achieved a high ac-
curacy (97% after about 40 epochs – Figure 6-a) and low
loss (less than 0.1 after 60 epochs – Figure 6-b) across
all three phonetic classes. The network also performed very
well (97.16% accuracy) in testing with never-encountered data
samples, as depicted by the confusion matrix in Figure 7.

Fig. 7. Confusion Matrix : Model performance in testing

As we mentioned at the beginning, we also compared
the results of our pipeline to the method in [2] – a signal-
processing based method for RFF calculation, named aRFF-
AP, and that uses an (semi-)automated MATLAB program.
Our first metric for comparison was based on the percentage
of correct detection of fricatives in the VCV – i.e. vis-a-vis
the number of required human interventions. In that sense,
we tested both systems on 875 audio files each containing
the same 3 VCV productions. As Table I shows, our pipeline
performed clearly better than the aRFF-AP algorithm with a
40% improvement with respect to automatic detection (i.e.
reduction of human interventions). This is presented in the
first row of Table I where one or more misdetections of
the three fricatives in an individual audio file would require
human intervention of the entire audio file. Now, in terms of
percentage of misdetection of fricative instances, second row
in Table I, we observed an 6.2% improvement with respect to
the aRFF-AP.

TABLE I
COMPARISON BETWEEN TECHNIQUES BASED ON % OF ACCEPTED

SAMPLES.

Proposed Pipeline Automated RFF (aRFF-AP)
Individual Audio File 79% 57%

Fricative Instances 86% 81%

Since the ultimate goal of a system for automatic calculation
of RFF could be equated to the problem of locating the center
of the fricatives – so that the onset and offset boundaries
can be derived from those same detected centers – we also



Fig. 8. Comparison between techniques based on closeness to the fricative
center.

examined the performance of each method based on how
close the detected center of the fricatives were to the actual
center of the fricative intervals in approximately 300 of the
875 waveforms. In Figure 8, we summarize the results from
this measurement using a histogram with the percentage of
samples (Y axis) that fell within a given number of samples
away from the actual center of the fricative (X axis). As the
Figure shows, we observed that the aRFF-AP algorithm (blue),
though comparable to the proposed pipeline (red), localized the
fricatives closer to the center of the fricative interval than our
method. However, it is important to notice two things: 1) the
two approaches differed by a very small number of samples
– i.e. about 15 samples, or 2.5% of the samples, in the worst
case scenario found in the last column of the graph in Figure
8; and 2) the typical length of a fricative is 130 ms, so the
distances between predicted and actual centers of the fricatives
on the Y axis of Figure 8 are equivalent (also in the worst case
scenario) to only about 1/4 to 1/3 of the length of the fricative
– which still falls well enough within the fricative interval for
any reliable calculation of RFFs.

V. CONCLUSIONS

A completely automated algorithm for RFF calculation
should not require any human intervention. Also, whether such
algorithm directly returns the boundaries of the offset and
onset cycles, or the center of the fricatives, its performance is
also determined by how accurate and reliable those detections
are, so they lead to equally successful RFF calculations. In this
paper, we compared our proposed approach to the aRFF-AP
method [2] for the cases of VCV productions. Our proposed
pipeline clearly outperforms the aRFF-AP algorithm for both
individual audio files and individual fricative instances needing
manual intervention, and presented comparable performance
in terms of distance of the center of the fricative. We have

also demonstrated that a pipeline consisting of time-agnostic
and time-dependent components can successfully recognize
patterns of VCV productions. In the future, we will expand
the application of the proposed methods to the detection of
VCV productions in more natural, every-day sentences.
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