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Abstract—Plant-derived crop residue on soil surface provides
many important advantages including preventing erosion and
conserving soil moisture. In that sense, making accurate determi-
nation on the percent of crop residue cover using RGB images can
be a fundamental tool in protecting the soil. In our research, we
approach the determination of such percentages as a classification
problem, and in this paper, we compare two of these approaches.
Both approaches relied on support vector machines (SVM) as
the classifier of choice, and the same set of features, which were
selected in our previous studies on the same topic. In this paper
we developed a SVM ensemble with a hierarchical structure and
compared it against a single, multi-class SVM classifier. In the
SVM ensemble framework, four two-class SVMs and one five-
class SVM were combined in sequence to better separate adjacent
levels of residue cover. The rationale of the ensemble was to
allow each of the two-class SVMs to find the hyperplanes that
maximize the margin between the corresponding two consecutive
classes. Then, based on the distance of the samples to these
hyperplanes, probabilistic estimates of the data-point belonging
to the class were computed and added as extra inputs for the
last SVM. In order to enhance the performance of the ensemble,
other considerations such as the use of Grid Search method for
optimizing the hyperparameters were employed in the tuning of
the SVMs. Numerical experiments were conducted over a dataset
of 4,400 images, which were collected from 88 locations in 40 row
crop fields in five Missouri counties between mid-April and early
July in 2018 and 2019. The images were collected using a camera
mounted on a tripod, with a spatial resolution of 0.014 cm pixel−1

GSD (Ground Sampling Distance). The experiments highlighted
the better performance of the proposed hierarchical ensemble
classifier, which achieved a cross-validation accuracy of 86.3%
vs an accuracy of 80.4% for the single SVM, while the testing
accuracy was 83.8% when compared to the accuracy of 80.9%
from the single SVM. Other metrics, such as precision, recall
and F1 score, were also highly favorable towards the ensemble
SVM.

I. INTRODUCTION

Crop residue – or the remainder plant material left on the
surface of the soil after cultivation – plays an important role in
protecting soil. Benefits of more residue include increasing soil
carbon sequestration, reducing water-based and wind-based
soil erosion, and improving the quality of surface water runoff
[1], [2]. Consequently, maintaining better crop residue level
provide significant increment of crop yields [3]. Considering
these advantages, in the US, The Food Security Act of 1985
established a requirement to maintain “sustainable erosion
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rates” on cropland, hayland and pasture defined as “highly
erodible land” (HEL). The Natural Resource Conservation
Service (NRCS) makes determination if an agricultural tract
is HEL complaint and these determinations have economic
consequences when farmers fail conservation-plan-compliance
assessments, which can in turn lead to Federal agriculture
support payments being withheld by the Farm Service Agency
(FSA) [4]. Residue assessment is part of this compliance
protocol.

Line-transect method is the most common technique per-
formed by NRCS employees to assess residue cover in the
field [5]. There are some other conventional methods such
as: the meter stick, spiked wheel, visual estimate, photograph
comparison, and photographic-grid [6]–[9]. However, there are
well-known issues with these methods, including the fact that
they are time consuming, reader biased, labor intensive, and
unable to provide continuous estimates of residue across the
field [7]–[10]. So, a reliable automated approach that eradi-
cates the tediousness and subjectivity of the current methods
for crop residue estimation would be of great benefit to farmers
and government technical staff.

There has been substantial research performed on multi-
spectral imagery to map crop residue cover in agricultural
fields [11]–[13], whereas there has been a comparatively
limited research done on the RGB imagery of the same crop
residue cover. Computer vision based methods, like color-
based threshold segmentation were found to be effective for
segmenting the plant structures [14], but they do not perform
well in general in under various lighting conditions, and they
are only suitable for segmentation under one dominant color,
e.g. green, hence they are not very effective for segmenting
crop residue [15] since soil and residue do not have very
distinctive colors. The better alternative is the use of a machine
learning approach, that may use feature descriptors to represent
image components, which can then be classified using random
forest (RF), support vector machine (SVM), etc. [15], [16].

The usefulness of SVM had already been established for
crop/weeds identification in maize fields as well as to estimate
the plant density of wheat crops [17], [18]. For example, in
our previous work [16], we showed that a machine learning
approach using a three-class SVM classifier has been found
effective with color and texture features for the residue estima-
tion from RGB imagery at different GSDs (Ground Sampling
Distance). In this problem, each class belongs to different
range of percentage residue, that makes it difficult to find
classification boundaries among classes. In general, maximum
misclassification happens with the data-points which are nearer



to the percentage residue boundaries for the class. So firstly, by
learning classification boundary between consecutive classes
to find the probability estimates of the data-points and then
propagate such information to the final multi-class classifier
should be helpful. So, inspired by such idea, we now propose
an ensemble of SVM classifier with a hierarchical structure.
Also, since dividing the residue cover percentages into five
intervals/classes would lead to a more reasonable assessment
of the field, four two-class SVMs were used to perform binary
classification between consecutive intervals, followed by a
five-class SVM classifier. Our goal and main contribution of
this paper was to show that these classifiers can be ”tuned” to
better estimate the hyperplanes that separate two consecutive
classes. Also, as an addition contribution since our last study,
we used the distance of the data-points to these same hyper-
planes as probabilistic estimates of the data-points belonging
to each individual class. These probabilistic estimates were
used as a set of additional features by a five-class SVM to
perform the final, multiclass classification of the field residue
level (i.e. 5 classes instead of the previous 3).

The rest of the paper is organized as follows. In Section
2, we overview about data collection and ground truthing,
and details post-data collection machine learning methods
including different image feature types, Recursive Feature
Elimination with Cross Validation using Support Vector Ma-
chine (RFECV-SVM) based feature selection, Grid Search
cross validation based hyper parameter optimization of SVM
classifier, and ensemble SVM classifier design. In section
3, numerical experiments on collected datasets, as well as
comparisons between a simple SVM classifier and ensembled
SVM classifier are presented. Section 4 concludes the paper.

II. METHODOLOGY

A. Data Collection

Images were collected from 40 fields in five central Missouri
counties after NRCS personnel got permission for the project
team to access farmer fields, during early May through early
July in 2018 and 2019 in arid fields planted to corn (Zea
mays [L.]) or soybean (Glycine max [L.] Merr.) prior to corn
reaching growth stage V4 and soybean reaching growth stage
V3 in the weather condition ranges from very cloudy to full
sunny. At each field location, project staff and NRCS personnel
placed one to four 15.24-m (50 ft) tapes at 45 degrees to the
planted row direction based on NRCS criteria. Images were
obtained 1.0-m above the ground surface over the tapes on
a tripod-mounted Canon EOS Rebel T6i digital single lens
reflex (DSLR) camera (Canon USA, Melville, NY) with a 24
mm stepper motor technology lens and 24.2 MP resolution
which generated image size of 6000 × 4000 pixels. Estimated
GSD for these images was 0.014 cm pixel−1 and typically 51
images per tape were obtained by moving the tripod 30 cm
between images. Final dataset resulted in imagery from 60
locations (tapes) in 2018 (32 planted to corn and 28 planted
to soybean) and 28 locations in 2019 (6 planted to corn and
22 planted to soybean) to be used in this project.

From the captured images over each tape, starting at the
zero point on the tape, 50 sequential, unique region of interest
(ROI) images were created from along the tape in 0.305-m
(≈1-ft) increments as can be seen in Fig. 1. Unique ROI
images were created by cropping an area representing 0.305-
m (1-ft) wide by 0.20-m (0.66-ft) high area from the captured
image using the software package Photoshop (Adobe Inc., San
Jose, CA). These ROI images were obtained contiguous to
the tape from the side of the tape with lesser tape shadow
(to avoid tape shadow in the ROI image dataset) using the
captured image where the section of interest was most central
to the image to minimize the parallax effect. Each cropped
unique image contained approximately 2,400 × 1,600 pixel
area (approximately 0.305-m × 0.020-m surface area of the
soil). This resulted in a dataset of 4400 images (88 tape
locations × 50 image per location) for each GSD. A bullseye
grid method as in [10] with n=100 grid points was used on
0.014 GSD cropped images to obtain image-wise estimates of
residue cover used for ground truth.

Fig. 1: Unique ROI image cropped from the collected image

Based on the residue cover ground truth of the images,
they were then divided into five classes constructed on residue
range (Table I).

TABLE I: Number of Crop Residue Images per Class

Class No. Class (Residue Range) Number of Images
Class-1 Lower (≤ 20%) 1766
Class-2 Lower-Medium (20% to 40%) 775
Class-3 Medium (40% to 60%) 549
Class-4 Higher-Medium (60% to 80%) 491
Class-5 Higher (≥ 80%) 819

B. Pipeline for Classification

The pipeline for post data collection for the classification of
crop residue from the RGB images is summarized in Fig. 2.
The pipeline consisted of three main steps: first, we extracted
a large set of color and texture features from the entire dataset;
we normalized them using a min-max scaling method; and di-
vided the full dataset into training and testing sets, with a 80:20
ratio. In the second step, a Recursive Feature Elimination using
Support Vector Machine (RFE-SVM) method was applied to
the training set to determine an optimized set of features to be
used for classification. Next, the selected features were used in
a Grid Search to find the optimized hyper parameters of the
single, multi-class SVM classifier. Finally, the single SVM



and ensemble SVM classifiers were trained using the same
training dataset and the selected features from the previous
steps. These classifiers were validated using a 10-fold cross
validation, and then tested on the remaining testing dataset. All
machine learning operations were performed using the Jupyter
Notebook (ver. 6.2.0) software toolkit. In the next sections, we
will explain in greater details the steps of this pipeline.

Fig. 2: Pipeline for crop residue classification from RGB
images

C. Features Extraction and Selection

Following our previous study [16], we selected and ex-
tracted eighty-one feature descriptors from all images in
the dataset. The features comprised: twenty-four color, thir-
teen global texture and forty-four local texture features. The
twenty-four color features were comprised of the image-wise
mean, median, standard deviation and skewness of each of
the color bands from the HSV and CIE-LAB color-spaces.
The thirteen global texture features were extracted based on
the gray-level co-occurrence matrix (GLCM) as defined by
Haralick, which are: angular second moment, contrast, corre-
lation, sum of squares (variance), inverse difference moment,
sum average, sum variance, sum entropy, entropy, difference
variance, difference entropy, information measure of corre-
lation, and information measure of correlation squared [19].
The forty-four local texture features were represented using
local binary pattern (LBP) in which, firstly, one of eighteen
uniform patterns were calculated based on 16 equally spaced
pixels in a circularly symmetric neighborhood around the
central pixel, with two pixels radius. A similar operation, but
now with a three pixels radius, provided one of twenty-six
uniform patterns based on the now 24 equally spaced pixels.
Consequently, histogram bins developed from the images that
were created from these uniform patterns were used as the

LBP features [20]. Unlike in our previous study, here we added
18 extra LBP features. These additional features were found
to lead to better results for the five-class problem with the
addition of radius-2 based LBP features. Once again, all image
features were normalized to a range of [0,1] using the min-max
scaling normalization method.

Finally, it is very important to find the subset of most
relevant features and avoid redundant and irrelevant features
contained in the entire set of extracted features. This helps the
model accuracy and leads to optimal classification result. So,
feature selection was performed using the RFE-SVM method,
which showed superior results over other methods [16]. In a
nutshell, RFE-SVM is a wrapper method, that implements a
backward selection learning scheme to evaluate feature sets,
and the accuracy of the learning scheme is estimated using
k-fold cross-validation to find the best subset of features [21].
We used k=10 and SVM classifier with linear kernel as an
external estimator.

D. SVM Classifier

As the reader must well know, SVM is a supervised machine
learning method developed by Vapnik et al. in the mid 1990s
[22]. The general and typical principle behind SVM is to
project the data into a higher-dimensional, non-linear feature
space using a kernel function, and then find the separating
hyperplane that maximizes the margin between the data.
Thus, SVM can handle a linearly inseparable problem as a
linear separable problem by means of the kernel functions.
Another core idea in SVM is in finding the set of nearest
data points to the hyperplane, which are called the support
vectors. Fig. 3 shows an example of a separating plane in
two dimensions and the support vectors that define the same
plane. In many applications, the radial basis function (RBF)
is a good choice for kernel for its better performance when
compared to other kernels, such as the linear kernel [23] or
the sigmoid kernel [24]. Moreover, since the RBF kernel has
fewer hyperparameters, it also possesses comparatively lower
numerical complexity than polynomial kernels and their larger
number of hyperparameters to be optimized. For those reasons,
we chose the RBF kernel for this study, and optimized its two
parameters: C and γ, where C is a penalty (or regularization)
parameter and γ is a parameter that determines the radius of
influence of the data.

The advantages of the SVM classifier include its enhanced
generalization properties and its efficiency without direct de-
pendence on the dimension of feature space. However, SVM
was conceived for binary classification tasks, rendering it
conceptually useless for multi-class classification problems.
This issue has been resolved by using SVM in either an one-
against-all or a pair-wise fashion – in the first case, multiple
hyperplanes are obtained to separate one class from the
remaining classes all together; while in the second, multiple
hyperplanes are built to separate every two classes in a pair-
wise manner. While both of these methods have advantages
and disadvantages and the best practice is still a matter of
research [25], here, we propose an ensemble SVM as a



Fig. 3: Classification of dataset with two classes by support
vector machine (SVM) and its geometric interpretations

method for addressing many classification problems that are
not addressed by typical SVM: e.g. unbalanced data; partially
noisy data; missing data; etc. In such cases, a single multi-class
SVMs should lead to decrease accuracy, while the ensemble
can be ”tuned” for the pair-wise classification of consecutive
classes. Also, another major difference between a traditional
pair-wise fashion for multi-class SVM and the one proposed
here is that a traditional pair-wise approach takes into account
all possible pairs. However, in this application it is very
unlikely that a classifier would (or should) confuse, say, a field
with 10% residue cover with one with 80% residue cover.

E. SVM Mathematical Definitions

As mentioned above, SVM was designed for two-class
problems. So, in order to construct an optimal separating
hyperplane with higher classification accuracy, SVM uses the
structural risk minimization (SRM) approach. In other words,
SVM seeks a hyperplane that is not just any separation be-
tween two classes, but one that also maximizes the separating
margin [26]. Consider a training dataset consists of N number
of d-dimensional samples – i.e. xi ∈ Rd (i = 1, 2, . . . , N)
from the d-dimensional feature space X, where target label yi
∈ {-1, +1} is associated with each vector xi. Since, the goal
of SVM is to find the hyperplane that maximizes the margin,
the solution can be expressed as the following optimization
problem:

min
1

2
‖W ‖2 + C

N∑
i=1

ξi where, i = 1, 2, ...,N (1)

subject to

yi[W ·K(xi, xj) + b] ≥ 1− ξi and ξi ≥ 0 (2)

where ξi are slack variables, which represent the distance
between the misclassified sample and the optimal hyperplane
(Fig. 3), where C is the penalty parameter that allows to bal-
ance the model complexity and penalizing the non-zero ξi. The

bias b is a scalar, that represents the bias of the hyperplane, and
W is the weight vector, that defines a perpendicular direction
to the hyperplane (Fig. 3). Function K(xi,xj) is the kernel
function, and in our case, it is a Gaussian RBF, which can be
expressed as:

K(xi, xj) = e−‖xi−xj‖2/2γ2

(3)

From the equations (1), (2) and (3), it is clear that the
optimization problem of SVM requires a pair of parameters,
C and γ. Specifically, penalty factor C characterizes the
trade-off between the complexity and classification accuracy
of the classifier, whereas γ controls the radial effect range
(or influence) of the data. The popular and commonly used
optimization method of SVM classifier is grid search method
accompanied by a k-fold cross-validation [27].

1) Grid Search Method: Grid search is a method for the
hyperparameter optimization that exhaustively search based on
defined subset of the hyperparameter space [28]. The goal of
this step is to identify better (C, γ) so that the classifier can
accurately predict unknown testing data. We used k-fold cross-
validation to evaluate the performance of every combination
with k=5. In this method, various pairs of (C, γ) values were
tried and the one with the best cross-validation accuracy was
picked.

F. Ensembled SVM

In general, ensemble learning approaches in machine learn-
ing require multiple base classifiers to be trained and then
aggregated to construct the final classifier. The result is a
classifier with stronger generalization power than that of a
single classifier [29]–[31]. In this same sense, we developed
a hierarchical SVM-ensemble classification model under the
following assumptions: 1) SVM was conceived for binary
classification and the traditional one-against-all and pair-wise
methods for multi-class SVM cannot capture the nuances of
our application (i.e. the smaller number of pair-wise cases that
need to be considered; and the imbalance between classes);
and 2) an ensemble approach allows us to change the feature
space to be used by the individual classifiers in the ensemble,
leading to an even better ”tuning” of the individual classifiers,
which should also further increase the accuracy and general-
ization power of the final solution.

Here, the idea was to add four extra relevant features to
the input of the final multi-class SVM classifier derived from
the four two-class SVM classifiers, as it is shown in Fig.
4. To understand these extra features in the proposed SVM
ensemble, it is important to understand the output of an SVM
under a probabilistic point of view.

1) Outputs as Probabilistic Estimates: One of the major
advantages of a SVM is that its outputs can be regarded as
a probabilistic estimate of the data-point belonging to each
class. In this paper, such probabilistic estimates were computed
for all four two-class (binary) SVMs and fed as features for
the final multi-class SVM in the ensemble. To compute these
probabilistic estimates, the distances dk(x) of each data-point
x to the separating hyperplane corresponding to the pair of



(a) Two-class SVMs training

(b) SVM ensemble training

(c) SVM ensemble testing

Fig. 4: Training and Testing Algorithm for the proposed SVM
ensemble for crop residue level classification

classes k were computed, where k=1 corresponds to the pair
of classes (1,2); k=2 to the pair (2,3), and so forth. Based on
these distances dk(x), probabilistic estimates pk(x) of a data-
point belonging to one of the classes in the pair k were then
calculated using a sigmoid function [32] with equation:

pk(x) =
1

1 + e−(Ak·dk(x)+Bk)
(4)

where, Ak and Bk are parameters estimated for the two-
class SVM for the pair of classes k by minimizing the mean
square error between the original label and the output of the
sigmoid function on the training data. The reader should notice
that if, according to the two-class SVM for, say, the pair
of classes k=1 (i.e. SVM 12), a point x has a probabilistic
estimate p1(x) of belonging to class 1, then that same point
has probabilistic estimate 1-p1(x) of belonging to class 2
according to the same two-class SVM 12. For that reason,
only four additional features were needed to augment the
feature vector going into the final, multi-class SVM in the
ensemble.

2) Procedure for Training and Testing: The procedure used
for training and testing the SVM ensemble consisted of three
main steps. The detailed process is illustrated in Fig. 4a-c.
• Step 1: The training data was split into four separate

datasets, which were used to train the individual two-class
SVMs classifiers (Fig. 4a). The split-datasets were formed
by the same selected features obtained from using the
single SVM classifier, as explained earlier and illustrated
in Fig. 2. The number of samples, (xi ∈ Rd), in each class
are presented in Table II.

TABLE II: Combined Training and Testing Dataset for Each
Binary SVM Classifier

k Binary SVM
Classifier

Dataset with
Classes

Number of Images
in each Dataset

1 SVM 12 Classes-1 & 2 2033
2 SVM 23 Classes-2 & 3 1059
3 SVM 34 Classes-3 & 4 832
4 SVM 45 Classes-4 & 5 1048

• Step 2: The entire training dataset was now fed into the
four already-trained two-class SVMs – Fig. 4b. Next,
probabilistic estimates pk(x) were computed using eq.
(4) and two probabilistic values were obtained, as shown
in Fig. 5 – even though only the first one was kept. There-
fore, for each data-point, four new features representing
p1(x), p2(x), p3(x) and p4(x) were added to the feature
vector, and the final multi-class SVM was trained (Fig.
4b).

Fig. 5: Probabilistic estimates of data-points based on binary-
class SVM

• Step 3: Similarly to the previous step, the testing dataset
with the augmented features was now fed into the two-
class SVMs, ad then into the final multi-class SVM
classifier leading to one of five possible predicted classes
(Fig. 4c).

G. Performance Evaluation Methods

Four performance evaluation metrics were computed based
on the 10-fold cross-validation score: accuracy, precision,
recall, and F1 score. Also, the confusion matrices for the single
SVM and for the ensemble of SVMs were computed and are
presented here. These metrics are defined as follows:

Accuracy = (TP+TN)
(TP+FP+FN+TN) (5)



Precision = (TP )
(TP+FP ) (6)

Recall = (TP )
(TP+FN) (7)

F1 Score = 2× (Recall×Precision)
(Recall+Precision) (8)

Where, TP, TN, FP and FN are the number of true positives,
true negatives, false positives and false negatives estimated by
the classifiers, respectively.

III. EXPERIMENTAL RESULTS AND DISCUSSION

As explained earlier, the first experiment performed was
for feature selection. Fig. 6 shows the relationship between
the mean 10-fold cross-validation score and the number of
features included in the model based on the RFE-SVM feature
selection method. It was observed that the mean 10-fold cross-
validation score reached the highest value when the number
of features was 42. Therefore, this optimized subset of 42
features was used for all subsequent experiments, including
the single SVM classifier, and the ensemble of SVMs.

Fig. 6: RFE-SVM based features selection

After feature selection, grid search was applied to optimize
the hyper-parameters of the classifiers. In this case, a 10-fold
cross-validation was also used and pairs (C,γ) were determined
for each classifier. As expected, the unique characteristics of
each classifier resulted in different optimal (C,γ) pairs, which
are summarized in Table III.

TABLE III: Hyper-Parameters For Each SVM Classifier After
Grid-Search

No. SVM Classifier C γ
1 SVM 12 10 1
2 SVM 23 1000 1
3 SVM 34 1000 0.1
4 SVM 45 10 1
5 Ensembled SVM (Master) 1 1
6 Simple SVM 1000 0.1

Next, we evaluated the performance of the two-class SVM
classifiers by performing 10-fold cross validation and then

observing their effectiveness – i.e. to detect if over-fitting
occurred during model training. Table IV reports those results,
and as it can be observed, none of the two-class SVM
classifiers presented problems, but instead were satisfactorily
trained.

TABLE IV: Training Accuracy and 10-Fold Cross-Validation
Scores of Individual Two-Class SVM Classifiers

`````````Models
Metrics Training Score Cross Validation Score

SVM 12 90.2 89.4
SVM 23 85.8 83.2
SVM 34 81.7 79.1
SVM 45 86.9 85.2

Further, we evaluated and compared the performances of
the simple SVM versus the ensembled SVM using the already
mentioned metrics: accuracy, precision, recall, and F1 score.
Table V presents those results using cross validation, whereas
Table VI reports the performance of the two methods using the
testing dataset. The comparisons shown in both tables indicate,
the ensembled SVM is superior than the simple SVM.

TABLE V: 10-Fold Cross-Validation Scores of Ensembled
SVM and Simple SVM

`````````Metrics
Models Ensembled SVM Simple SVM

Accuracy 86.3 80.4
Precision 86.8 81.5
Recall 86.3 80.4
F1 Score 86.5 80.9

TABLE VI: Performance of Ensembled SVM and Simple
SVM on Final Test Dataset

`````````Metrics
Models Ensembled SVM Simple SVM

Accuracy 83.8 80.9
Precision 84.1 81.8
Recall 84.1 80.9
F1 score 84.0 81.2

Finally, Tables VII and VIII depict the confusion matrices
that summarizes the average performance of the simple SVM
and ensembled SVM, respectively. As these tables show, the
confusion matrices also support the claim that ensembled SVM
outperformed the simple SVM. Based on these numbers, we
notice that the SVM ensemble produced a small, but still
relevant gain of up to 6% compared to the simple SVM.

TABLE VII: Confusion Matrix for Simple SVM

Predicted Actual
1 2 3 4 5

1 316 37 0 0 0
2 20 118 17 0 0
3 0 22 76 12 0
4 0 1 24 62 11
5 0 0 0 24 140



TABLE VIII: Confusion Matrix for Ensembled SVM

Predicted Actual
1 2 3 4 5

1 335 18 0 0 0
2 31 113 11 0 0
3 0 19 82 7 2
4 0 1 21 60 16
5 0 0 0 14 150

IV. CONCLUSION

In this research, we built an ensemble SVM classifier and
compared it with a simple SVM for crop residue classification.
This study represented a gain with respect to our previous
approach not only in terms of the number of classes used
for training (from 3 to 5 classes), but also in terms of the
accuracy achieved (more than 80% in testing). In terms of
the actual use of an simple SVM versus an ensemble SVM,
the results were also satisfactory and justified the use of the
ensemble. Indeed, the ensemble method increased all four
metrics, while reducing the confusion between classes. In the
future, we will increase the number of classes for an even finer
crop residue classification. Also, we will test the generalization
power of the ensemble by applying the models trained using
the datasets from 2018, to the data from 2019 – a problem that
we observed in our previous studies, which, again, we expect
to be minimized by the use of the ensemble.
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