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Abstra
t

We propose a new adaptive learning algorithm using multiple eigen subspa
es to

handle sudden as well as gradual 
hanges in ba
kground due for example to illumina-

tion variations. To handle su
h 
hanges, the feature spa
e is organized into 
lusters

representing the di�erent ba
kground appearan
es. A lo
al prin
iple 
omponent anal-

ysis transformation is used to learn a separate eigen subspa
e for ea
h 
luster and an

adaptive learning is used to 
ontinuously update the eigenspa
es. When the 
urrent

image is presented, the system automati
ally sele
ts a learned subspa
e that shares

the 
losest appearan
e and lighting 
ondition with the input image, whi
h is then

proje
ted onto the subspa
e so that both ba
kground and foreground pixels 
an be


lassi�ed. To e�
iently adapt to 
hanges in lighting 
onditions, an in
remental update

of the multiple eigen subspa
es using syntheti
 ba
kground appearan
es is in
luded in

our framework. By doing so, our system 
an eliminate any noise or distortions that oth-

erwise would in
ur from the foreground obje
ts, while it 
orre
tly updates the spe
i�


eigen subspa
e representing the 
urrent ba
kground appearan
e. A forgetting fa
tor is

also employed to 
ontrol the 
ontribution of earlier observations and limit the number

of learned subspa
es. As the extensive experimental results with various ben
hmark

sequen
es demonstrate, the proposed algorithm outperforms, quantitatively and qual-

itatively, many other appearan
e-based approa
hes as well as methods using Gaussian

Mixture Model (GMM), espe
ially under sudden and drasti
 
hanges in illumination.

Finally, the proposed algorithm is demonstrated to be linear with the size of the im-

ages d, the number of basis in the lo
al PCA m, and the number of images used for

adaptation n: that is, the algorithm is O(dmn) and our C++ implementation runs in

real time � i.e. at frame rate for normal resolution (VGA) images.

Keywords: multiple eigen subspa
e, Lo
al PCA, in
remental learning, illumina-

tion invarian
e.
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1 Introdu
tion

Foreground obje
t dete
tion is an essential task in many image pro
essing and image un-

derstanding algorithms, in parti
ular for video surveillan
e. Ba
kground subtra
tion is a


ommonly used approa
h to segment out foreground obje
ts from their ba
kground. In

one way or another, ba
kground subtra
tion 
onsists of modeling and storing away the ba
k-

ground so it 
an be later 
ompared to newly observed images. The di�eren
e image obtained

by this 
omparison is then thresholded so the foreground obje
ts 
an be segmented out. De-

spite the simpli
ity of this 
on
ept, in real world appli
ations, temporal and spa
ial 
hanges

in pixel values su
h as due to shadows, gradual/sudden 
hanges in illumination, et
. make

modeling ba
kgrounds a quite di�
ult task. For that reason, most systems have fo
used on

either 
apturing the temporal or the spa
ial 
hanges, and only a few systems have expanded

one approa
h into the other: i.e. from a temporal approa
h into spa
ial or vi
e versa.

In order to 
apture 
hanges in the ba
kground over time, di�erent approa
hes have been

proposed in the past de
ades. In [1℄ and [2℄, for example, the system re
ursively updated the

ba
kground model using adaptive �lters. In both 
ases, the method 
ould only a

ommodate

gradual illumination variations and it often failed in the presen
e of sudden illumination


hanges. A widely used te
hnique, Gaussian Mixture Models (GMM), has been employed by

many systems, su
h as in [3, 4, 5, 6, 7, 8, 9℄. In all these 
ases, the basi
 prin
iple was to model

the pixel intensity at ea
h lo
ation and 
apture the pixel statisti
s over time with a mixture

of Gaussians. More re
ently, improved approa
hes using multi-modal te
hniques su
h as: 1)

an adaptive GMM [5, 4℄; 2) layers of GMM for ea
h pixel [8℄; 3) feature ve
tors 
onsisting

of 
olor and texture [9, 10℄; et
. have a
hieved not only better performan
e, but also the

ability to handle gradual 
hanges in illumination. However, GMM-based approa
hes do not

perform well when the pixels 
hange drasti
ally or over long periods of time. Besides, GMM

alone 
annot 
apture the spatial relations among pixels, whi
h is an important requirement

for a 
oherent foreground segmentation. This problem also appears in other non-parametri


and kernel-based approa
hes, su
h as [11℄ and [12℄, and had to be handled in a separate and
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omputationally intensive step, 
urrently preventing frame rate performan
es [13℄.

In that regard, a system known as Wall�ower [14℄ was one of the �rst systems to propose a


ombined temporal and spa
ial framework using three major 
omponents: 1) the pixel-level


omponent, whi
h uses a Wiener �lter to 
reate a linear predi
tor of the pixel intensity val-

ues given the pixel history; 2) the region-level 
omponent, whi
h groups homogeneous pixels

based on their spatial relations; and �nally 3) the frame-level 
omponent, whi
h adapts to

the gradual and sudden 
hanges of the ba
kground. The 
ombination of these three levels of

pro
essing a
hieved good results, but the 
omplexity added prevented its use with real-time

performan
e. Other GMM-based approa
hes were re
ently proposed to address, for example,

illumination invarian
e and foreground fragmentation � e.g. [6℄. However, typi
al problems

of GMM, su
h as the use of global learning rates for the ba
kground update and slow 
onver-

gen
e, were not addressed by this method. So, in [7℄, the authors proposed lo
ally adaptive

learning rates for ea
h Gaussian distribution. The rates were based on the most likely Gaus-

sians over several 
ontinuous frames. That approa
h improved 
onvergen
e signi�
antly, but

the spatial relationships between pixels were still ignored and therefore foreground fragmen-

tation still o

urred. Finally, other statisti
al approa
hes to model dynami
 s
enes were also

proposed. But they led to either 
omputationally 
omplex solutions [15℄ or to restri
tions

on the relative dynami
 behavior of ba
kground and foreground [16℄.

On the other side of the 
oin, many approa
hes based on subspa
e learning have been

proposed [17, 18, 19, 20, 16℄ to 
apture spa
ial relations between pixels,. In the 
elebrated

EigenBa
kground, [17℄, for example, the system built a PCA feature spa
e to des
ribe the

appearan
es of the learned ba
kgrounds. Newly observed images were then proje
ted onto

this eigenspa
e and the foreground obje
ts were segmented out by a thresholding based on

the Eu
lidean distan
e between the re
onstru
ted (proje
ted) images and the original images.

Due to the nature of PCA, this method exploited extensively the spatial relations between

pixels and thus it often resulted in homogeneously 
oherent regions for ea
h obje
t in the

foreground. Additionally, the o�-line learning 
hara
teristi
 of the method made it fast and
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easy to implement. More re
ently, temporal 
hanges in ba
kground appearan
e � e.g. due to

illumination, dynami
 ba
kgrounds, et
. � were in
orporated into eigen-based approa
hes, as

in [20℄ and [16℄, to 
apture not only the pixel spa
ial relations inherent to PCA approa
hes,

but also their temporal relations. Also, to add adaptation over time, an in
remental PCA

(or adaptive PCA � APCA) was employed by a few systems [16, 18℄. However, as our results

demonstrate, by employing multiple subspa
es, our approa
h 
an more a

urately 
apture

the appearan
e of the ba
kground in the presen
e of, for example, sudden illumination


hanges. Finally, other appearan
e based methods were proposed to handle 
hanges in the

ba
kground, but their main fo
uses were on: a) subdividing the ba
kground image into

blo
ks in order to 
apture their appearan
e despite small translations of these blo
ks [21℄; b)

the use of tensors for the 
al
ulation of a global PCA that 
ould more e�
iently 
apture the

similarities between groups of pixels in the ba
kground [22℄; and 
) the e�
ient 
al
ulation

of a global PCA [23℄.

Motivated by the above limitations, we propose a new algorithm that o�ers four major

advantages over 
urrent approa
hes: 1) it uses multiple feature subspa
es to qui
kly 
apture

and learn di�erent ba
kgrounds and lighting 
onditions; 2) it provides a 
lustering s
heme to

initialize the subspa
es; 3) it employs an adaptive and e�
ient (i.e. linear) learning s
heme

that assures real-time performan
e while dealing with 
ontinuous and/or abrupt 
hanges of

illumination; and 4) it relies on synthesized ba
kgrounds to prevent foreground obje
ts from


orrupting the on-line learning. As we demonstrate in the next se
tions and in Appendix

A, the proposed use of adaptive and lo
al PCAs to build q multiple m-dimensional lo
al

subspa
es leads to a mu
h better performan
e when 
ompared to other approa
hes using a

single and global m × q-dimensional spa
e. In other words, our results show that by letting

ea
h subspa
e 
ontinuously learn and adapt to di�erent illumination 
ondition � or even a

di�erent appearan
e of the ba
kground (e.g. a door in the ba
k of the room is opened/
losed)

� a newly observed image 
an be proje
ted onto the most representative subspa
e with a

smaller error than if using a single, large-dimensional spa
e. This smaller error leads to a
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mu
h more 
oherent and robust foreground segmentation.

The rest of this paper is organized as follows: �rst, our proposed adaptive learning of

multi-subspa
e using lo
al PCA is des
ribed in Se
tion 2. Next, in Se
tion 3, we 
ompare a

pure PCA, an adaptive PCA, and an adaptive GMM-based approa
h, to our previous Lo
al

PCA approa
h without adaptation [24℄, and our new proposed method with adaptation

(ALPCA). Future work and �nal 
on
lusion are given in Se
tion 4.

2 Proposed Framework using Adaptive Lo
al PCA

In order to understand our framework, we must �rst revisit the original idea of ba
kground

subtra
tion using appearan
e method: that is, EigenBa
kground.

2.1 EigenBa
kground Revisited

The EigenBa
kground method [17℄ 
onsists of two steps: ba
kground learning and foreground


lassi�
ation. In the �rst step, a set of stati
 images (the training set) is 
olle
ted to form

a high dimensional feature spa
e. That is, ea
h image in the set is regarded as a ve
tor


omprised of the pixels intensities in all three 
olor 
hannels in sequen
e. Then, the statisti
s

of the set � mean and 
ovarian
e � are used to determine the major axes of the sample

distribution � that is, the prin
ipal eigenve
tors or 
omponents of the distribution. In step

two, ba
kground 
lassi�
ation, the observed image (query) is proje
ted onto the feature

subspa
e de�ned by the above prin
ipal eigenve
tors. Sin
e the training images did not


ontain any foreground obje
ts, it is expe
ted that the proje
tion of the query image will

re
onstru
t only the stati
 elements in the s
ene, i.e., the ba
kground. The a
tual foreground

obje
ts 
an be extra
ted by thresholding the Eu
lidean distan
e between the re
onstru
ted

and the observed images.

The main reason for the su

ess of this approa
h is that the learned eigenspa
e represents

the probability distribution of the ba
kground, whi
h models a range of possible appearan
es
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(a) (b)

(
)

Figure 1: Representing two di�erent 
lusters of ba
kground appearan
es using one single

PCA spa
e: (a) sample image from one of the 
lusters; (b) sample image from the se
ond


luster; (
) re
onstru
tion of the average image representing both 
lusters by a single PCA

spa
e. As we 
an see, aspe
ts of both 
lusters are 
aptured, 
ombined, and 
an be observed

in the re
onstru
ted average image (
) � i.e. both the 
losed door and the hallway behind it


an be seen in the image.
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of that same ba
kground. This allows for the subtra
tion of the ba
kground to be insensitive

to outliers 
aused by random noise, 
amera vibration, re�e
tan
e et
. Furthermore, regions

of the foreground obtained by the above pro
ess are homogeneously 
oherent, sin
e all pix-

els in the image are used in the 
lassi�
ation, rather than individual pixels. That is, the

eigenspa
e exploits the spatial relationship among neighboring pixels through their learned


ross 
orrelations.

Unfortunately, this same property of EigenBa
kground presents drawba
ks when in the

presen
e of multiple appearan
es of the ba
kground � e.g. due to di�erent lighting 
on-

ditions. Sin
e the prin
ipal 
omponents analysis (PCA) preserves the leading eigenve
tors


orresponding to the largest varian
es of the data set, a single feature subspa
e is not 
apa-

ble of modeling desired 
hanges of the ba
kground a

urately. In other words, the varian
es


aptured by the largest eigenve
tors do not ne
essarily represent the probability distribution

of the ba
kground appearan
es for any one 
ondition, but for all of the 
onditions 
ombined.

This idea, for the 
ase of a door both opened and 
losed in the ba
kground, is illustrated in

Figure 1, where both 
lusters of ba
kground appearan
es are merged in a single PCA spa
e.

Later in the paper, we will show that su
h 
hara
teristi
 of single PCA spa
es leads to poorer

results � whether the algorithm is made adaptive or otherwise. The same prin
iple presented

in Figure 1, though harder to be appre
iated visually, applies to di�eren
e in appearan
es

due to lighting 
onditions. In the end, this poor representation of the range of appearan
es

of the ba
kground leads to a degraded performan
e for either gradual or sudden 
hanges in

the dataset, even when these 
hanges o

ur in reasonably large numbers and are used to


ontinuously update the PCA spa
e.

2.2 Proposed Method

Although many fa
tors may 
ause a signi�
ant 
hange in the appearan
e model � e.g. 
amera

motion, shape deformation, gradual illumination 
hanges, et
. � one of the main problems in

ba
kground subtra
tion 
omes from sudden illumination 
hanges. In light of these fa
ts, our
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Figure 2: Proposed Framework

proposed method is fourfold: 1) the use of multiple feature subspa
es to qui
kly 
apture and

learn di�erent lighting 
onditions; 2) a 
lustering s
heme to initialize the subspa
es; 3) the

in
orporation of an adaptive learning s
heme to improve the performan
e when dealing with


ontinuous 
hanges of illumination; and 4) a smart learning s
heme using synthesized ba
k-

grounds to prevent foreground obje
ts from 
orrupting the on-line learning. The proposed

framework is depi
ted in Figure 2. In the next se
tions we explain in detail this frame-

work, beginning with a summary of the ba
kground subtra
tion using in
remental learning

of subspa
e [25℄. Then, we present our new in
remental learning s
heme using multiple sub-

spa
es, in
luding a dis
ussion of the bene�ts of our ba
kground synthesis and a performan
e

improvement using a motion hypothesis test.

2.2.1 In
remental Learning in a Single Feature Subspa
e

In real world s
enarios, 
hanges of illumination 
ause pixel intensities to 
hange drasti
ally

and thus, potential misdete
tion of foreground be
omes quite likely. In order to make any

solution to ba
kground subtra
tion e�e
tive, we must in
orporate some 
ontinuous adapta-
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tion to illumination. That is, an ability to in
rementally learn with new observations and to

immediately adapt within a temporal window. In the 
ase of a single subspa
e, this adapta-

tion is 
arried out by the 
omputation of a single extended matrix whi
h en
ompasses the


hanges in the subspa
e due to the last few observations. These 
hanges are in
orporated

into the subspa
e and the pro
ess is restarted. That is, new observations lead to the 
al
u-

lation of another extended matrix whi
h is again used to iteratively modify the subspa
e �

the blue squares in Figure 2.

In order to explain this pro
ess in more details, let A be the 
urrent blo
k of observations,

that is, A = [x1, . . . ,xk], with an eigen basis U and singular values D. This feature spa
e


an be obtained from the singular value de
omposition (SVD) of A, where xj denotes the

zero-mean d-dimensional ve
tor representation of the image Ij
1. As we will show next, the

subspa
e of this blo
k of images A will be iteratively updated, eliminating the need to 
olle
t

o�-line training images with a stati
 ba
kground. That is, for a new blo
k of observations

B = [xk+1, . . . ,xk+n] to be in
orporated into this feature spa
e, all that needs to be done is

to in
rementally estimate the eigen basis U
′

and the singular values D
′

of the new 
ombined

blo
k of observations [A, B]. That is, for a temporal window with size n:

• First, we generate a zero-mean matrix of new observations B̂ = [(xk+1 − rb) , . . . ,

(xk+n − rb) ,
√

κn
κ+n

(rb − ra)
]

where ra, rb are the sample means of A and B respe
-

tively, and κ is initially set equal to k;

• Next, we update, ra, with the mean of the 
on
atenation of A and B, that is:

ra =
fκ

fκ + n
ra +

n

fκ + n
rb (1)

where f ∈ [0, 1] is the forgetting fa
tor;

• We 
ompute the QR de
omposition of the residue of B̂ with respe
t to its proje
tion

onto the 
urrent subspa
e, that is: B̃ = qr(B̂ −UUT B̂) and we form a matrix R given

1All algorithms des
ribed here and in the result se
tion were applied to all three 
hannels (R, G, and B)

separately.
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by R =







fD UT B

0 B̃
(

B̂ − UUT B̂
)






;

• Finally, we 
ompute the SVD of R to obtain ŨD̃Ṽ T = svd (R);

• The updated subspa
e is given by

U
′

=
[

U, B̃
]

Ũ and D
′

= D̃ (2)

where a new κ is updated by κ = fκ + n.

The forgetting fa
tor f plays an important role in adjusting the weight between old and

new observations. In order words, depending on the image sequen
e and the appli
ation for

whi
h one needs to subtra
t the ba
kground, it may be desirable to qui
kly in
orporate the


hanges into the subspa
e. On other s
enarios, however, it may be desirable to maintain

the learned ba
kground for a longer period of time. While we will show how to adjust

this forgetting fa
tor in Se
tion 3, one should keep in mind that, with ea
h iteration, the

importan
e of any observation degrades by an additional fa
tor of f 2 [25℄. Similarly, the size

of the temporal window 
an also a�e
t the performan
e of the ba
kground subtra
tion. The


hoi
e of this parameter n is also dis
ussed in Se
tion 3.

It should also be noted that the appearan
e model of the ba
kground may be
ome 
or-

rupted due to outliers in the 
al
ulation of ra. That is, the update of the subspa
e represent-

ing the ba
kground may be polluted with foreground obje
ts present in the new observations.

In order to solve this problem, we propose a solution that guarantees a 
lean adaptation of

the appearan
e model by updating the subspa
e with syntheti
 ba
kground images. This

idea will be explained in details in Se
tion 2.2.3.

The a
tual ba
kground subtra
tion is a
hieved by extra
ting foreground silhouettes as

new images arrive. For that, a foreground mask s of the newly observed image I, over

lo
ations x, must be determined using the following union operation:
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s(x) = ∪c=r,g,b (||yc(x) − ŷc(x)|| ≥ threshc) (3)

where ||y − ŷ|| denotes the Eu
lidean distan
e between the ve
tor representation y of

the image I and its proje
tion ŷ onto the subspa
e. Also threshc is the threshold for ea
h


orresponding 
olor 
hannel c.

2.2.2 Using Multiple Feature Subspa
es

As we will show in the results se
tion, the above method works reasonably well under gradual

illumination 
hanges, but its major disadvantage 
omes from the use of a single subspa
e.

As we already explained, one reason for this poor performan
e is be
ause a single subspa
e

must 
apture all the lighting 
onditions 
ombined. But another reason is be
ause the adap-

tation of the subspa
e 
an be slow 
ompared to the illumination 
hange. That is, 
hanges

in illumination may lead to a large number of misdete
tions over long periods of time. To

address this problem, we propose the use of multiple subspa
es formed by a lo
al prin
ipal


omponent analysis [26℄, so that ea
h subspa
e 
an learn a spe
i�
 lighting 
ondition. This

strategy allows for a qui
k response to previously observed lighting 
onditions without in-

volving long learning pro
esses. That does not mean to say that our approa
h 
annot adapt

to new 
onditions. That only means that initially learned lighting 
ondition 
an be lo
ally

stored as a subspa
e so that the system 
an qui
kly respond to similar lighting 
onditions.

However, the use of multiple subspa
es raises a few questions: 1) how to initialize the sub-

spa
es; 2) how to adapt ea
h subspa
e; and 3) how to subtra
t the ba
kground using the

subspa
e that best represents the 
urrent ba
kground. Please, refer ba
k to Figure 2 for a

visualization of these steps within the framework.

Initialization

In order to initialize the subspa
es, our ALPCA handles ea
h subspa
e separately. For ex-

ample, the 
urrent and new blo
ks of observations are now divided into A(i) =
[

x
(i)
1 , . . . ,x

(i)
k

]

,
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and B(i) =
[

x
(i)
k+1, . . . ,x

(i)
k+n

]

, where i is the index of the subspa
e 
lustered by the ALPCA.

The 
lustering of these observations is obtained by Ve
tor Quantization (VQ) with re
on-

stru
tion error as the distortion measurement. We 
hose this 
riterion be
ause instead of a

simple Eu
lidean distan
e, the re
onstru
tion error is equivalent to a Mahalanobis distan
e,

whi
h preserves the di�erent s
ales (eigenvalues) of the PCA. That is, as shown in [26℄,

by taking the re
onstru
tion error as the distortion measure, we preserve the weight of the

information along ea
h leading dire
tion of the prin
ipal 
omponents. Next, we explain our


lustering method through Ve
tor Quantization.

Given the matrix A =
q

∪
i=1

A(i) = [x1, . . . ,xk] with dimension d × k, for ea
h subspa
e i,

m leading eigenve
tors U (i) =
[

e1
(i), · · · , ej

(i), · · · , em
(i)

]

are retained for ea
h 
luster C (i).

Then, the proje
tion of the image ve
tor x onto C (i) is given by

z =
m

∑

j=1

e
(i)
j

T (x − r (i)) = U (i)T (x − r (i)) (4)

where r (i) is the referen
e ve
tor or the mean ve
tor of the subspa
e de�ned by the 
luster

C (i). The re
onstru
tion of the image ve
tor x is

x̂ = r (i) +U (i)z (5)

The re
onstru
tion error 
an thus be 
al
ulated by

d(x, r (i)) = ‖x − r (i) −U (i)z‖2
(6)

Using an iterative partitioning method, we �rst initialize the referen
e ve
tors
{

r (i)
}q

i=1

by randomly 
hoosing q ve
tors from A. Also we initialize the 
ovarian
e matrix of ea
h

subspa
e
{

D (i)
}q

i=1
with the identity. Usually, q ∈ [2, 5], but this value 
an be adjusted

a

ording to the spe
i�
 image sequen
e, as explained in Se
tion 3.
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After the initialization of these parameters, the partitioning pro
eeds to separate the

training data into the q 
lusters, where

C (i) =
{

x | d(x, r (i)) ≤ d(x, r (j)); ∀ i 6= j
}

(7)

with d(x, r (i)) de�ned by equation (4).

Both the referen
e ve
tor and the subspa
e 
ovarian
e matrix in ea
h iteration will be

updated a

ording to the following rules:

r (i) = arg min
r

1

N (i)

∑

x∈C (i)

d(x, r) (8)

D (i) =
1

N (i)

∑

x∈C (i)

(x − r (i))(x − r (i))T
(9)

where N (i) is the number of data points in 
luster C (i). The leading eigenve
tors of ea
h

subspa
e 
ovarian
e matrix are also 
omputed iteratively. The iteration terminates when

the fra
tional 
hange of the referen
e ve
tor is below some prede�ned threshold. Due to the

large dimension of the image ve
tor x, only a subset of the eigenve
tors for ea
h subspa
e

will be retained. As we explained earlier, the major advantage of our approa
h is that it

a
hieves a qui
k 
onvergen
e while it preserves lo
al adaptation. At the same time, images

under newly observed illumination will not disturb the previously learned subspa
es, given

an appropriate size of q. If similar lighting 
onditions are observed, our framework will

qui
kly respond with the sele
tion of the 
orre
t subspa
e, while the in
remental learning

s
heme is able to 
apture and learn new lighting 
onditions.

Adaptation

The adaptation of multiple subspa
es is done in a similar fashion with the single subspa
e.

The major di�eren
e is that it must be 
arried out on ea
h subspa
e separately. That is,

all the equations in Se
tion 2.2.1 must extended to now use A(i) =
[

x
(i)
1 , . . . ,x

(i)
k

]

, and
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(a)

(b)

(
)

(d)

Figure 3: The �rst two rows show the response of the system to the �rst time a sudden

illumination 
hange is observed (frames 79 to 97). The last two rows show a very similar

illumination 
hange, but this time after the system had adapted to the di�erent subspa
es

(frames 392 to 399).
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B(i) =
[

x
(i)
k+1, . . . ,x

(i)
k+n

]

, with i as the index of the subspa
e. Also, it is important to noti
e

that the forgetting fa
tor a�e
ts ea
h subspa
e separately sin
e the image used for adaptation

is 
lassi�ed by the algorithm before it is used to update its own subspa
e.

As we mentioned in the beginning of this se
tion, the purpose of the initialization de-

s
ribed above is to allow our system to respond 
orre
tly from the very beginning of the

image sequen
e. However, the system is also 
apable of learning and adapting to new 
on-

ditions. This idea is depi
ted in Figure 3 where we present two new, but similar 
hanges of

illumination � that is, that spe
i�
 lighting 
ondition was not learned during initialization.

As the Figure 3a-f shows, at the �rst time the system observes this 
hange, the response is

not ideal, sin
e the subspa
e had not been formed yet. However, at the se
ond time a similar

transition o

urs (Figure 3g though l), the system qui
kly responds based on the subspa
es

learned during adaptation.

In other words, whether the multiple subspa
es are perfe
tly initialized or not, the adap-

tation allows the eigenve
tors de�ning the multiple subspa
es to eventually move towards

the 
lusters. Obviously, the required number of subspa
es depends on the sequen
e and how

di�erent its ba
kgrounds are. In Se
tion 3, we will dis
uss the sele
tion of the optimum

number of subspa
es.

Ba
kground Subtra
tion

Sin
e we now have multiple subspa
es representing di�erent ba
kground appearan
es,

when it 
omes to a
tually extra
ting the foreground from the ba
kground, the system must

�nd the subspa
e that best represents the 
urrent ba
kground � the red squares in Figure 2.

We assume that the best subspa
e is the 
losest one, and by 
losest we mean the subspa
e

with the set of eigen features that provides the minimum re
onstru
tion error for the new

image. This set of eigen features are then used in equation 3 to obtain the foreground mask

s as explained in Se
tion 2.2.1.
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(a) Original input images for learning

(b) Learned polluted ba
kground due to foreground obje
ts

(
) Poor foreground extra
tion due to polluted ba
kground model

(d) Learned ba
kground after eliminating foreground obje
ts

(e) Clean foreground extra
tion obtained by our method

Figure 4: Two examples of foreground extra
tion: (a) Original Images, (b) and (
) unsu
-


essful foreground subtra
tion due to foreground obje
ts 
orrupting the ba
kground model;

and (d) and (e) our proposed method.
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2.2.3 Learning using Syntheti
 Ba
kground Images

As mentioned earlier, another advantage of our method 
omes from the use of syntheti


images during adaptation. That is, sin
e input images may in
lude foreground obje
ts,

our framework provides a new me
hanism that prevents su
h obje
ts from being learned as

part of the models of the ba
kground. Intuitively, any in
remental learning with non-stati


images may introdu
e foreground pixels as outliers for the ba
kground models � as shown

in Figure 4. These misrepresentation of the true appearan
e of the ba
kground may result

in future misdete
tion during foreground extra
tion. For this reason, our system has the

option to update the subspa
es with the synthesized ba
kground of the observed images.

This option 
an be turned o� whenever the appli
ation requires that foreground obje
t be

slowly in
orporated into the ba
kground.

In order to understand how this ba
kground synthesis works, let us 
all b the syntheti


ba
kground of the original image ve
tor y. Our framework is able to 
al
ulate b by means

of the foreground mask s from the silhouette extra
tion. That is, syntheti
 ba
kground is

given by:

b = (s ∧ r (j)) ∨ (y ∧ s) (10)

That is, �rst we remove the foreground pixels by an �AND� operation of the image y

with the 
omplement of the mask, s. Then, we add (�OR� operation) the ba
kground pixels

obtained from one of the mean ve
tors of the various subspa
es: (s∧ r (j)). The mean ve
tor

r (j) is 
hosen as in: j = arg mini d(y, r (i)).

Our method should be 
ontrasted with other systems in the literature that only use

foreground-free images/pixels for updating the ba
kground. For example, in [27℄ ba
kground

pixels are 
lassi�ed into permanent and non-permanent and only pixels observed long enough

are regarded as permanent and in
orporated in the ba
kground model. Also, in [28℄, only
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blo
ks 
lassi�ed as ba
kground are used for updating. Espe
ially in the se
ond 
ase, these

methods 
an 
ause a large delay in the adaptation, sin
e foreground-free images 
an take a

long time to appear again.

2.2.4 Computational Complexity and Other Observations

The analysis of the 
omputational 
omplexity of our method 
an be divided into two parts.

The �rst part refers to the initialization step of the algorithm and it represents the most

onerous of the two 
omplexities. The major reason for this 
omplexity is the 
al
ulation of

the singular value de
omposition of ea
h large matrix A(i), 
ontaining all the initial images

used for the learning of the subspa
es. Fortunately, sin
e this step is exe
uted only at the

beginning of the algorithm, its 
omputational 
ost does not a�e
t the real-time performan
e

of our method.

On the other hand, a mu
h more e�
ient 
omputational 
omplexity 
omes from the

se
ond part of the algorithm, whi
h performs the adaptation step. In this step, the SVD

of the matrix A(i) must be updated for the newest n images observed for a same 
luster

i. As we explained in Se
tions 2.2.1 and 2.2.2, this step involves the 
omputation of the

QR de
omposition of the matrix B(i), with dimension d × n � where d is the size of the

images � and the subsequent 
al
ulation of the SVD of R, with dimension 2(d × n). The

QR de
omposition was implemented using the modi�ed Gram-S
hmidt algorithm des
ribed

in [29℄, whi
h performs on the 
olumns of B(i) only. Also, we used the �partitioned R-

SVD� algorithm des
ribed in [29℄ and [30℄ to extra
t the m prin
ipal 
omponents, or �rst

eigenve
tors, of R. These 
omponents are used to adapt the original subspa
e U (i) 
ontaining

the eigenve
tors a

ording to eq. (2). The 
omplexity of the algorithm for adaptation of ea
h

subspa
e is therefore O(dmn), [30℄. Sin
e this adaptation only needs to o

ur after n new

images of one same subspa
e are observed, at whi
h point one single subspa
e is updated,

the �nal total 
omplexity of the adaptation is also O(dmn). However, in order to de
ide

to whi
h subspa
e an image belongs, the residue for ea
h subspa
e needs to be 
omputed.
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This 
al
ulation takes O(dmq) time, and sin
e in general q ≪ n, the �nal 
omplexity of the

entire algorithm is O(dm(n + q)) or simply O(dmn). This 
omplexity made it possible for a

C++ implementation of the algorithm to a
hieve frame rate performan
e for normal VGA

images.2

In order to improve even further the performan
e of our system, we embedded a heuristi
s

into our implementation. We use a simple motion dete
tion test to determine whether a

drasti
 illumination 
hange o

urred or if a moving obje
t is present in the s
ene. If only

an illumination 
hange happened, the framework for
es a qui
k adaptation by setting the

foreground mask to zeros. Otherwise, the foreground mask is left alone. The test is performed

by analyzing two 
onse
utive frames Ik and Ik+1, binarizing its temporal di�eren
e, applying

a morphologi
al opening, and thresholding the moving pixels.

Another advantage of our framework is its ability to fall ba
k into one of the early

subspa
e-based methods. That is, in an extreme 
ase where the number of multiple subspa
es

is found to be one, our system redu
es to an adaptive eigenba
kground (APCA). Also,

if the forgetting terms is set to zero, the behaves like the lo
al eigenba
kground without

adaptation (LPCA) [24℄. If both options were removed, the system would behave as a

simple eigenba
kground (pure PCA).

3 Experimental Results

We tested and 
ompared our proposed ALPCA to four other approa
hes using six di�erent

datasets: four ben
hmark datasets available from the web, and two datasets that we 
reated.

The reason for our own datasets is be
ause none of the ben
hmark datasets available had


hanges in illumination that were drasti
 and/or sudden enough to test our algorithm. That

is, while most datesets 
ontained gradual, �over-the-day� kinds of illumination 
hanges, in

order to test our algorithm, we needed the kinds of 
hange as the ones in Figure 5e) and f).

2This C++ implementation is being made publi
ly available from our website.
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Here is a short des
ription of ea
h dataset used. The reader 
an refer to Figure 5 for a

few examples of the frames in ea
h of these datasets.

The �Dan
e� 
ontains more than one thousand frames of a graphi
ally generated indoor

s
ene with two dan
ing 
hara
ters. While this sequen
e 
ontains a somewhat sudden


hange of illumination, these 
hanges are very subtle, besides this is a syntheti
 image

sequen
e. This is part of the VSSN 2006 dataset3.

The �Campus� video sequen
e is part of the PETS 2001 dataset4. We used almost four

thousand of its frames, in
luding various with gradual illumination 
hange (over the

period of a day) and people walking at a reasonably far distan
e from the 
amera.

The �Lobby� is also an outdoor video sequen
e with almost �ve hundred frames. It is part

of the PETS 2004 dataset 5 and it also 
ontains people meeting/
hatting at the lobby

of the INRIA Lab, in Fran
e.

The �Subway� is the last of the ben
hmark videos used in our tests, and it 
ontains a mix

of natural and arti�
ial illumination sour
es. It is part of a dataset 
alled PETS 2006 6

and we used more than fourteen hundred of its frames. It was shot at a subway station

and it 
aptured people 
oming in and out of the station.

The �Sudden-Change� is the �rst of our new video sequen
es. It was shot inside our lab

and it was 
reated with the purpose of testing our algorithm for drasti
 and sudden


hanges in illumination. During this �ve-hundred-frame video sequen
e, half of the

light �xtures are swit
hed on-and-o� separately, 
reating three di�erent 
ombinations

of lighting 
onditions. A person moves ba
k and forth in front of the 
amera. Both

this and the next sequen
es are available from our lab website7.

3http://imagelab.ing.unimore.it/vssn06
4http://www.
vg.
s.rdg.a
.uk/PETS2001
5http://groups.inf.ed.a
.uk/vision/CAVIAR/CAVIARDATA1/
6http://www.
vg.
s.reading.a
.uk/PETS2006/data.html
7http://vigir.missouri.edu/~evan/ba
kgroundsubtration
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(a) The Dan
e sequen
e (VSSN2006)

(b) Campus (PETS2001)

(
) Lobby (PETS2004)

(d) Subway (PETS2006)

(e) Sudden-Change

(f) Sudden-Change-Door

Figure 5: Samples from the six video sequen
es used for testing
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Figure 6: E�e
ts of the number of eigenve
tors on Pre
ision and Re
all for a typi
al test

sequen
e: �Sudden-Change-Door�.

The �Sudden-Change-Door� is a sequen
e similar to the one above, with the addition of

a sudden ba
kground 
hange. That is, while some of the lights are swit
hed o�, a door

in the ba
k of the room is opened and 
losed. The light from the hallway �oods the

room, 
reating yet another set of 
ombinations of lighting 
onditions.

3.1 Parameter Sele
tion

As we mentioned earlier, there are three parameters that need to be sele
ted: number of

subspa
es, forgetting fa
tor, and size of the temporal window. In order to appre
iate the

impa
t of these parameters in the performan
e of the ALPCA, we tested ea
h one against the

video sequen
es above. In the next subse
tions, we will dis
uss the 
hoi
es of optimum values

for ea
h one of these parameters. However, as we will demonstrate next, unlike the other

systems in our 
omparisons, the ALPCA is not very sensitive to the 
hoi
e of parameters,

whi
h makes this approa
h more attra
tive. This analysis was made using two metri
s:

Pre
ision, ( Ntp

Ntp + Nfp
) and Re
all, ( Ntp

Ntp + Nfn
), 
al
ulated for ea
h sequen
e in its entirety.

3.1.1 Number of Eigenve
tors

The �rst parameter to be determined is the number m of eigenve
tors used to represent ea
h


luster. In order to make this 
hoi
e, we performed a test over the entire set of images in
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ea
h sequen
e and 
al
ulated the pre
ision and re
all versus the number of eigenve
tors used

in the 
onstru
tion of the subspa
e. As the Figure 6 (a) and (b) illustrate, the in
orporation

of multiple subspa
es a
hieves superior performan
e over single subspa
e. As the readers

will noti
e, the pre
ision/re
all be
omes smooth after the �fth prin
ipal 
omponent for the

multiple subspa
es. In Appendix A, we dis
uss in more depth the impli
ations of these

results, but it is 
lear that a 
hoi
e of �ve eigenve
tors should be enough to 
apture most of

the variations in the images and that was the value used in the next se
tions for the proposed

ALPCA method.

3.1.2 Number of Subspa
es

In order to determine an optimum number of subspa
es q, we 
omputed Pre
ision and Re
all

as a fun
tion of that number. As Figure 7 shows, the optimum q varies from one to �ve. For

example, for the Campus sequen
e (Figure 7b), sin
e the 
hange in illumination happens

very slowly, any adaptive method should be able to handle su
h sequen
es. That is, there

is no need to keep multiple models of the ba
kground appearan
es at any single moment

sin
e the adaptation itself 
an handle those 
hanges. In that 
ase, the ALPCA 
an be made

to 
apture the appearan
e ba
kground using one single adaptive subspa
e, and the ALPCA

is redu
ed to the APCA approa
h. Also, the performan
e of the two approa
hes should be

quite similar, if not identi
al. On the other hand, for the Dan
e sequen
e, whi
h 
ontains a

somewhat sudden 
hange in illumination (Figure 7a) and for our two new sequen
es, whi
h


ontain sudden as well as drasti
 
hanges of illumination (Figure 7
 and d), the ALPCA

required at least two subspa
es. In some 
ases, a
hieving an improvement of Pre
ision by

more than 50% (e.g. Figure 7
).

In general, a q equal to four will work for most sequen
es. In fa
t, a slightly larger

number, say �ve or six, 
ould also be used just for �safety�. That is, whenever a number of

subspa
es larger than the a
tual number of ba
kground appearan
es is spe
i�ed, the ALPCA

will either split the samples among two 
ongruent subspa
es, or into two 
losely adja
ent
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(a) Dan
e (b) Campus

(
) Sudden-Change (d) Sudden-Change-Door

Figure 7: Pre
ision/Re
all versus Number of Subspa
es, q, for four of the six test sequen
es.
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subspa
es (with possible overlaps). In either 
ases, these subspa
es will remain �redundant�

until a newly observed ba
kground appearan
e for
es them apart. This property of the

ALPCA must be used 
arefully though. These redundant subspa
es 
an 
ause a slight

de
rease in the performan
e of the system, as Figure 7a and b demonstrate for q = 3 and

q = 2, respe
tively.

3.1.3 Forgetting Fa
tor

Figure 8 shows the e�e
t of the f in the APCA as well as the proposed ALPCA. As we have

already mentioned, whenever ALPCA is applied to a simple sequen
e � i.e. with only gradual


hanges in illumination � the performan
e of the APCA and ALPCA are quite similar � e.g.

the Campus sequen
e in Figures 8b and f, where we for
ed ALPCA to only one subspa
e.

On the other hand, for more 
hallenging sequen
es (Figures 8
, g and d, h) the improvement

a
hieved by the multiple subspa
es is quite obvious.

From eq. (1), we 
an see that the forgetting fa
tor, f , 
ontrols how mu
h of the past

observations the adaptation algorithm retains. However, the new observations are always

used to 
hange the subspa
es, regardless of f � i.e. the weight used for the new blo
k of

observations, B in eq. (1), is never zero. Moreover, 
ompared to the APCA, this parameter

plays a mu
h smaller role in the proposed ALPCA � any value between 0.1 to 0.6 works for

all the sequen
es. This should not be a surprise sin
e the APCA has only a single subspa
e

to learn all observed ba
kground appearan
es, and di�erent values of the forgetting fa
tor in

the APCA 
an a�e
t signi�
antly the adaptation. On the other hand, for the ALPCA, the

forgetting fa
tor a�e
ts the subspa
es independently, retaining all other subspa
es un
hanged

while it adapts the 
urrent one.

3.1.4 Size of the Temporal Window

The last parameter to be tuned is the temporal window size: n. Figure 9 shows the behavior

of our approa
h as a fun
tion of n. As before, the performan
es of the APCA and ALPCA
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APCA

(a) Dan
e (b) Campus (
) Sudden-Change (d) Sudden-Change-Door

ALPCA

(e) Dan
e (f) Campus (g) Sudden-Change (h) Sudden-Change-Door

Figure 8: Pre
ision/Re
all versus Forgetting Fa
tor. First row: APCA, and se
ond: ALPCA.

for simple sequen
es are quite similar � e.g. Figures 9b and 9f, where again the 
hanges in

illumination happen so slowly that adaptation with a single subspa
es (q = 1) is su�
ient to

e�e
tively dete
t the ba
kground. In most 
ases, as with the forgetting fa
tor, the ALPCA

is quite insensitive to 
hanges in the temporal window, but for others, a large value for the

temporal window size, n, may lead to a de
rease in performan
e. The reason is similar to

what happens with the forgetting fa
tor f , sin
e the window size a�e
ts the adaptation in a

similar fashion. That is, a large value of n may also leads to a slow adaptation. In general,

the advantages of ALPCA over APCA be
omes quite distin
t.

Table 1: Quantitative evaluation between APCA and ALPCA

Dan
e Campus Sudden-Change Sudden-Change-Door

p (%) r (%) p (%) r (%) p (%) r (%) p (%) r (%)

APCA 86.76 97.29 79.08 63.76 47.13 83.20 60.76 76.08

Proposed ALPCA 88.04 98.27 79.08 63.76 88.92 85.48 82.53 77.14
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APCA

(a) Dan
e (b) Campus (
) Sudden-Change (d) Sudden-Change-Door

ALPCA

(e) Dan
e (f) Campus (g) Sudden-Change (h) Sudden-Change-Door

Figure 9: Pre
ision/Re
all versus Size of Temporal Window. First row: ALPCA, and se
ond:

APCA.

3.2 Quantitative Results

The results above were used to sele
t the optimum set of parameters for both the APCA

and ALPCA for all tests presented hereafter. On
e we found these parameters, we run the

APCA and ALPCA for all datasets and averaged Pre
ision/Re
all for all the frames in ea
h

sequen
e. Table 1 presents the results for four of those sequen
es: Dan
e, Campus, Sudden-

Change, and Sudden-Change-Door. As expe
ted, the performan
es of the two methods are

quite similar for simple sequen
es, but under sudden 
hanges in illumination, the ALPCA

presents a mu
h better performan
e.

3.3 Qualitative Results

In order to demonstrate how e�e
tive the proposed method is in terms of foreground segmen-

tation, our algorithm was qualitatively 
ompared it to �ve other approa
hes: an adaptive

GMM-based algorithm [4℄, and four approa
hes using ba
kground appearan
es: pure PCA,

Adaptive PCA, Lo
al PCA, and Adaptive Lo
al PCA. For the 
ases where training was
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required (e.g. PCA), a small portion of the frames (~10%) were randomly sele
ted and the

remaining frames used for testing. Examples of the segmentation for the most 
hallenging

frames in ea
h sequen
e are depi
ted in Figures 10 to 13.

From Figure 10, we noti
e that by simply adding the ability to handle multiple subspa
es

(Figure 10e) to the pure PCA approa
h, the LPCA 
an already perform mu
h better than

without it. In this test sequen
e (the Dan
e), sudden, but minor 
hanges in illumination,

are present, and one single subspa
e is not 
apable of 
apturing e�e
tively the two di�erent

ba
kground appearan
es 
ontained in the sequen
e. However, by learning from the beginning

both appearan
es and storing them as separate subspa
es, the LPCA 
an do a mu
h better

job of segmenting out the foreground. Also, for this spe
i�
 sequen
e, the ALPCA does not

o�er mu
h improvement, unless when we use the ALPCA without any prior training. In that


ase, the ALPCA will misdete
t the foreground when it observes the 
hange of illumination

for the �rst time, but then, next time it will have adapted by 
reating another subspa
e and

the performan
e will be again mu
h better than that of any other method that uses a single

subspa
e. This advantage of the ALPCA has already been dis
ussed in Se
tion 2.2.2, but

Figure 11e shows yet another example of that. This time, sin
e we used only a small portion

of the frames for training of the LPCA and this method has no adaptation, the 
lustering

formed during the training phase of the LPCA was ine�e
tive, and the performan
e for those

frames was not inferior with respe
t to the performan
es of the APCA and the ALPCA, whi
h


an adapt even to a bad initialization of the 
lusters (Figures 11d and f).

The previous ben
hmark sequen
es already demonstrate the advantages of a lo
al treat-

ment of the subspa
es using an adaptive and lo
al PCA. However, it is only after 
he
king

the results for our two new sequen
es that one 
an appre
iate it fully. In those two 
ases,

the ALPCA 
an extra
t the foreground almost perfe
tly, whether the illumination 
hanges

slowly as before, or suddenly as in the two sequen
es in Figures 12 and 13.

Finally, we also test the performan
e of the ALPCA using the other two ben
hmark

videos: Lobby and Subway. Figure 14 shows these result. The results for all frames in all six

29



(a) Sample frames from the Dan
e sequen
e

(b) result using GMM

(
) result using PCA

(d) result using APCA

(e) result without adaptation: LPCA

(f) result using our proposed method with adaptation: ALPCA

Figure 10: Results for the Dan
e sequen
e.
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(a) Sample frames from the Campus sequen
e

(b) result using GMM

(
) result using PCA

(d) result using APCA

(e) result without adaptation: LPCA

(f) result using our proposed method with adaptation: ALPCA

Figure 11: Results for the Campus sequen
e.
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(a) Sample frames from the Sudden-Change sequen
e

(b) result using GMM

(
) result using PCA

(d) result using APCA

(e) result without adaptation: LPCA

(f) result using our proposed method with adaptation: ALPCA

Figure 12: Results for the Sudden-Change sequen
e.
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(a) Sample frames from the Sudden-Change-Door sequen
e

(b) result using GMM

(
) result using PCA

(d) result using APCA

(e) result without adaptation: LPCA

(f) result using our proposed method with adaptation: ALPCA

Figure 13: Results for the Sudden-Change-Door sequen
e.
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(a) Original frames from the Lobby sequen
e

(b) Results from ALPCA

(
) Original frames from the Subway sequen
e

(d) Results from ALPCA

Figure 14: Two more results using ALPCA: the Lobby (a)-(b) and Subway sequen
es (
)-(d)

sequen
es 
an be downloaded from our website at:

http://vigir.ee.missouri.edu/~evan/ba
kgroundsubtra
tion.

4 Con
lusion and Future work

We proposed a new multi-subspa
e adaptive algorithm that 
an robustly and e�e
tively

extra
t foreground obje
ts under various illumination 
onditions: despite how sudden and

drasti
 those 
hanges may be. If trained during initialization, the feature spa
e was parti-

tioned into 
lusters 
orresponding to the di�erent lighting 
onditions and ba
kground ap-

pearan
es in the training set. Then, Lo
al Prin
ipal Component Analysis was performed

to build a set of multiple subspa
es that better represent ea
h of the many ba
kground ap-

pearan
es. However, even when an o�-line training is not possible, the proposed approa
h
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o�ered an adaptation method using syntheti
 ba
kground images that eventually 
onverged

to the same set of multiple subspa
es. In either 
ases, the foreground dete
tion was shown

to be more a

urate and robust than other methods in the literature. That was true not

only, but espe
ially when the ba
kgrounds presented sudden and drasti
 
hanges of lighting


onditions.

The proposed method relies on a �K-Means like� 
lustering pro
edure. While this may

be a simple 
lustering pro
edure, the results demonstrated that the ability to do adaptation

makes the initial 
lustering not 
riti
al via-a-vis the �nal overall performan
e of the method.

However, in the 
lassi�
ation step, the algorithm relies on �xed thresholds for both the

synthesis of the ba
kground used during adaptation as well as for the proper foreground

extra
tion. In the future, more investigation will be 
ondu
ted to make these thresholds

adaptive with respe
t to the sequen
es.

The proposed system developed in C++ runs on a single 
ore 2.8GHz Pentium IV and

a
hieves 25fps in real time. The C++ 
ode used in this work is being made available from

http://vigir.ee.missouri.edu/~evan/ba
kgroundsubtra
tion.

Appendix A

Based on intuition alone, one 
ould wrongly assume that using a single m × q-dimensional

PCA spa
e will always a
hieve better results than building q multiple m-dimensional sub-

spa
es as we proposed in our resear
h. In fa
t, as we will demonstrate in this se
tion, the

a
tual intuition should lead exa
tly to the opposite 
on
lusion.

Let us take for example the simple 
ase of a 3-dimensional spa
e with two 
lusters repre-

senting the two possible appearan
es of the data � in the real 
ase of ba
kground subtra
tion,

those 
lusters of ba
kground appearan
es would be 
aused, for example, by di�erent lighting


onditions, or by a door that is opened/
losed in the ba
k of the room, as we will dis
uss

next. But despite the a
tual reason for the 
lusters, sin
e the main purpose of using PCA is
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to redu
e the original dimensionality of the image spa
e, in this initial and simpli�ed 
ase we

must assume that m × q 
annot equal 3 (the full dimensionality of the data), and therefore

the question be
omes whether a single two-dimensional (global) PCA will always perform

better than two one-dimensional (lo
al) PCAs.

Figure 15(a) depi
ts the 3D sample data as well as the three 
orresponding eigenve
tor

bases. That is, the �gure shows in red and green the two 
lusters of data points with the

two one-dimensional ve
tor bases, e
(1)
1 and e

(2)
1 , and the single two-dimensional ve
tor basis

e
(s)
1,2.

An intuitive demonstration that the above 
laim is not true � i.e. that lo
al PCAs

will instead often outperform a global PCA � 
an start by taking a data point x at the


enter of the �rst data 
luster. In that 
ase, it would be easy to visualize that despite

of whi
h eigenve
tor(s) are 
hosen for the lo
al PCA subspa
es, the re
onstru
tion of x

using the 
losest lo
al PCA e
(1)
1 will always be perfe
t � i.e. there will be no residue in the

re
onstru
tion of su
h x with respe
t to e
(1)
1 sin
e the distan
e of x to e

(1)
1 , in that 
ase, is

zero. On the other hand, the re
onstru
tion of x using the global PCA spa
e e
(s)
1,2 will have

a residue proportional to the remaining 
oordinate of x � whi
h had to be dis
arded for the


onstru
tion of the two-dimensional global PCA spa
e. In other words, the residue in the

re
onstru
tion of x, whi
h is the distan
e of x to the plane spanned by the basis e
(s)
1,2 will not

be zero sin
e the 
enter of the lo
al 
luster does not ne
essarily lies on that plane.

Mathemati
ally, this advantage of a lo
al PCA versus a global PCA is demonstrated by

taking the proje
tion of x onto the lo
al PCA subspa
es, i.e.

z =
m

∑

j=1

e
(i)
j

T (x − r (i)) = U (i)T (x − r (i)) (11)

where r (i) is the referen
e ve
tor or the mean ve
tor of the subspa
e de�ned by the 
luster

C (i) and e
(i)
j

T are the eigenve
tors of C (i) and de�ne the basis U(i). The best re
onstru
tion

of the data ve
tor x is obtained with respe
t to the 
losest lo
al PCA subspa
e:
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(a) (b)

(
)

Figure 15: Single vs. multiple subspa
es using 3D data: (a) Data points; (b) Single feature

spa
e 
aptured by traditional global PCA approa
hes; (
) Same data represented by multiple

(two) subspa
es.
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x̂ = r (1) +U (1) zT
(12)

and the re
onstru
tion error, or residue, is given by the distan
e:

d(x, r (1)) = ‖x − r (i) −U (i) zT‖ (13)

Sin
e x = r (1), z will be equal to zero and so will be the residue d(x= r(1), r(1)).

On the other hand, for the global two-dimensional PCA spa
e U(s), the non-zero re
on-

stru
tion error is:

d(x, r (s)) = ‖x − r (s) −U (s) zT‖ (14)

whi
h, after a few simple manipulations, 
an be expressed as:

d(r (1), r (s)) = ‖U
(s)T (r (1) − r (s))‖ (15)

where U
(s)

represents the 
omplement of ve
tor basis U(s) in R3.

For a more general 
ase where x is not ne
essarily at the 
enter of any of the 
lusters,

su
h x 
an be expressed as x = r (1) + y and the residues with respe
t to the lo
al subspa
e

U(1) and the global spa
e U(s) be
ome, after a few simple manipulations, respe
tively:

d(x, r (1)) = ‖U
(1)Ty‖ (16)
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d(x, r (s)) = ‖U
(s)T (r (1) + y − r (s))‖ (17)

Figures 15(b) and (
) show these residues as the respe
tive distan
es of the point x to

the 
omplement spa
es U
(1)

and U
(s)
. On
e again, for this simple 3D example, it is easy to

intuitively infer the relationship between d(x, r (s)) and d(x, r (1)), that is, for whi
h 
ases is

‖U
(s)T (r (1) +y− r (s))‖ > ‖U

(1)Ty‖, and the lo
al PCA always better than the global PCA.

For the more realisti
 appli
ation in question, ba
kground subtra
tion, our results in the

previous se
tions already demonstrated the advantages of a lo
al PCA. However, an analysis

of the expression above 
an provide further insights regarding those 
ases. For example,

sin
e both residues depend on y, it seems that the determinant term above is the distan
e

between the 
enters of the global spa
e and the lo
al subspa
e: ‖(r (1) − r (s))‖. That is,

the further those two 
enters, the larger will be the residue of the re
onstru
tion of x in the

global PCA vis-a-vis the residue in the lo
al one. That is exa
tly the 
ase when one of the


lusters is formed by a low-o

urren
e image, su
h as due to sudden illumination 
hanges �

those are like outliers of the main ba
kground appearan
e. Also, it is important to mention

that the two residues above are 
al
ulated with respe
t to two di�erent bases: U
(1)

and

U
(s)
, and despite the fa
t that the dim(U

(1)
) > dim(U

(s)
), those same dimensions are still

mu
h smaller than the a
tual dimension of the images. That is, usually in our experiments

dim(U(1)) = 5 and the number of 
luster m = 5, leading to the dim(U(s)) = 25, whi
h is

still mu
h smaller than the image size d = 640 × 480 × 3.

In order to appre
iate the fa
t that the image residue from the re
onstru
tion of an image

with respe
t to a global PCA is mu
h larger than the image residue with respe
t to a lo
al

PCA, we present Figure 16. In that 
ase, the same test image was re
onstru
ted using a

single, global PCA spa
e Figure 16(d) and the 
losest of the two lo
al PCA subspa
es Figure

16(e). As it 
an be observed, the se
ond residue is mu
h smaller than the �rst, whi
h leads
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to a mu
h better foreground segmentation, or ba
kground subtra
tion.

Finally, as we have already shown in Figure 6, the use of 25 dimensions for the global

PCA spa
e, i.e. dim(U(s)) = 25, is not a wise 
hoi
e sin
e the pre
ision of the foreground

dete
tion does not in
rease mu
h after 10 prin
ipal 
omponents are in
luded � while the


omputational 
omplexity 
ertainly does.
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(a) (b)

(
)

(d) (e)

Figure 16: Di�eren
e in the residue images for two 
lusters of ba
kground appearan
es using

one single PCA spa
e versus two lo
al PCAs: (a) sample image from one of the 
lusters; (b)

sample image from the se
ond 
luster; (
) test image similar to the �rst 
luster, but with a

person on the foreground; (d) residue image using a single, global PCA spa
e; (e) residue

image using the 
losest of two lo
al PCA subspa
e.
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