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Abstract

We propose a new adaptive learning algorithm using multiple eigen subspaces to
handle sudden as well as gradual changes in background due for example to illumina-
tion variations. To handle such changes, the feature space is organized into clusters
representing the different background appearances. A local principle component anal-
ysis transformation is used to learn a separate eigen subspace for each cluster and an
adaptive learning is used to continuously update the eigenspaces. When the current
image is presented, the system automatically selects a learned subspace that shares
the closest appearance and lighting condition with the input image, which is then
projected onto the subspace so that both background and foreground pixels can be
classified. To efficiently adapt to changes in lighting conditions, an incremental update
of the multiple eigen subspaces using synthetic background appearances is included in
our framework. By doing so, our system can eliminate any noise or distortions that oth-
erwise would incur from the foreground objects, while it correctly updates the specific
eigen subspace representing the current background appearance. A forgetting factor is
also employed to control the contribution of earlier observations and limit the number
of learned subspaces. As the extensive experimental results with various benchmark
sequences demonstrate, the proposed algorithm outperforms, quantitatively and qual-
itatively, many other appearance-based approaches as well as methods using Gaussian
Mixture Model (GMM), especially under sudden and drastic changes in illumination.
Finally, the proposed algorithm is demonstrated to be linear with the size of the im-
ages d, the number of basis in the local PCA m, and the number of images used for
adaptation n: that is, the algorithm is O(dmn) and our C++ implementation runs in

real time — i.e. at frame rate for normal resolution (VGA) images.

Keywords: multiple eigen subspace, Local PCA, incremental learning, illumina-

tion invariance.



1 Introduction

Foreground object detection is an essential task in many image processing and image un-
derstanding algorithms, in particular for video surveillance. Background subtraction is a
commonly used approach to segment out foreground objects from their background. In
one way or another, background subtraction consists of modeling and storing away the back-
ground so it can be later compared to newly observed images. The difference image obtained
by this comparison is then thresholded so the foreground objects can be segmented out. De-
spite the simplicity of this concept, in real world applications, temporal and spacial changes
in pixel values such as due to shadows, gradual/sudden changes in illumination, etc. make
modeling backgrounds a quite difficult task. For that reason, most systems have focused on
either capturing the temporal or the spacial changes, and only a few systems have expanded
one approach into the other: i.e. from a temporal approach into spacial or vice versa.

In order to capture changes in the background over time, different approaches have been
proposed in the past decades. In [1] and [2], for example, the system recursively updated the
background model using adaptive filters. In both cases, the method could only accommodate
gradual illumination variations and it often failed in the presence of sudden illumination
changes. A widely used technique, Gaussian Mixture Models (GMM), has been employed by
many systems, such asin [3, 4, 5, 6, 7, 8, 9]. In all these cases, the basic principle was to model
the pixel intensity at each location and capture the pixel statistics over time with a mixture
of Gaussians. More recently, improved approaches using multi-modal techniques such as: 1)
an adaptive GMM [5, 4]; 2) layers of GMM for each pixel [8]; 3) feature vectors consisting
of color and texture [9, 10]; etc. have achieved not only better performance, but also the
ability to handle gradual changes in illumination. However, GMM-based approaches do not
perform well when the pixels change drastically or over long periods of time. Besides, GMM
alone cannot capture the spatial relations among pixels, which is an important requirement
for a coherent foreground segmentation. This problem also appears in other non-parametric

and kernel-based approaches, such as [11] and [12], and had to be handled in a separate and



computationally intensive step, currently preventing frame rate performances [13].

In that regard, a system known as Wallflower 14| was one of the first systems to propose a
combined temporal and spacial framework using three major components: 1) the pixel-level
component, which uses a Wiener filter to create a linear predictor of the pixel intensity val-
ues given the pixel history; 2) the region-level component, which groups homogeneous pixels
based on their spatial relations; and finally 3) the frame-level component, which adapts to
the gradual and sudden changes of the background. The combination of these three levels of
processing achieved good results, but the complexity added prevented its use with real-time
performance. Other GMM-based approaches were recently proposed to address, for example,
illumination invariance and foreground fragmentation — e.g. [6|. However, typical problems
of GMM, such as the use of global learning rates for the background update and slow conver-
gence, were not addressed by this method. So, in [7], the authors proposed locally adaptive
learning rates for each Gaussian distribution. The rates were based on the most likely Gaus-
sians over several continuous frames. That approach improved convergence significantly, but
the spatial relationships between pixels were still ignored and therefore foreground fragmen-
tation still occurred. Finally, other statistical approaches to model dynamic scenes were also
proposed. But they led to either computationally complex solutions [15] or to restrictions
on the relative dynamic behavior of background and foreground |[16].

On the other side of the coin, many approaches based on subspace learning have been
proposed [17, 18, 19, 20, 16| to capture spacial relations between pixels,. In the celebrated
FEigenBackground, [17], for example, the system built a PCA feature space to describe the
appearances of the learned backgrounds. Newly observed images were then projected onto
this eigenspace and the foreground objects were segmented out by a thresholding based on
the Euclidean distance between the reconstructed (projected) images and the original images.
Due to the nature of PCA, this method exploited extensively the spatial relations between
pixels and thus it often resulted in homogeneously coherent regions for each object in the

foreground. Additionally, the off-line learning characteristic of the method made it fast and



easy to implement. More recently, temporal changes in background appearance — e.g. due to
illumination, dynamic backgrounds, etc. — were incorporated into eigen-based approaches, as
in [20] and [16], to capture not only the pixel spacial relations inherent to PCA approaches,
but also their temporal relations. Also, to add adaptation over time, an incremental PCA
(or adaptive PCA — APCA) was employed by a few systems [16, 18|. However, as our results
demonstrate, by employing multiple subspaces, our approach can more accurately capture
the appearance of the background in the presence of, for example, sudden illumination
changes. Finally, other appearance based methods were proposed to handle changes in the
background, but their main focuses were on: a) subdividing the background image into
blocks in order to capture their appearance despite small translations of these blocks [21]; b)
the use of tensors for the calculation of a global PCA that could more efficiently capture the
similarities between groups of pixels in the background [22]; and ¢) the efficient calculation
of a global PCA [23].

Motivated by the above limitations, we propose a new algorithm that offers four major
advantages over current approaches: 1) it uses multiple feature subspaces to quickly capture
and learn different backgrounds and lighting conditions; 2) it provides a clustering scheme to
initialize the subspaces; 3) it employs an adaptive and efficient (i.e. linear) learning scheme
that assures real-time performance while dealing with continuous and/or abrupt changes of
illumination; and 4) it relies on synthesized backgrounds to prevent foreground objects from
corrupting the on-line learning. As we demonstrate in the next sections and in Appendix
A, the proposed use of adaptive and local PCAs to build ¢ multiple m-dimensional local
subspaces leads to a much better performance when compared to other approaches using a
single and global m x ¢-dimensional space. In other words, our results show that by letting
each subspace continuously learn and adapt to different illumination condition — or even a
different appearance of the background (e.g. a door in the back of the room is opened/closed)
— a newly observed image can be projected onto the most representative subspace with a

smaller error than if using a single, large-dimensional space. This smaller error leads to a



much more coherent and robust foreground segmentation.

The rest of this paper is organized as follows: first, our proposed adaptive learning of
multi-subspace using local PCA is described in Section 2. Next, in Section 3, we compare a
pure PCA, an adaptive PCA, and an adaptive GMM-based approach, to our previous Local
PCA approach without adaptation [24], and our new proposed method with adaptation

(ALPCA). Future work and final conclusion are given in Section 4.

2 Proposed Framework using Adaptive Local PCA

In order to understand our framework, we must first revisit the original idea of background

subtraction using appearance method: that is, EigenBackground.

2.1 EigenBackground Revisited

The EigenBackground method [17] consists of two steps: background learning and foreground
classification. In the first step, a set of static images (the training set) is collected to form
a high dimensional feature space. That is, each image in the set is regarded as a vector
comprised of the pixels intensities in all three color channels in sequence. Then, the statistics
of the set — mean and covariance — are used to determine the major axes of the sample
distribution — that is, the principal eigenvectors or components of the distribution. In step
two, background classification, the observed image (query) is projected onto the feature
subspace defined by the above principal eigenvectors. Since the training images did not
contain any foreground objects, it is expected that the projection of the query image will
reconstruct only the static elements in the scene, i.e., the background. The actual foreground
objects can be extracted by thresholding the Euclidean distance between the reconstructed
and the observed images.

The main reason for the success of this approach is that the learned eigenspace represents

the probability distribution of the background, which models a range of possible appearances



Figure 1: Representing two different clusters of background appearances using one single
PCA space: (a) sample image from one of the clusters; (b) sample image from the second
cluster; (c) reconstruction of the average image representing both clusters by a single PCA
space. As we can see, aspects of both clusters are captured, combined, and can be observed
in the reconstructed average image (c) —i.e. both the closed door and the hallway behind it
can be seen in the image.



of that same background. This allows for the subtraction of the background to be insensitive
to outliers caused by random noise, camera vibration, reflectance etc. Furthermore, regions
of the foreground obtained by the above process are homogeneously coherent, since all pix-
els in the image are used in the classification, rather than individual pixels. That is, the
eigenspace exploits the spatial relationship among neighboring pixels through their learned
cross correlations.

Unfortunately, this same property of EigenBackground presents drawbacks when in the
presence of multiple appearances of the background — e.g. due to different lighting con-
ditions. Since the principal components analysis (PCA) preserves the leading eigenvectors
corresponding to the largest variances of the data set, a single feature subspace is not capa-
ble of modeling desired changes of the background accurately. In other words, the variances
captured by the largest eigenvectors do not necessarily represent the probability distribution
of the background appearances for any one condition, but for all of the conditions combined.
This idea, for the case of a door both opened and closed in the background, is illustrated in
Figure 1, where both clusters of background appearances are merged in a single PCA space.
Later in the paper, we will show that such characteristic of single PCA spaces leads to poorer
results — whether the algorithm is made adaptive or otherwise. The same principle presented
in Figure 1, though harder to be appreciated visually, applies to difference in appearances
due to lighting conditions. In the end, this poor representation of the range of appearances
of the background leads to a degraded performance for either gradual or sudden changes in
the dataset, even when these changes occur in reasonably large numbers and are used to

continuously update the PCA space.

2.2 Proposed Method

Although many factors may cause a significant change in the appearance model —e.g. camera
motion, shape deformation, gradual illumination changes, etc. — one of the main problems in

background subtraction comes from sudden illumination changes. In light of these facts, our
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Figure 2: Proposed Framework

proposed method is fourfold: 1) the use of multiple feature subspaces to quickly capture and
learn different lighting conditions; 2) a clustering scheme to initialize the subspaces; 3) the
incorporation of an adaptive learning scheme to improve the performance when dealing with
continuous changes of illumination; and 4) a smart learning scheme using synthesized back-
grounds to prevent foreground objects from corrupting the on-line learning. The proposed
framework is depicted in Figure 2. In the next sections we explain in detail this frame-
work, beginning with a summary of the background subtraction using incremental learning
of subspace |25]. Then, we present our new incremental learning scheme using multiple sub-
spaces, including a discussion of the benefits of our background synthesis and a performance

improvement using a motion hypothesis test.

2.2.1 Incremental Learning in a Single Feature Subspace

In real world scenarios, changes of illumination cause pixel intensities to change drastically
and thus, potential misdetection of foreground becomes quite likely. In order to make any

solution to background subtraction effective, we must incorporate some continuous adapta-



tion to illumination. That is, an ability to incrementally learn with new observations and to
immediately adapt within a temporal window. In the case of a single subspace, this adapta-
tion is carried out by the computation of a single extended matrix which encompasses the
changes in the subspace due to the last few observations. These changes are incorporated
into the subspace and the process is restarted. That is, new observations lead to the calcu-
lation of another extended matrix which is again used to iteratively modify the subspace —
the blue squares in Figure 2.

In order to explain this process in more details, let A be the current block of observations,
that is, A = [xy,...,Xg], with an eigen basis U and singular values D. This feature space
can be obtained from the singular value decomposition (SVD) of A, where x; denotes the
zero-mean d-dimensional vector representation of the image I;!. As we will show next, the
subspace of this block of images A will be iteratively updated, eliminating the need to collect
off-line training images with a static background. That is, for a new block of observations
B = [Xp41, .-, Xg1n] to be incorporated into this feature space, all that needs to be done is
to incrementally estimate the eigen basis U and the singular values D of the new combined

block of observations [A, B]. That is, for a temporal window with size n:

e First, we generate a zero-mean matrix of new observations B = [(Xpy1 —Tp), - .- ,
(Xgtn — Tp) 5 4 /B (ry — ra)} where r,, r; are the sample means of A and B respec-

tively, and k is initially set equal to k;

e Next, we update, r,, with the mean of the concatenation of A and B, that is:

[k n
T frtn© N frtn® (1)

r,
where f € [0, 1] is the forgetting factor;

e We compute the QR decomposition of the residue of B with respect to its projection

onto the current subspace, that is: B = qr(é — UUTB) and we form a matrix R given

LAl algorithms described here and in the result section were applied to all three channels (R, G, and B)
separately.
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where a new k is updated by k = fr + n.

The forgetting factor f plays an important role in adjusting the weight between old and
new observations. In order words, depending on the image sequence and the application for
which one needs to subtract the background, it may be desirable to quickly incorporate the
changes into the subspace. On other scenarios, however, it may be desirable to maintain
the learned background for a longer period of time. While we will show how to adjust
this forgetting factor in Section 3, one should keep in mind that, with each iteration, the
importance of any observation degrades by an additional factor of f? [25]. Similarly, the size
of the temporal window can also affect the performance of the background subtraction. The
choice of this parameter n is also discussed in Section 3.

It should also be noted that the appearance model of the background may become cor-
rupted due to outliers in the calculation of r,. That is, the update of the subspace represent-
ing the background may be polluted with foreground objects present in the new observations.
In order to solve this problem, we propose a solution that guarantees a clean adaptation of
the appearance model by updating the subspace with synthetic background images. This
idea will be explained in details in Section 2.2.3.

The actual background subtraction is achieved by extracting foreground silhouettes as
new images arrive. For that, a foreground mask s of the newly observed image I, over

locations z, must be determined using the following union operation:
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S(1) = Uemrgp ([|ye(2) = Ye(2)[| = threshe) (3)

where ||y — §|| denotes the Euclidean distance between the vector representation y of
the image I and its projection g onto the subspace. Also thresh,. is the threshold for each

corresponding color channel c.

2.2.2 Using Multiple Feature Subspaces

As we will show in the results section, the above method works reasonably well under gradual
illumination changes, but its major disadvantage comes from the use of a single subspace.
As we already explained, one reason for this poor performance is because a single subspace
must capture all the lighting conditions combined. But another reason is because the adap-
tation of the subspace can be slow compared to the illumination change. That is, changes
in illumination may lead to a large number of misdetections over long periods of time. To
address this problem, we propose the use of multiple subspaces formed by a local principal
component analysis [26], so that each subspace can learn a specific lighting condition. This
strategy allows for a quick response to previously observed lighting conditions without in-
volving long learning processes. That does not mean to say that our approach cannot adapt
to new conditions. That only means that initially learned lighting condition can be locally
stored as a subspace so that the system can quickly respond to similar lighting conditions.
However, the use of multiple subspaces raises a few questions: 1) how to initialize the sub-
spaces; 2) how to adapt each subspace; and 3) how to subtract the background using the
subspace that best represents the current background. Please, refer back to Figure 2 for a

visualization of these steps within the framework.

Initialization
In order to initialize the subspaces, our ALPCA handles each subspace separately. For ex-

ample, the current and new blocks of observations are now divided into A®) = [x?), e ,X,(f)} ,
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and BY = [x,(jrl, e ,Xg}rn], where 7 is the index of the subspace clustered by the ALPCA.
The clustering of these observations is obtained by Vector Quantization (VQ) with recon-
struction error as the distortion measurement. We chose this criterion because instead of a
simple Euclidean distance, the reconstruction error is equivalent to a Mahalanobis distance,
which preserves the different scales (eigenvalues) of the PCA. That is, as shown in [26],
by taking the reconstruction error as the distortion measure, we preserve the weight of the
information along each leading direction of the principal components. Next, we explain our
clustering method through Vector Quantization.
Given the matrix A = iQA(i) = [x1,...,xx] with dimension d x k, for each subspace 1,
m leading eigenvectors U® = [e;®), -+ | ;.- | e,)] are retained for each cluster C' .
Then, the projection of the image vector x onto C ) is given by
z :Zegi)T (x—rD)=UOT (x —r ) (4)
j=1
where r @ is the reference vector or the mean vector of the subspace defined by the cluster

C @ The reconstruction of the image vector x is

x=r"4Ulyg (5)

The reconstruction error can thus be calculated by

Ax, 1) =[x =1 U0 ©

Using an iterative partitioning method, we first initialize the reference vectors {r @) (i]:l
by randomly choosing ¢ vectors from A. Also we initialize the covariance matrix of each
subspace {D(i)}j:1 with the identity. Usually, ¢ € [2,5], but this value can be adjusted

according to the specific image sequence, as explained in Section 3.
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After the initialization of these parameters, the partitioning proceeds to separate the

training data into the ¢ clusters, where

CO={x|d(x,rW) <d(x, v V); Vi# j} (7)

with d(x, r ) defined by equation (4).
Both the reference vector and the subspace covariance matrix in each iteration will be

updated according to the following rules:

1

r® — argminm Z d(x, r) (8)
' xeC )
i 1 i i
D():N(i) Z(x—r())(x—r())T (9)

xeC ()

where N@ is the number of data points in cluster C' ). The leading eigenvectors of each
subspace covariance matrix are also computed iteratively. The iteration terminates when
the fractional change of the reference vector is below some predefined threshold. Due to the
large dimension of the image vector x, only a subset of the eigenvectors for each subspace
will be retained. As we explained earlier, the major advantage of our approach is that it
achieves a quick convergence while it preserves local adaptation. At the same time, images
under newly observed illumination will not disturb the previously learned subspaces, given
an appropriate size of ¢. If similar lighting conditions are observed, our framework will
quickly respond with the selection of the correct subspace, while the incremental learning

scheme is able to capture and learn new lighting conditions.

Adaptation
The adaptation of multiple subspaces is done in a similar fashion with the single subspace.
The major difference is that it must be carried out on each subspace separately. That is,

all the equations in Section 2.2.1 must extended to now use A® = [xgi) ...,X,(j)}, and

)
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frame : 399

(d)

Figure 3: The first two rows show the response of the system to the first time a sudden
illumination change is observed (frames 79 to 97). The last two rows show a very similar
illumination change, but this time after the system had adapted to the different subspaces
(frames 392 to 399).
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B = [x,(ﬁrl, e ,Xl(jrn], with 7 as the index of the subspace. Also, it is important to notice
that the forgetting factor affects each subspace separately since the image used for adaptation
is classified by the algorithm before it is used to update its own subspace.

As we mentioned in the beginning of this section, the purpose of the initialization de-
scribed above is to allow our system to respond correctly from the very beginning of the
image sequence. However, the system is also capable of learning and adapting to new con-
ditions. This idea is depicted in Figure 3 where we present two new, but similar changes of
illumination that is, that specific lighting condition was not learned during initialization.
As the Figure 3a-f shows, at the first time the system observes this change, the response is
not ideal, since the subspace had not been formed yet. However, at the second time a similar
transition occurs (Figure 3g though 1), the system quickly responds based on the subspaces
learned during adaptation.

In other words, whether the multiple subspaces are perfectly initialized or not, the adap-
tation allows the eigenvectors defining the multiple subspaces to eventually move towards
the clusters. Obviously, the required number of subspaces depends on the sequence and how

different its backgrounds are. In Section 3, we will discuss the selection of the optimum

number of subspaces.

Background Subtraction

Since we now have multiple subspaces representing different background appearances,
when it comes to actually extracting the foreground from the background, the system must
find the subspace that best represents the current background — the red squares in Figure 2.
We assume that the best subspace is the closest one, and by closest we mean the subspace
with the set of eigen features that provides the minimum reconstruction error for the new
image. This set of eigen features are then used in equation 3 to obtain the foreground mask

s as explained in Section 2.2.1.
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(e) Clean foreground extraction obtained by our method

Figure 4: Two examples of foreground extraction: (a) Original Images, (b) and (c¢) unsuc-
cessful foreground subtraction due to foreground objects corrupting the background model;
and (d) and (e) our proposed method.
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2.2.3 Learning using Synthetic Background Images

As mentioned earlier, another advantage of our method comes from the use of synthetic
images during adaptation. That is, since input images may include foreground objects,
our framework provides a new mechanism that prevents such objects from being learned as
part of the models of the background. Intuitively, any incremental learning with non-static
images may introduce foreground pixels as outliers for the background models — as shown
in Figure 4. These misrepresentation of the true appearance of the background may result
in future misdetection during foreground extraction. For this reason, our system has the
option to update the subspaces with the synthesized background of the observed images.
This option can be turned off whenever the application requires that foreground object be
slowly incorporated into the background.

In order to understand how this background synthesis works, let us call b the synthetic
background of the original image vector y. Our framework is able to calculate b by means
of the foreground mask s from the silhouette extraction. That is, synthetic background is

given by:

b=(sArY)V(yAS) (10)

That is, first we remove the foreground pixels by an “AND” operation of the image y
with the complement of the mask, §. Then, we add (“OR” operation) the background pixels
obtained from one of the mean vectors of the various subspaces: (s Ar ). The mean vector
r ) is chosen as in: j = argmin; d(y, r ).

Our method should be contrasted with other systems in the literature that only use
foreground-free images/pixels for updating the background. For example, in |27| background
pixels are classified into permanent and non-permanent and only pixels observed long enough

are regarded as permanent and incorporated in the background model. Also, in [28], only
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blocks classified as background are used for updating. Especially in the second case, these
methods can cause a large delay in the adaptation, since foreground-free images can take a

long time to appear again.

2.2.4 Computational Complexity and Other Observations

The analysis of the computational complexity of our method can be divided into two parts.
The first part refers to the initialization step of the algorithm and it represents the most
onerous of the two complexities. The major reason for this complexity is the calculation of
the singular value decomposition of each large matrix A®, containing all the initial images
used for the learning of the subspaces. Fortunately, since this step is executed only at the
beginning of the algorithm, its computational cost does not affect the real-time performance
of our method.

On the other hand, a much more efficient computational complexity comes from the
second part of the algorithm, which performs the adaptation step. In this step, the SVD
of the matrix A® must be updated for the newest n images observed for a same cluster
1. As we explained in Sections 2.2.1 and 2.2.2, this step involves the computation of the
QR decomposition of the matrix B®, with dimension d x n — where d is the size of the
images — and the subsequent calculation of the SVD of R, with dimension 2(d x n). The
QR decomposition was implemented using the modified Gram-Schmidt algorithm described
in [29], which performs on the columns of B® only. Also, we used the “partitioned R-
SVD” algorithm described in [29] and [30] to extract the m principal components, or first
eigenvectors, of R. These components are used to adapt the original subspace U containing
the eigenvectors according to eq. (2). The complexity of the algorithm for adaptation of each
subspace is therefore O(dmmn), |30|. Since this adaptation only needs to occur after n new
images of one same subspace are observed, at which point one single subspace is updated,
the final total complexity of the adaptation is also O(dmn). However, in order to decide

to which subspace an image belongs, the residue for each subspace needs to be computed.
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This calculation takes O(dmgq) time, and since in general ¢ < n, the final complexity of the
entire algorithm is O(dm(n + q)) or simply O(dmn). This complexity made it possible for a
C++ implementation of the algorithm to achieve frame rate performance for normal VGA
images.?

In order to improve even further the performance of our system, we embedded a heuristics
into our implementation. We use a simple motion detection test to determine whether a
drastic illumination change occurred or if a moving object is present in the scene. If only
an illumination change happened, the framework forces a quick adaptation by setting the
foreground mask to zeros. Otherwise, the foreground mask is left alone. The test is performed
by analyzing two consecutive frames I and I, binarizing its temporal difference, applying
a morphological opening, and thresholding the moving pixels.

Another advantage of our framework is its ability to fall back into one of the early
subspace-based methods. That is, in an extreme case where the number of multiple subspaces
is found to be one, our system reduces to an adaptive eigenbackground (APCA). Also,
if the forgetting terms is set to zero, the behaves like the local eigenbackground without
adaptation (LPCA) [24]. If both options were removed, the system would behave as a

simple eigenbackground (pure PCA).

3 Experimental Results

We tested and compared our proposed ALPCA to four other approaches using six different
datasets: four benchmark datasets available from the web, and two datasets that we created.
The reason for our own datasets is because none of the benchmark datasets available had
changes in illumination that were drastic and/or sudden enough to test our algorithm. That
is, while most datesets contained gradual, “over-the-day” kinds of illumination changes, in

order to test our algorithm, we needed the kinds of change as the ones in Figure 5e) and f).

2This C++ implementation is being made publicly available from our website.
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Here is a short description of each dataset used. The reader can refer to Figure 5 for a

few examples of the frames in each of these datasets.

The

The

The

The

The

“Dance” contains more than one thousand frames of a graphically generated indoor
scene with two dancing characters. While this sequence contains a somewhat sudden
change of illumination, these changes are very subtle, besides this is a synthetic image

sequence. This is part of the VSSN 2006 dataset?.

“Campus” video sequence is part of the PETS 2001 dataset*. We used almost four
thousand of its frames, including various with gradual illumination change (over the

period of a day) and people walking at a reasonably far distance from the camera.

“Lobby” is also an outdoor video sequence with almost five hundred frames. It is part
of the PETS 2004 dataset 5 and it also contains people meeting/chatting at the lobby

of the INRIA Lab, in France.

“Subway” is the last of the benchmark videos used in our tests, and it contains a mix
of natural and artificial illumination sources. It is part of a dataset called PETS 2006 ©
and we used more than fourteen hundred of its frames. It was shot at a subway station

and it captured people coming in and out of the station.

“Sudden-Change” is the first of our new video sequences. It was shot inside our lab
and it was created with the purpose of testing our algorithm for drastic and sudden
changes in illumination. During this five-hundred-frame video sequence, half of the
light fixtures are switched on-and-off separately, creating three different combinations
of lighting conditions. A person moves back and forth in front of the camera. Both

this and the next sequences are available from our lab website”.

3http://imagelab.ing.unimore.it /vssn06
4http://www.cvg.cs.rdg.ac.uk/PETS2001
Shttp://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
Shttp://www.cvg.cs.reading.ac.uk/PETS2006/data.html
Thttp:/ /vigir.missouri.edu/ ~evan/backgroundsubtration
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(f) Sudden-Change-Door

Figure 5: Samples from the six video sequences used for testing
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Figure 6: Effects of the number of eigenvectors on Precision and Recall for a typical test
sequence: “Sudden-Change-Door”.

The “Sudden-Change-Door” is a sequence similar to the one above, with the addition of
a sudden background change. That is, while some of the lights are switched off, a door
in the back of the room is opened and closed. The light from the hallway floods the

room, creating yet another set of combinations of lighting conditions.

3.1 Parameter Selection

As we mentioned earlier, there are three parameters that need to be selected: number of
subspaces, forgetting factor, and size of the temporal window. In order to appreciate the
impact of these parameters in the performance of the ALPCA, we tested each one against the
video sequences above. In the next subsections, we will discuss the choices of optimum values
for each one of these parameters. However, as we will demonstrate next, unlike the other
systems in our comparisons, the ALPCA is not very sensitive to the choice of parameters,
which makes this approach more attractive. This analysis was made using two metrics:

. N N o .
Precision, (ﬁ) and Recall, (ﬁ), calculated for each sequence in its entirety.
P P P n

3.1.1 Number of Eigenvectors

The first parameter to be determined is the number m of eigenvectors used to represent each

cluster. In order to make this choice, we performed a test over the entire set of images in
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each sequence and calculated the precision and recall versus the number of eigenvectors used
in the construction of the subspace. As the Figure 6 (a) and (b) illustrate, the incorporation
of multiple subspaces achieves superior performance over single subspace. As the readers
will notice, the precision/recall becomes smooth after the fifth principal component for the
multiple subspaces. In Appendix A, we discuss in more depth the implications of these
results, but it is clear that a choice of five eigenvectors should be enough to capture most of
the variations in the images and that was the value used in the next sections for the proposed

ALPCA method.

3.1.2 Number of Subspaces

In order to determine an optimum number of subspaces ¢, we computed Precision and Recall
as a function of that number. As Figure 7 shows, the optimum ¢ varies from one to five. For
example, for the Campus sequence (Figure 7b), since the change in illumination happens
very slowly, any adaptive method should be able to handle such sequences. That is, there
is no need to keep multiple models of the background appearances at any single moment
since the adaptation itself can handle those changes. In that case, the ALPCA can be made
to capture the appearance background using one single adaptive subspace, and the ALPCA
is reduced to the APCA approach. Also, the performance of the two approaches should be
quite similar, if not identical. On the other hand, for the Dance sequence, which contains a
somewhat sudden change in illumination (Figure 7a) and for our two new sequences, which
contain sudden as well as drastic changes of illumination (Figure 7c¢ and d), the ALPCA
required at least two subspaces. In some cases, achieving an improvement of Precision by
more than 50% (e.g. Figure 7c).

In general, a ¢ equal to four will work for most sequences. In fact, a slightly larger
number, say five or six, could also be used just for “safety”. That is, whenever a number of
subspaces larger than the actual number of background appearances is specified, the ALPCA

will either split the samples among two congruent subspaces, or into two closely adjacent
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Figure 7: Precision/Recall versus Number of Subspaces, ¢, for four of the six test sequences.
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subspaces (with possible overlaps). In either cases, these subspaces will remain “redundant”
until a newly observed background appearance forces them apart. This property of the
ALPCA must be used carefully though. These redundant subspaces can cause a slight
decrease in the performance of the system, as Figure 7a and b demonstrate for ¢ = 3 and

q = 2, respectively.

3.1.3 Forgetting Factor

Figure 8 shows the effect of the f in the APCA as well as the proposed ALPCA. As we have
already mentioned, whenever ALPCA is applied to a simple sequence —1i.e. with only gradual
changes in illumination the performance of the APCA and ALPCA are quite similar e.g.
the Campus sequence in Figures 8b and f, where we forced ALPCA to only one subspace.
On the other hand, for more challenging sequences (Figures 8¢, g and d, h) the improvement
achieved by the multiple subspaces is quite obvious.

From eq. (1), we can see that the forgetting factor, f, controls how much of the past
observations the adaptation algorithm retains. However, the new observations are always
used to change the subspaces, regardless of f — i.e. the weight used for the new block of
observations, B in eq. (1), is never zero. Moreover, compared to the APCA, this parameter
plays a much smaller role in the proposed ALPCA — any value between 0.1 to 0.6 works for
all the sequences. This should not be a surprise since the APCA has only a single subspace
to learn all observed background appearances, and different values of the forgetting factor in
the APCA can affect significantly the adaptation. On the other hand, for the ALPCA, the
forgetting factor affects the subspaces independently, retaining all other subspaces unchanged

while it adapts the current one.

3.1.4 Size of the Temporal Window

The last parameter to be tuned is the temporal window size: n. Figure 9 shows the behavior

of our approach as a function of n. As before, the performances of the APCA and ALPCA

26



A A A A A A A A

o) os -
B --B--8- -8 - --B--E--a ‘Bo-@--@--S -8 g g
o . -

bAoA a-aAA

PR TSt 05 o6 05
nnnnnnnnnnnnnnnnnnnn - frgeting ta forgti

(a) Dance (b) Campus (c) Sudden-Change (d) Sudden-Change-Door

ALPCA

TATEA A A A A A AT

iiiiii

B [N B T il R Ll - a’{','liil‘,‘tt‘l':l\— A A a

: o5 o6 o5 o
,,,,,,,, - frgeting actor forgeing

(f) Campus (g) Sudden-Change (h) Sudden-Change-Door

Figure 8: Precision/Recall versus Forgetting Factor. First row: APCA, and second: ALPCA.

for simple sequences are quite similar — e.g. Figures 9b and 9f, where again the changes in
illumination happen so slowly that adaptation with a single subspaces (¢ = 1) is sufficient to
effectively detect the background. In most cases, as with the forgetting factor, the ALPCA
is quite insensitive to changes in the temporal window, but for others, a large value for the
temporal window size, n, may lead to a decrease in performance. The reason is similar to
what happens with the forgetting factor f, since the window size affects the adaptation in a
similar fashion. That is, a large value of n may also leads to a slow adaptation. In general,

the advantages of ALPCA over APCA becomes quite distinct.

Table 1: Quantitative evaluation between APCA and ALPCA

Dance Campus Sudden-Change | Sudden-Change-Door
p(%) | v (%) |p(%) | r(%) |p(%) |v(%) |p (%) r (%)
APCA 86.76 | 97.29 | 79.08 | 63.76 | 47.13 | 83.20 | 60.76 76.08
Proposed ALPCA | 88.04 | 98.27 | 79.08 | 63.76 | 88.92 | 8548 | 82.53 77.14
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Figure 9: Precision/Recall versus Size of Temporal Window. First row: ALPCA, and second:
APCA.

3.2 Quantitative Results

The results above were used to select the optimum set of parameters for both the APCA
and ALPCA for all tests presented hereafter. Once we found these parameters, we run the
APCA and ALPCA for all datasets and averaged Precision/Recall for all the frames in each
sequence. Table 1 presents the results for four of those sequences: Dance, Campus, Sudden-
Change, and Sudden-Change-Door. As expected, the performances of the two methods are
quite similar for simple sequences, but under sudden changes in illumination, the ALPCA

presents a much better performance.

3.3 Qualitative Results

In order to demonstrate how effective the proposed method is in terms of foreground segmen-
tation, our algorithm was qualitatively compared it to five other approaches: an adaptive
GMM-based algorithm [4], and four approaches using background appearances: pure PCA,

Adaptive PCA, Local PCA, and Adaptive Local PCA. For the cases where training was
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required (e.g. PCA), a small portion of the frames (710%) were randomly selected and the
remaining frames used for testing. Examples of the segmentation for the most challenging
frames in each sequence are depicted in Figures 10 to 13.

From Figure 10, we notice that by simply adding the ability to handle multiple subspaces
(Figure 10e) to the pure PCA approach, the LPCA can already perform much better than
without it. In this test sequence (the Dance), sudden, but minor changes in illumination,
are present, and one single subspace is not capable of capturing effectively the two different
background appearances contained in the sequence. However, by learning from the beginning
both appearances and storing them as separate subspaces, the LPCA can do a much better
job of segmenting out the foreground. Also, for this specific sequence, the ALPCA does not
offer much improvement, unless when we use the ALPCA without any prior training. In that
case, the ALPCA will misdetect the foreground when it observes the change of illumination
for the first time, but then, next time it will have adapted by creating another subspace and
the performance will be again much better than that of any other method that uses a single
subspace. This advantage of the ALPCA has already been discussed in Section 2.2.2, but
Figure 11e shows yet another example of that. This time, since we used only a small portion
of the frames for training of the LPCA and this method has no adaptation, the clustering
formed during the training phase of the LPCA was ineffective, and the performance for those
frames was not inferior with respect to the performances of the APCA and the ALPCA, which
can adapt even to a bad initialization of the clusters (Figures 11d and f).

The previous benchmark sequences already demonstrate the advantages of a local treat-
ment of the subspaces using an adaptive and local PCA. However, it is only after checking
the results for our two new sequences that one can appreciate it fully. In those two cases,
the ALPCA can extract the foreground almost perfectly, whether the illumination changes
slowly as before, or suddenly as in the two sequences in Figures 12 and 13.

Finally, we also test the performance of the ALPCA using the other two benchmark

videos: Lobby and Subway. Figure 14 shows these result. The results for all frames in all six
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(d) result using APCA

(e) result without adaptation: LPCA

CF T T

(f) result using our proposed method with adaptation: ALPCA

Figure 10: Results for the Dance sequence.
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(f) result using our proposed method with adaptation: ALPCA

Figure 11: Results for the Campus sequence.
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(d) result using APCA

(e) result without adaptation: LPCA

1 ¢ ¢

(f) result using our proposed method with adaptation: ALPCA

Figure 12: Results for the Sudden-Change sequence.
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(c) result using PCA

(d) result using APCA

LI

(e) result without adaptation: LPCA

(f) result using our proposed method with adaptation: ALPCA

Figure 13: Results for the Sudden-Change-Door sequence.
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N

(c) Original frames from the Subway sequence

Figure 14: Two more results using ALPCA: the Lobby (a)-(b) and Subway sequences (c)-(d)

(d) Results from ALPCA

sequences can be downloaded from our website at:

hitp:/ /vigir.ee.missouri.edu/~ evan /backgroundsubtraction.

4 Conclusion and Future work

We proposed a new multi-subspace adaptive algorithm that can robustly and effectively
extract foreground objects under various illumination conditions: despite how sudden and
drastic those changes may be. If trained during initialization, the feature space was parti-
tioned into clusters corresponding to the different lighting conditions and background ap-
pearances in the training set. Then, Local Principal Component Analysis was performed
to build a set of multiple subspaces that better represent each of the many background ap-

pearances. However, even when an off-line training is not possible, the proposed approach
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offered an adaptation method using synthetic background images that eventually converged
to the same set of multiple subspaces. In either cases, the foreground detection was shown
to be more accurate and robust than other methods in the literature. That was true not
only, but especially when the backgrounds presented sudden and drastic changes of lighting
conditions.

The proposed method relies on a "K-Means like” clustering procedure. While this may
be a simple clustering procedure, the results demonstrated that the ability to do adaptation
makes the initial clustering not critical via-a-vis the final overall performance of the method.
However, in the classification step, the algorithm relies on fixed thresholds for both the
synthesis of the background used during adaptation as well as for the proper foreground
extraction. In the future, more investigation will be conducted to make these thresholds
adaptive with respect to the sequences.

The proposed system developed in C++ runs on a single core 2.8GHz Pentium IV and
achieves 25fps in real time. The C++ code used in this work is being made available from

http:/ /vigir.ee.missouri.edu/~ evan /backgroundsubtraction.

Appendix A

Based on intuition alone, one could wrongly assume that using a single m X ¢-dimensional
PCA space will always achieve better results than building ¢ multiple m-dimensional sub-
spaces as we proposed in our research. In fact, as we will demonstrate in this section, the
actual intuition should lead exactly to the opposite conclusion.

Let us take for example the simple case of a 3-dimensional space with two clusters repre-
senting the two possible appearances of the data —in the real case of background subtraction,
those clusters of background appearances would be caused, for example, by different lighting
conditions, or by a door that is opened/closed in the back of the room, as we will discuss

next. But despite the actual reason for the clusters, since the main purpose of using PCA is
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to reduce the original dimensionality of the image space, in this initial and simplified case we
must assume that m x ¢ cannot equal 3 (the full dimensionality of the data), and therefore
the question becomes whether a single two-dimensional (global) PCA will always perform
better than two one-dimensional (local) PCAs.

Figure 15(a) depicts the 3D sample data as well as the three corresponding eigenvector
bases. That is, the figure shows in red and green the two clusters of data points with the

. . 1 2 . . . .
two one-dimensional vector bases, eg ) and eg ), and the single two-dimensional vector basis

ey

An intuitive demonstration that the above claim is not true — i.e. that local PCAs
will instead often outperform a global PCA — can start by taking a data point x at the
center of the first data cluster. In that case, it would be easy to visualize that despite
of which eigenvector(s) are chosen for the local PCA subspaces, the reconstruction of x
using the closest local PCA egl) will always be perfect — i.e. there will be no residue in the

reconstruction of such x with respect to egl) since the distance of x to egl), in that case, is

zero. On the other hand, the reconstruction of x using the global PCA space egg will have
a residue proportional to the remaining coordinate of x — which had to be discarded for the
construction of the two-dimensional global PCA space. In other words, the residue in the
reconstruction of x, which is the distance of x to the plane spanned by the basis eg‘?% will not
be zero since the center of the local cluster does not necessarily lies on that plane.
Mathematically, this advantage of a local PCA versus a global PCA is demonstrated by
taking the projection of x onto the local PCA subspaces, i.e.
z=)Y e (x—r) =007 (x—r®) (11)
j=1
where r @ is the reference vector or the mean vector of the subspace defined by the cluster

C @ and egi)T are the eigenvectors of C () and define the basis U®. The best reconstruction

of the data vector x is obtained with respect to the closest local PCA subspace:
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Figure 15: Single vs. multiple subspaces using 3D data: (a) Data points; (b) Single feature
space captured by traditional global PCA approaches; (¢) Same data represented by multiple
(two) subspaces.
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x=rW4u® g7 (12)

and the reconstruction error, or residue, is given by the distance:

dx, tM) = ||x—r® -y® 7| (13)

Since x = v Y, z will be equal to zero and so will be the residue d(x=r®, ).
On the other hand, for the global two-dimensional PCA space U®), the non-zero recon-
struction error is:

dx, r®) = |x—r® -U® 7| (14)

which, after a few simple manipulations, can be expressed as:

dr®, v @) = TOTE® — )y (15)

where ﬁ(s) represents the complement of vector basis U®) in R3.
For a more general case where x is not necessarily at the center of any of the clusters,
such x can be expressed as x = r (Y +y and the residues with respect to the local subspace

UM and the global space U® become, after a few simple manipulations, respectively:

—(1
dx, W) = [TV7y| (16)
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dx, v@) = [TVT@® 4y -2y (17)

Figures 15(b) and (c) show these residues as the respective distances of the point x to
the complement spaces U( ) and U(S). Once again, for this simple 3D example, it is easy to
intuitively infer the relationship between d(x, r *)) and d(x, r "), that is, for which cases is
HU(S)T(I' Dy —r6))| > HU(DTyH, and the local PCA always better than the global PCA.
For the more realistic application in question, background subtraction, our results in the
previous sections already demonstrated the advantages of a local PCA. However, an analysis
of the expression above can provide further insights regarding those cases. For example,
since both residues depend on y, it seems that the determinant term above is the distance
between the centers of the global space and the local subspace: ||(r® — r®)||. That is,
the further those two centers, the larger will be the residue of the reconstruction of x in the
global PCA vis-a-vis the residue in the local one. That is exactly the case when one of the
clusters is formed by a low-occurrence image, such as due to sudden illumination changes —
those are like outliers of the main background appearance. Also, it is important to mention

W and

that the two residues above are calculated with respect to two different bases: U
U(S), and despite the fact that the dim(ﬁ(l)) > dim(ﬁ(s)), those same dimensions are still
much smaller than the actual dimension of the images. That is, usually in our experiments
dim(UW) = 5 and the number of cluster m = 5, leading to the dim(U®)) = 25, which is
still much smaller than the image size d = 640 x 480 x 3.

In order to appreciate the fact that the image residue from the reconstruction of an image
with respect to a global PCA is much larger than the image residue with respect to a local
PCA, we present Figure 16. In that case, the same test image was reconstructed using a

single, global PCA space Figure 16(d) and the closest of the two local PCA subspaces Figure

16(e). As it can be observed, the second residue is much smaller than the first, which leads
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to a much better foreground segmentation, or background subtraction.

Finally, as we have already shown in Figure 6, the use of 25 dimensions for the global
PCA space, i.e. dim(U®) = 25, is not a wise choice since the precision of the foreground
detection does not increase much after 10 principal components are included — while the

computational complexity certainly does.
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() (e)

Figure 16: Difference in the residue images for two clusters of background appearances using
one single PCA space versus two local PCAs: (a) sample image from one of the clusters; (b)
sample image from the second cluster; (¢) test image similar to the first cluster, but with a
person on the foreground; (d) residue image using a single, global PCA space; (e) residue
image using the closest of two local PCA subspace.
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