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Abstract—Operating a wheelchair is often a difficult task for
individuals with severe disabilities. Also, with the progress of the
condition, the use of most current robotic assistive technologies
becomes less attractive or simply not applicable anymore. In
this work, we developed a system that allows a user to operate
a wheelchair using only their heads. Our method utilizes an
Infrared (IR) depth sensor to capture the user’s head pose, while
it includes an adaptive component to the detection of that pose.
The adaptation, based on a type of Re-enforcement K-Means
clustering, can accommodate users with limited and changing
head mobility – no matter how skewed the head motion may
become with the progress of the condition. We tested the system
using five test subjects, who simulated ’normal’ an ’abnormal’
motions of the head. The system worked well in all cases, and
all test subjects found the interface quite intuitive.

Index Terms—Head pose, limited mobility, Random Regression
Forest, K-means clustering, wheelchair control.

I. INTRODUCTION

Millions of individuals in the U.S. alone experience im-
paired mobility usually accompanied by limited to no manual
dexterity [1], [2], [3], [4]. In spite of the current advances
in assistive technologies, those individuals are often unable
to effectively interface with computers, cell phones, power
wheelchairs, and many other appliances due to: 1) the lim-
itations of these technologies vis-à-vis the specific disabling
condition; 2) the inability of the technology to adapt to the
disease progression; 3) the fatigue and exertion imposed by
prolonged exposures to a single form of technology (i.e. single
interface); and 4) the difficulties in adaptation/training and the
consequent resistance by patients to move from one technology
to the next [5], [6], [7].

Despite all the advances in smart wheelchairs and mobile
robot navigation in general [8], [9], [4], [10], [11], little has
translated into feasible, robust and cost-effective technology
that can truly revolutionize the ability of severely disabled
users to fully and independently perform activities of daily liv-
ing. Indeed, researchers have designed innumerous interfaces
for the control of power wheelchair relying, for example: on
bio-electrical signals such as EMG, EKG, EEG, etc. [12], [13],
[14], [15], [16], [17], [18], [19]; on the configuration of face
and head [20], [21], [22], including the use of special hats
outfitted with 6-axis gyroscopes [23], [24]; on sitting posture
[25]; etc. However, many more different types of interfaces
must still be developed in order to allow for greater variety

in modality of the interfaces, and consequently minimize
fatigue/exertion, minimize down-time due to adaptation, and
maximize the effective use of the appliances.

In this work, we propose one such interface. Using a
Microsoft Kinect depth sensor and an algorithm based on
Random Regression Forests [26] we provide a new approach
for controlling power wheelchairs using head poses. We also
provide a method of adaptation to the progress of the disabling
condition. A K-Means clustering algorithm detects the changes
in the range and direction of the head movements and adapts
the controls sent to the wheelchair to reflect those changes.
The clustering and the associated adaptation are performed
using feedback from the sonar sensors, which provides a kind
of re-enforcement rule that indicates when the driver is not
doing so well – e.g. hitting or moving dangerously close to
walls.

We tested the system using five individuals, who oper-
ated the chair while emulating both normal and abnormal
conditions – i.e. by moving their heads along approximately
orthogonal axes and later enforcing changes in those patterns
of head motion by limiting and skewing those axes to emulate
physical impairments.

Figure 1. High Level System Architecture

II. BACKGROUND AND RELATED WORK

When power wheelchairs were first introduced, it became
quite apparent that they would greatly enhance the lives
of people with disabilities. Additionally, research began on
various methods attempting to control these wheelchairs with
means other than a joystick. One such method that has become
quite popular among researchers relies on bio-electrical signals
from individuals operating the wheelchair. In [18], [19], we
employed surface electromyographic signals (sEMG) to take
muscle readings on the skin of a user’s arm and forehead.
In this way, the wheelchair could be controlled by flexing
one’s hand or eyebrows in various ways to communicate



Figure 2. Wheelchair outfitted with an IR depth sensor

predetermined commands to move the chair. One shortcoming
of this technique is that it requires extra hardware to collect
these signals and, so far, it only allows for four separate
commands (Forward, Backward, Left, Right) at a preset speed.

Another method for using electric bio-signals is found in
[15], where the authors utilize electrooculography (EOG) to
allow a user to use their eyes to control the wheelchair. This is
a concept which allowed people to traverse freely without the
use of their hands. However, it required the wearing of several
sensors on one’s face which could be quite cumbersome.

Many diseases such as ASL leave the afflicted individuals
with little motor ability below the neck. Additionally, certain
spinal cord injuries can also deprive the use of the limbs. In
those cases, a person with disability could resort to the use
of their head to convey commands to the wheelchair. Though
this can be carried out as it was done in [15] – by attaching
head sensors – it is more intuitive to utilize a method that
does not require complicated attachments (e.g. various self-
adhesive electrodes on different points of the head). In both
[23] and [24], a system was created to make use of a hat
outfitted with a gyroscope. However, only 5 commands were
created and achieving more complex driving, such as a gradual
arc, became quite difficult.

One way of controlling a wheelchair without placing sensors
on a person is by observing the user with a camera. This
method was employed in [20], [21], [22]. In [20] for example,
the authors used a camera to recognize facial movements like
eye closing and opening. In both [21] and [22], a visible light
camera was used to gauge the head pose, but only left/right
or forward/backward were classified. Additionally, the use of
a visible light camera is very sensitive to lighting conditions
and may not operate well in dimly lit environments.

In the next section, we explain how our system works and
how it manages to adapt, not only to different users, with
different levels of disabilities, but also to the progress of
the disabling condition. The proposed setup of the system,
depicted in Figure 2, can accommodate for a large variety of
ranges and directions of motion of the head as it will also be
explained later.

III. PROPOSED SYSTEM

Our system is based on the K-means clustering method,
which is a hard clustering scheme using point representatives
and Euclidean distances to measure dissimilarities between

vectors and cluster representatives [27]. However, as it will
be explained in greater detail next, in order to adapt the
clusters over time, we propose a new re-enforcement K-means
clustering using sonar sensor information. Many other adaptive
and evolving clustering algorithms have been proposed in
the literature – e.g. eClustering, Vector Quantization (eVQ),
Evolving Local Means (ELM), etc. [28], [29], [30]. While
in this paper we do not provide a comparison of these other
methods against our new re-enforcement K-means, we believe
our solution is sufficiently accurate, adaptable, and simpler,
given the characteristics of our problem.

As we mentioned earlier, our method for controlling a
wheelchair relies on an IR depth camera to extract head poses.
These poses are then used to gauge the user’s intention to
move the wheelchair. In order to facilitate the estimation of
the head pose from a depth image, we utilize a technique
created by Fanelli et al in [26]. The technique, called Random
Regression Forest (RRF), generates an estimate of the full head
pose – i.e. x, y, z, roll, pitch, and yaw.

A. System Architecture

The software architecture of our system is composed of five
modules depicted in Figure 3. In this section, we will describe
these modules in more detail.

In fact, the real first step of the algorithm, not depicted
in Figure 3, involves the transformation of the 11-bit value
returned by the Kinect into actual (x, y, z) distances. This pro-
cess is described in Burrus website1. Another step also omitted
from the same figure is a threshold filtering that restricts
the space where the user head can occupy. This threshold
keeps anyone standing around or behind the wheelchair from
affecting the results of the head pose estimation.

Figure 3. Diagram of Proposed System

1) Calibration: Our system begins by performing a cali-
bration of the head motions to tailor the algorithm to each
user. The calibration is quick and simple, and it allows the
user to set the coordinates of their control system to the most
comfortable configuration. The calibration process starts with
instructing the users to orient their heads in a comfortable
relaxed position. This position will be later associated with
the “Stop” command. The user should remain still for a few
seconds, until the system can capture a certain number N of

1http://nicolas.burrus.name/index.php/Research/KinectCalibration



head-pose estimates – i.e. sample points containing the x, y,
and z, coordinate of the head as well as its roll, pitch, and yaw
orientations. Next, the users are instructed to orient their heads
to the “Left”, “Right”, “Forward”, and “Backward” poses –
each of these reference poses are held until the system can
again capture N samples returned by the RRF algorithm. The
samples are clustered and the centers of the clusters become
the representatives of their classes. These centers will be used
to define a reference coordinate frame for adjusting future head
poses for each user. Furthermore, it is assumed that orienting
the head in a pose similar to the cluster centers implies a
desire by the driver to move at maximum speed. For instance,
orienting the head as in the “Forward” cluster center should
be translated into moving the wheelchair forward at maximum
speed. Similarly, orienting the head as in the “Left” cluster
center should translate into turning the wheelchair in place,
to the left, also at the maximum rotational speed. Orienting
the head between “Stop” and one of the other four poses
would lead to a speed proportional to the distance to that
corresponding cluster center.

The training samples and the cluster centers are stored by
the system and will be used later, during the adaptation. Once
the initial calibration is completed, the user can start using the
system to actually control the wheelchair. Figure 4 shows the
calibration results for three of the five different users used in
our tests.
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Figure 4. Calibration results for users #1 to #3. The calibration samples
are displayed in red; the cluster centers are shown in blue with the reference
coordinate frames also in blue. The angles are in degrees.

2) De-skewing: Before we explain the other modules of
the system, let us skip to the last module. At this point,
the system is constantly generating new estimates of yaw
and pitch based on the head-pose outputs from the previous
modules. Also, each one of these head poses must be translated
into commands for the wheelchair – e.g. move forward, turn,
etc. However, since these head poses may be skewed by

the limited motion imposed by the disabling condition, these
head poses must be first de-skewed. The idea behind this
de-skewing process is that the five cluster centers obtained
during calibration – i.e. “Stop”, “Left”, “Right”, “Forward”,
and “Backward” – will now form a coordinate system, with
the “Stop” cluster center as its origin. This coordinate system
is not necessarily orthogonal, as shown in Figure 5 by the
red axes. So, before any head pose sample can be mapped
into a command to the chair, its projections onto the reference
coordinate system must be found.

This process is quite simple. The only slight complication
is due to the fact that the ranges of motion provided during
calibration may not be the same in all four directions of
the head motion. Another small complication comes from the
center of the cluster “Stop”, which despite being regarded as
the origin of the reference coordinate system, it may have
coordinate C”Stop” = (yaw”Stop” 6= 0, pitch”Stop” 6= 0).

(a)

(b)

Figure 5. Two examples of the de-skewing process for head poses: (a) first
and (b) third quadrants.

Graphically, the de-skewing process is illustrated in Figure
5a and b. Mathematically, the same process is as follows. A
head-pose sample −→P = (yaw, pitch) must be translated to
the skewed, reference coordinate system. That is represented
by the point P̂ =

−→
P −C”Stop” = (yaw− yaw”Stop”, pitch−

pitch”Stop”). Next, this point P̂ , which in our first example



(Figure 5a lies on the first quadrant, must be projected onto a
pair of axes describing that quadrant – in this case, the vectors
−→v1 and −→v2 , since, again, P̂ lies on the first quadrant, which
is defined by the “Forward” axis −→v1 and the “Right” axis −→v2 .
Finally, the projections of P̂ can be expressed as:

−→
P = α1

−→v1 + α2
−→v2

Where α1 and α2 are the actual projections. In matrix form,
we have

−→
P = V A

where V =
[ −→v1 −→v2

]
, with −→v1 , −→v2 as column vectors, and

A =

[
α1

α2

]
. Since −→v1 , −→v2 are linearly independent, it follows

that V −1 exists, and we can obtain A as:

A = V −1
−→
P

Since the projections α1 and α2 can be regarded as the
contributions of the head pose in the “Right” and “Forward”
directions, the rotational velocity and the linear velocity of the
wheelchair are, respectively:

RotV el = −α1MaxRotSpeed
LinV el = α2MaxLinSpeed

The negative sign for the rotational velocity is just to keep
the convention of negative rotational velocities when rotating
to the right (clockwise).

As we mentioned above, the ranges of head motion are
not necessarily the same in all four directions obtained during
calibration. Therefore, the quadrant where P̂ lies is important
in determining which of the four axes to use – i.e. −→v1 , −→v2 , −→v3
or −→v4 . In Figure 5b, we illustrate this condition by considering
a case where P̂ lies on the third quadrant, instead of the first
quadrant as in the previous case. In that case, all the discussion
above still holds, as long as we replace −→v1 and −→v2 by −→v3 and
−→v4 – i.e. the vectors that describe the third quadrant.

As final remarks, we should mention two things: first, the
quadrant to which −→P belongs does not, by itself, determines
the quadrant to which P̂ belongs, and yet, it is the latter rather
than the former that determines which set of basis vectors, −→v1 ,
−→v2 , −→v3 or −→v4 to use; and second, that if the coefficients α1 and
α2 are close to zero (less than 10% of the full motion), the
actual velocities are set to zero. This allows the wheelchair to
remain stationary even if the users move their heads slightly
off the “Stop” position.

3) Adaptation: Over short periods of time, users may
become fatigued and they may need to reposition their bodies
on the wheelchair. Also, over long periods of time, the disease
may progress, imposing greater limitations on the ranges and
angles of the head motions. In either cases, the head motions
start deviating from the calibrated poses. In order to avoid
forcing the user to re-calibrate the system, we included an
adaptation algorithm based on K-means. For this adaptation,
which is one of the main contributions of this work, we use
sonar sensors as a source of re-enforcement to be applied on
top of the K-means clustering. These ideas are explained in
greater details in the next two subsections.

a) Re-enforced K-Means: The assumption here is that
any deviation from the calibrated head poses should lead to a
“bad driving” of the wheelchair. That is, if the user is trying
to move forward along a hallway, but due to fatigue or any
other sudden or progressive change in his head movements he
can no longer position his head as in the calibrated “Forward”
pose, the wheelchair will likely start to turn, even if so slightly.
That will cause the wheelchair to move into obstacles or even
the wall. If we could detect this situation, we could use this
information to adapt the calibrated head poses to these new
conditions.

One easy way of detecting this “bad driving” situation is
by the use of sonar sensors. In our case, we use sonars that
can detect obstacles up to 5 meters in 16 different directions.
These directions of the sonar sensors are presented in Figure
6a). Also, from the sensor readings and the current motion
command sent to the wheelchair, the system can infer if there
should be an adaptation of the head pose clusters. This idea is
depicted in Figure 6b), where the user orients his head slightly
deviated to the right from the calibrated “Forward” position. If
a sensor detects an obstacle/wall to the right of the wheelchair,
the situation is flagged as a “bad driving”, indicating that an
adaptation of the clusters must be performed.

(a) Available directions of
the sonar sensors (16)

(b) Wheelchair moving
towards an obstacle or wall

Figure 6. Situation when the commanded direction of motion overlaps with
some of the sonar sensors.

In fact, the adaptation occurs at all times, but the head
poses are handled differently, depending on the need or not
to re-enforce the learning due to a “bad driving” behavior.
When no obstacles are detected in the direction of motion,
the samples are considered regular, and they are eliminated
from the dataset used for adaptation. On the other hand, if the
system detects a “bad driving” behavior, the corresponding
head-pose sample is stored and used for clustering. If the
proximity to the obstacle is alarming, a weight of 2 is assigned
to this head-pose sample. If the proximity is medium, a weight
of 1 is assigned.

It should go without saying that new samples lead to new
cluster centers, which leads to new axes −→v1 , −→v2 , −→v3 and −→v4
to be calculated, which in turn leads to completely different
commands to the wheelchair – and an adaptation to the
changes in head motions and ranges is achieved.

b) Actual Clusters and Clustering: During the calibra-
tion process described in III-A1, 5 × N samples are stored



with the corresponding labels – “Stop”, “Right”, “Forward”,
“Left” and “Backward”. After that, four additional clusters are
artificially created: “ForwardRight” ,”ForwardLeft”, “Back-
wardLeft” and “BackwardRight”. The reason for creating these
artificial clusters will be explained below. In the meantime, we
should say that these clusters are obtained as a combination
of the centers of the other clusters. For instance, the “Back-
wardLeft” cluster is defined as:

BL = O +

√
2

2

(−−−→
OCB +

−−→
OCL

)
where O is the origin, or the center of the “Stop” cluster,

and CB and CL are the centers of the “Backward” and
“Left” clusters, respectively. The factor

√
2
2 was chosen to

approximately preserve the ranges of the two axes involved
– i.e. to pick a point in the middle of a circular arc going
from CL to CB instead of a mid-point between the two. The
remaining diagonal clusters are obtained in a similar fashion,
and N copies for each of these artificially created centers are
stored in the respective clusters.

In order to prevent unnecessary clustering with insufficient
number of samples, the clustering only occurs once the system
collects T new samples. These new samples are then mixed
together with all the previously stored samples from all 9
classes. Samples with a weight different from 0 are stored
multiple times equal to the weight itself. Then, the K-means
clustering algorithm is run to obtain new clusters and cluster
centers. This differentiated weighting of samples allows for
“bad driving” behaviors to quickly modify the cluster centers.
At the same time, the reason for the system to preserve
previous samples from all 9 classes in addition to the new
weighted samples is to avoid abrupt changes in behaviors.
Also, after the adaptation, the system preserves only the newest
N samples for each of the 9 classes. This will ensure that
no cluster will disappear due to the lack of “bad driving”
behavior in the direction associated with that cluster.

Finally, the reason to create the artificial clusters is to pre-
vent the original four clusters from merging together. During
our experiments, we noticed that users produce many samples
in the diagonal between two of the original clusters. That is
a natural consequence of the driving, which involves constant
diagonal motions instead of sharp, 90-degree, turns. If we did
not have these artificially created clusters, the system would
not be able to determine whether the pattern of head motions
was changing or the user was simply cutting corners and the
four original clusters would simply disappear.

IV. EXPERIMENTAL RESULTS

In this section, we present the results from the experiments
performed to validate the system. Our goal here is to demon-
strate the flexibility of the system in adapting to different users
and to changing conditions of a specific user. While the system
presented here was tested using the MobileSim simulator, a
video showing its operation on a real wheelchair is available
at http://tinyurl.com/cgpl4a5

In total, five test subjects – users #1 to #5 – participated in
a set of experiments using three different maps. For the first

experiment, we asked users #1 to #3 to drive the wheelchair
using maps #1 and later map #2. In the second experiment,
user #4 was asked to perform a head movement with very
skewed axes and limited ranges. The goal was to simulate a
person with an impediment to move his head orthogonally.
Finally, in the third test, user #5 was asked to change the
pattern of head motion and test the adaptability of the system
to such changes.

For all three experiments described next, the cluster size,
N , was set to fifty, and the number of samples T needed to
trigger an adaptation was also set to fifty.

A. Testing under normal conditions

For the first experiment, we asked users #1 to #3 to complete
the trajectory with no large limitations on the ranges or
directions of the head motions. The idea was to simulate a
person with minor disabilities. The users performed the initial
calibration (Figure 4) and then drove a wheelchair through
map #1. They were asked to make often stops in the middle
of the map, and also to go backwards along at least one stretch
of the map. Then, they were asked to drive through the first
map two more times. After running the experiment using the
first map, the users were asked to move to a second map.
This time, there was no calibration and the system relied on
the previously stored clusters. The users completed the second
map three times as well.

Figure 7 depicts the evolution of the cluster centers over
time, as the users drove through the maps. Due to space
limitations of this paper, the figure presents users #1 and
#2 for map #1, and user #3 for map #2. In Figure 8 we
present the corresponding maps with the trajectories followed
by those users over the three trials. Finally, Figure 9 shows
the sample points collected for the first trial over the maps
in Figure 8. Regular samples, or samples of ”good driving”
are represented in light blue. Samples in dark blue are those
to which a weight of 1 was assigned – those are the “bad
driving” behaviors that led to medium proximity to an obstacle
or wall. Finally, samples in red are those assigned a weight
of 2, or with alarming proximity. Notice that if there were
not many “bad driving” situations, the system would take
longer to trigger an adaptation. On the other hand, constant
“bad driving” situations would lead to more often adaptation.
Typically, the system triggered an adaptation any time between
30 and 120 seconds, depending on the user. User #1 caused
almost no adaptations throughout the maps.

All users successfully completed the courses on both maps.
As it can be observed from Figures 8 and 9, the first user
moved his head in the most consistent way: the head pose
samples were very close together. At the same time, we
observe a larger spread in the data for users #2 and #3.
Also, in Figure 7 for user #1, the variation of the centers
was very small, while for users #2 and #3 the centers shifted
considerably more. The first subject produced mostly pure
movements: forward, backward, left or right. Only a small
portion of his samples were categorized as “bad driving” –
shown in dark blue or red in Figure 9. Users #2 and #3, on the

http://tinyurl.com/cgpl4a5


−40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

YAW angle

P
IT

C
H

 a
n
g
le

Cluster centers, user #1, map #1

−40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

YAW angle

P
IT

C
H

 a
n
g
le

Cluster centers, user #2, map #1

−40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

YAW angle

P
IT

C
H

 a
n
g
le

Cluster centers, user #3, map #2

Figure 7. Evolution of the cluster centers over time for users #1 and #2
(on map #1) and user #3 (on map #2). A dot represents the initial position
and a “*” represents the final position of the cluster centers. The circles
represent intermediate positions. The “Stop” pose is in black, the “Forward”
and “Backward” centers are in red, while the “Left” and “Right” centers are
in blue. The initial axes are shown as dashed lines, while the final axes are
shown as continuous lines. The angles are in degrees.

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

meters

m
e
te

rs

Trajectories, user #1, map #1

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

meters

m
e
te

rs

Trajectories, user #2, map #1

0 5 10 15 20

0

2

4

6

8

10

12

meters

m
e
te

rs

Trajectories, user #3, map #2

Figure 8. Trajectories followed by users #1 and #2 on the first map, and by
user #3 on the second map.

other hand, drove a lot less consistently. They went closer to
the walls more often, and they frequently moved their heads
“diagonally”. The sample points in the second and third plots
of Figure 9 are more evenly distributed in the yaw-pitch space.
Also, a higher fraction of the points were assigned a weight of
1 (dark blue) or even 2 (red). Consequently, the cluster centers
were updated on many more occasions than for user #1.

B. Tolerance of the system to initial calibration of the axes

We asked a fourth user to calibrate the system with highly
skewed head poses. The goal was to simulate a person with
difficulty to move his head orthogonally. The results for
driving through map #1 are shown in Figure 10. Despite
being a very skewed reference frame, the limitations in range
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Figure 9. Head-pose samples collected when users #1 to #3 drove through
maps #1 and #2. Regular samples are plotted in light blue; samples with
weight 1 in dark blue; and samples with a weight of 2 in red.

of motion still led to clusters with much smaller dispersion.
Moreover, the user was able to successfully complete the
course in all three trials. Also, it can be noticed that a small
number of points were assigned a weight different from zero.
Therefore, the reference frame was only updated a few times.
The only cluster that showed more noticeable change was the
“Forward” cluster.

Next, the user was asked to re-calibrate the system, using a
different set of head poses and drive through map #2. Figure 11
shows the results for this experiment. As before, even though
the axes were highly skewed, the subject was able to complete
the second course without problems, and for all trials. Here,
we notice that the “Down” and “Right” clusters were the ones
that changed over time.
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Figure 10. Test of highly skewed axes of head pose: first plot shows the
initial calibration; the second plot, the evolution of the cluster centers; head-
pose samples are shown in the third plot; and the trajectories followed by
user #4 on map #1 are shown in the last plot.
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Figure 11. Another test of highly skewed axes of head pose using map #2.
Once again, each plot in sequence shows: the initial calibration; the evolution
of the cluster centers; head-pose samples; and the trajectories followed.

C. Further Test of Adaptability

The last test presented here aimed at demonstrating the
effectiveness of the adaptation of the proposed system. Two
similar trials were performed. In both cases, user #5 was asked
to go through map #3, which consists of a long corridor. The
user started at the center, and then intentionally tilted his head
towards the wall until the wheelchair actually hit the wall.
Then, he was asked to back up, reposition the wheelchair at
the center of the hallway and repeat the process until the end
of the hallway. Finally, the user was asked to move back to
the beginning of the corridor, and start moving up once again
– this time keeping approximately the same tilted position of
the head that led the wheelchair to hit the wall in the first and
second runs.

Figures 12 and 13 show the results for the two trials of this
experiment. In the first trial, the user leaned to the right wall
and in the second the user leaned to the left. The trajectories
followed by the wheelchair show how it started straight and
then it quickly moved towards the wall. After backing up for
the first time and repositioning the wheelchair in the center
of the corridor, the trajectories continued towards the end.
This time, the wheelchair still leaned towards the wall, but at
a much smaller angle. The evolution of the cluster centers,
also depicted in Figures 12 and 13, demonstrates how the
“Forward” cluster adapted by shifting to the right and left,
depending on the trial. This is consistent with all the weighted
samples shown in the third part of Figures 12 and 13. In fact,
because of this same adaptation of the “Forward” cluster, the
tilted head pose had already led to a straighter line in the
second run when compared to the first run – see the first part
of Figures 12 and 13.

V. CONCLUSIONS AND FUTURE WORK

We presented a system for controlling a wheelchair using
only head poses. The results of our experiments, with five
users, and various trials show the flexibility of the system and
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Figure 12. Trajectory followed by user #5 (going to the right wall), evolution
of the cluster centers and all the sample points. Notice that the weighted
samples are in the diagonal to the right. The cluster center corresponding to
forward moved toward that position.
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Figure 13. Trajectory followed by user #5 (going to the left wall), evolution
of the cluster centers and all the sample points. Notice that the weighted
samples are to the left. The cluster center corresponding to forward shifted a
bit to the left.

its ability to adapt to different users – whether they present
limitations in their head motions or not. Driving the wheelchair
with the head was intuitive, as demonstrated in the video
and in the simulations presented here. The system was tested
using a variety of ranges of head motion and for different
initial calibrations. No matter how the system was calibrated
the users were still able to navigate the course with ease.
Throughout all the trials, no user ever collided with the walls
of the map, except when asked to do so.

The adaptability and flexibility of the system can be at-
tributed to the proposed Re-enforcement K-means algorithm



for clustering. The algorithm takes cues from the driving
behavior of the user and feeds back “bad” behaviors to fix
the clustering and achieve better driving.

One of the users faced difficulty in having her head tracked
by the system. That person uses a scarf around her head, and
the system was not able to locate her head. Since this research
is not on head tracking, we omitted this result. However, in
the future, we intend to use Active Appearance Models [31],
[32], [33] to help improve the head pose estimations.

Further tests must be carried out, specially with persons with
true disabling conditions. Also, further investigation on the
parameters chosen for the system, such as cluster size, weights
for “bad driving”, threshold for triggering the adaption, and
the ranges for maximum speeds should be considered. Finally,
the use of other environmental cues could be used to guide
the adaptation, such as eye gaze, involuntary collision with
moving obstacles – which should not be regarded as “bad
driving” – etc.
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