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Abstract. This paper proposes a new benchmark dataset for pedestrian
body-direction classification, proposes a new framework for intra-class
classification by directly aiming at pedestrian body-direction classifica-
tion, shows that the proposed framework outperforms a state-of-the-art
method, and it also proposes the use of DCT-HOG features (by combin-
ing a discrete cosine transform with the histogram of oriented gradients)
as a novel approach for defining a random decision forest.

1 Introduction

Human beings are the most important objects for image sequence analysis for
advanced diver-assistance systems (ADAS) or surveillance applications. Their
study in video data attracted extensive research [19]. The appearance of a hu-
man in a single frame contains information about body pose, head pose, head
direction, body direction, and so forth. Algorithms for pose-estimation tasks
typically require high-resolution images as input. Low-resolution cameras, or hu-
mans recorded far away from the camera, still support the estimation of global
information about the direction of a person expressed by the recorded pose.

Information about body direction helps to improve path predictions in se-
quences; see [12]. In the ADAS area, pedestrians are the most vulnerable road
users. A pedestrian may change a walking path abruptly; motion information
acquired in previous frames does not necessarily define an accurate prediction of
the future path. For example, Fig. 1 shows a sample from the pedestrian path-
prediction benchmark dataset proposed in [22]; the dataset is available on [13].
In video surveillance, a person’s direction offers clues for solving specific tasks
such as behavior recognition, group detection, or interaction analysis; see [3, 16].
In [16], the head direction is noted for analysing the interaction between two
persons in a film clip.

Our first contribution in this paper is a proposal of a new Pedestrian Di-
rection Classification (PDC) dataset; thus responding to an obvious demand in
this area for more benchmark data. The task of discrete body-direction classi-
fication is not yet studied as intensively as a generic pedestrian-detection task,
and the lack of benchmark datasets might be one reason for this situation. The
proposed PDC dataset has been generated based on the Daimler Mono Pedes-
trian Classification Benchmark. There are already two existing datasets which
provide ground truth on pedestrian directions, the TUD Multiple View Pedes-
trian (TUD) dataset prosed by [1], and the Human Orientation Classification
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(HOC) dataset introduced by [7]. We show that the the newly introduced PDC
dataset outperforms both the TUD and the HOC dataset with respect to de-
fined criteria. A detailed comparison of the TUD, HOC, and the proposed PDC
dataset is given in Sections 4 and 5.

The second contribution in this paper is the proposal of an efficient frame-
work (PRDF) for pedestrian direction classification. In order to deal with the
multiple intra-class (i.e. different body direction classes in one pedestrian class)
classification task, see [1, 3, 14, 18, 26], previously proposed methods learn multi-
ple classifiers, one for each direction. This excludes sharing of information among
classes in the training or classification process, and is (thus) more time consum-
ing for both processes. A random decision forest (RDF) is adopted in [2, 24] for
direction classification. In both publications, features of a bounding box are used
as input for the classifier. Each splitting node in a tree of the RDF, however,
selects only one component in the used high-dimensional feature vector. In this
paper we propose an PRDF for automatically learning the discrimination of se-
lected body parts for classifying body directions. Experimental results show that
the proposed PRDF framework performs better and faster than state-of-the-art
methods.

As a third contribution we are proposing a novel feature for direction classi-
fication. Features of the histogram of oriented gradients (HOG) are extensively
used for pedestrian detection [6]. As reported in [5], complex splitting nodes lead
to over-fitting issues. In [24], one or two feature elements are adopted for defining
a splitting function. In this paper we propose to perform a discrete cosine trans-
form (DCT) over the HOG feature vector to obtain a more global descriptor
before selecting feature elements. Thus, each element contains global frequency
information instead of just some local gradient-orientation information.

To summarise the contributions in this paper, we (1) propose a new pedes-
trian body-direction classification benchmark dataset (PDC), (2) propose a new
framework (PRDF) for intra-class classification by directly aiming at pedestrian
body-direction classification, (3) show that the proposed framework outperforms
a state-of-the-art method, and we (4) propose the use of DCT-HOG features.

Fig. 1. Frames of a body-bending sequence of the Daimler pedestrian path prediction
benchmark dataset [13]
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2 Related Work

We briefly review body-direction classification algorithms and classifiers based on
random decision forests, given a bounding box containing a pedestrian. For solv-
ing the body-direction classification task, as an intra-class classification problem,
researchers train multiple two-class classifiers [1, 3, 14, 18, 26] or adopt a multi-
class classifier [24, 7]. Both approaches use features and classifiers as previously
known for pedestrian detection. For example, HOG features and support vector
machine (SVM) classifiers are extensively employed for body-direction classifi-
cation [1, 3, 14].

The authors of [7] propose a weighted array of covariances (WARCO) for
deriving features for classifying body- and head-direction. The values of 13 com-
bined feature channels are taken as defining a manifold in feature space; those
13 channels are composed of eight difference-of-offset-Gaussian filter channels,
three color channels, gradient magnitude, and a gradient-direction channel. A
method based on silhouettes is presented in [18]; used shape descriptors limit the
range of body directions to the interval [0◦, 180◦]. The estimation of pedestrian
direction is performed in [23] more robustly by selecting a recognition result
based on multiple still images, rather than by using just a single image. Multiple
random-tree classifiers are trained in [2] and compared with trained SVM classi-
fiers; outputs are integrated using a mixture of approximated wrapped Gaussians
(MAWG). Using calculated probabilities of multiple outputs obtained from all
participating classifiers, the final direction is obtained by maximising the mixed
probability of the WAWG.

Direction recognition is difficult as head pose, torso, and body might point
into different directions; but their poses are interrelated to each other. For exam-
ple, body direction is estimated in [3, 4] by considering location and head pose,
and assuming that tracks are available.

There are also several methods proposed for classifying pedestrians against
a background together with their body directions [14, 24, 7]. The authors of [24]
propose to modify the objective function of each split node in the RDF for simul-
taneously handling both tasks, pedestrian detection and direction classification,
a single, or two HOG elements are compared against a randomly generated
threshold, and results are selected for optimising a combined objective function.
[14] presents a three stage process; Stages 1 and 2 adopt different HoG where
blocks are either overlapping or not, to reject non-pedestrian boxes; at Stage 3,
four SVM classifiers are trained for the four directions separately using pedes-
trian samples only. A unified Bayesian model is used in [9], based on shape and
motion cues; the proposed method classifies pedestrians with recognizing one of
four possible directions.

RDFs are extensively applied for many detection or categorisation subjects,
including object detection [11, 15], action recognition [25], image labelling [17],
or edge detection [8]. The structure of trees in an RDF depends on the training
process, which may vary for different subjects. In [15], an RDF is structured for
doing pedestrian detection. Instead of using simple algebraic splitting functions,
a two-class SVM is adopted for each splitting node. The authors of [20] propose
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alternating decision forests; instead of independently learning each tree in a
forest, a gradient boosting theory is introduced for concurrently training a forest.
For each depth level, a significance distribution of training samples is updated
based on the performance of the current forest. Miss-classified samples receive
more attention when training split nodes at the next depth level. The authors
of [21] propose corresponding alternating regression forests.

3 Proposed Algorithm

We detail the proposed algorithm. We start with introducing the used notation
following a general RDF framework.

3.1 Random Decision Forest

An RDF acts for a given categorisation problem as a (strong) classifier, defined
by a set of trees, each acting as a weak classifier. Let Tt, for t ∈ {1, . . . , N}, be
a set of randomly trained decision trees which defines an RDF. In each tree, a
classification problem is splitted by answering subsequently “simple questions”
defined by split functions. In other words, such a decision tree consists of a set
of split functions hierarchically arranged into a tree structure.

A decision tree has internal (or split) and terminal (or leaf) nodes. We assign
a split function to each split node which has two out-edges connected to two
nodes, being either split or leaf nodes. The assigned split function hφ(·) decides
which of the two nodes comes next. Let I denote the set of inputs and

IL(φ) = {I ∈ I|hφ(I) = 0} and IR(φ) = {I ∈ I|hφ(I) = 1} (1)

Later we specify split function hφ(·) and its parameters φ.
A set Itr ⊂ I of labelled pedestrian are used in the training process for

expanding the trees of an RDF. Samples I ∈ Itr split along internal nodes and
end up in leaf nodes of trained trees.

A decision tree is trained by growing subsequently internal nodes, starting
at a root node. Suitable functions hφ(·) are selected with respect to a predefined
target function. Trees of an RDF grow randomly and independently to each-
other. Randomness when training a tree is important to ensure some variety
in the forest (i.e. trees need to be uncorrelated to ensure that the forest can
investigate samples from “different perspectives”). For the assembled forest we
intentionally avoid to grow “similar” trees.

A stop criterion defines when a leaf node L is created. The distribution
of classes in a leaf node is obtained with respect to those samples I ∈ Itr
which reach this leaf node. According to this the distribution, the leaf node
assigns probabilities p(d|Lt), for d ∈ {N,E, S,W}, where N,E, S,W denote
body directions.

For testing of an RDF we use a set of input bounding boxes denoted by
Its ⊂ I. Any sample Its ∈ Its is passed through the N trees Tt of the trained
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forest. Sample Its ends up in a leaf node Lt in tree Tt. This way we assign N
distributions to one test box. The simple rule

d∗ = arg maxd

N∑
t=1

p(d|Lt) (2)

defines a maximum-likelihood decision for classifying the direction of a pedes-
trian.

3.2 Split and Objective Function

Let V denote a feature vector, and i be the index of a feature element. A split
function is then defined as follows:

hφ(I) =

{
0 if V (i) > τ

1 otherwise
(3)

The goal is to split the training samples uniformly for maximising the informa-
tion gain at each internal node. More specific, for each internal node, parameters
φ = {i, τ} are learned with respect to maximizing a predefined objective func-
tion. It is important to choose an appropriate objective function for obtaining
“good” split functions during the training process. This is supported by Shan-
non’s entropy-based objective function. Let Ed(I) denote the entropy of direction
classes. We use

od(φ, I) = Ed(I)−
∑

k∈{L,R}

ωkEd(Ik(φ)) (4)

with Ed(I) = −
∑
d

p(d|I) log(p(d|I))

and ωk = |Ik(φ)|/|I(φ)|

The ω-values are the weights for balancing the bias caused by varying numbers
of samples, going either to the left or right child node. By allowing different
objective functions, split nodes can be generated individually.

3.3 DCT-HOG Feature

The HOG was introduced in [6] for pedestrian detection. The steps of HOG
calculation can be summarised as follows:

– An input gray-level image is partitioned into cells of equal sizes (e.g. of 8×8
pixels).

– For each cell, the gradient magnitude at each pixel in the cell votes to “its”
discrete phase bin (e.g. nine bins, [0o, 20o], [20o, 40o],...,[160o, 180o]). Thus,
each cell contains nine elements, where each element corresponds to the sum
of gradient magnitudes in those discrete phase ranges.
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– To obtain a feature vector, blocks of identical size (e.g. each 2×2 cells) slide
through the cell matrix. The cell elements are normalized within the block
and combined into one vector (either column or row wise).

– The vectors from all those blocks are now augmented to generate the HOG
feature vector Vhog.

HOG feature vectors are extensively used in object detection because of their
positive performance compared to other features (e.g. local binary patterns, or
histogram of optical flow). For splitting training samples at a reached node, one
feature element is adopted at a time. One feature element in HOG contains
specifically local information for one phase bin of one cell. In order to employ
more global information in a split node, we propose the DCT-HOG feature
Vdct−hog. It is obtained by applying the discrete cosine transform (DCT) first
over the HOG feature vector Vhog taken as a 1-dimensional discrete signal:

Vdct−hog = C(|Vhog|) ˙ Vhog (5)

c
(|Vhog|)
jk =

√
αj/|Vhog| · cos(

π(2k + 1)j

2|Vhog|
) (6)

where |V | denotes the number of elements in a vector V , c
(|Vhog|)
jk is an element in

the orthogonal matrix C(|Vhog|) of dimension |Vhog|× |Vhog|, and α0 = 1, αj = 2.
The elements in DCT-HOG contains global frequency information. Thus, global
information is adopted in a split node, when splitting based on the DCT-HOG
feature elements.

3.4 Part Based Random Decision Forest

A conventional RDF learning procedure is based on feature vectors of the
whole object - in our case, of a person. Following the classifier’s internal struc-
ture, introduced in Section 3.2, a randomly selected element from HOG is not

Fig. 2. Selected parts for several trees. Bottom, right: All the selected parts for a forest
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a discriminative representation of the sample. Thus, we propose to apply the
forest to deduct discriminative information from image patches, i.e. from parts
of the human body.

Instead of mixing randomly selected local patches from random locations,
we use the same location and size of a patch in each training sample as a tree-
training set. In this way, the location of body parts is kind of “encoded” for
training. The tree-training procedure focuses on the appearance of the body
parts.

Using such localized regions, simple split functions yield better performance
compared to an application of the whole bounding box for tree training; see

Algorithm 1 (Training)
Input: All training samples I
Output: Trained trees Tt, for t = 1, 2, . . . , N

1: randomly select the location and size for an image patch, identified by top-left
coordinates (rowt, colt) and patch size (widtht, heightt).

2: calculate feature vector V of each training patch; for different experiments the V
stands either for Vhog, Vdct−hog, or Vcomb.

3: let Tt = ∅, num = |I|, dep = 0, stop criterion tnum = 20, tdep = 15, temporal data
store variables tempod1 = 0, tempod2 = 0.

4: if num < tnum || dep > tdep then
5: calculate p(d|L) with I, according to Equ. (8);
6: add leaf L to the tree: Tt = Tt ∪ L
7: return Tt.
8: else
9: dep = dep+ 1;

10: for s = 1, . . . , 1000 do
11: randomly select a feature element index is;
12: find range [τmin, τmax] of Vis with current node samples;
13: for h = 1, . . . , 10 do
14: randomly select τh ∈ [τmin, τmax];
15: split I into ILh, IRh according to Equ. (3);
16: calculate od({is, τh}, I) with Equ. (4);
17: if od({is, τh}, I) > tempod2 then
18: tempod2 = od(φs, I);
19: τs = τh, φs = {is, τs};
20: end if
21: end for
22: if tempod2 > tempod1 then
23: φ∗ = φs;
24: end if
25: end for
26: expand tree by new split node: Tt = Tt ∪ φ∗;
27: split I into IL and IR;
28: num = |IL|, I = IL, and go to Line 4;
29: num = |IR|, I = IR, and go to Line 4;
30: end if
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results in Section 5. Figure 2 illustrates selected discriminative parts for a tree
and a forest. For the considered intra-class classification task, the global appear-
ance of a person is similar to some degree for the whole pedestrian class; the
distinctive information among classes actually lies in local body parts.

3.5 Implementation

For the used training and testing algorithms, see Algorithms 1 and 2, respec-
tively. We apply the whole training set when training a tree of the RDF. As
reported in [5], randomness is significant for the performance of a forest. Instead
of bagging, we introduce randomness by randomly selecting patches and fea-
ture elements. The stop criteria parameters, including the tree’s depth and the
minimum number of samples, is set according to [24].

Because of the different cardinalities of training samples for the different
classes, a sample-bias compensation is necessary for calculating probabilities at
a leaf node. This is achieved by using a balancing factor rd, defined as follows:

p(d|L) = |ILd | · rd/
∑
d

(|ILd | · rd) (7)

with rd = |Itr|/|Itrd |

where |Itr| denotes the cardinality of the training samples for each tree; set
Itrd ⊂ Itr contains the training samples for direction d in Itr, and set IL ⊂ Itr
contains all the samples arriving at leaf node L. In our experiments, we set
N = 120.

During testing, for each tree Tt, the corresponding patch Ipatch, specified by
location (rowt, colt) and size (widtht, heightt), from a test image I is adopted to
calculate the feature vector V , and then passed through the tree. See Algorithm 2
for details.

Algorithm 2 (Testing)
Input: Test bounding box I, trained trees Tt, with t = 1, 2, . . . , N .
Output: Class label d∗.

1: for t = 1, . . . , N do
2: extract corresponding patch location (rowt, colt) and size (widtht, heightt) from

tree t.
3: calculate feature vector V for the image patch Ipatch.
4: pass V through Tt until reaching a leaf node Lt, obtain distribution p(d|Lt).
5: end for
6: obtain d∗ with Equ. (2);
7: return d∗.
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4 Proposed PDC Benchmark Dataset

We introduce our pedestrian direction classification (PDC) benchmark dataset.1

We compare our dataset with two other available datasets, TUD and HOC.
Sample images are shown in Fig. 3, top.

Fig. 3. Top row: PDC samples illustrating ambiguity between N, NE, and E. Middle
and bottom rows: Sample images from the HOC (middle) and TUD (bottom) datasets

Besides very advanced research in the driver-assistance area, there is not yet
any publicly available pedestrian body-direction classification dataset available
in a driving context. Thus, we use one popular pedestrian-classification dataset
from Daimler, and manually classified the 12,000 pedestrian bounding boxes
(sized 48×96) into 8 directions (namely N, NE, E, SE, S, SW, W, or NW). Even
for human beings, it is difficult to classify which direction a pedestrian should
be assigned, e.g. among N, NE, and E, E, SE, and S, S, SW, and W, and W,
NW, and N. Due to the ambiguity, we classified a person, for example, to NE
only if the person is facing into diagonal direction.

As the PDC pedestrians are shown in various scenes, an often cluttered back-
ground enables that the PDC dataset gives more general information when used

1 See ccv.wordpress.fos.auckland.ac.nz/data/object-detection/.
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Table 1. PDC, HOC, and TUD datasets summary

Number of samples Image channel Directions

HOC 11,881 color N, S, E, W
TUD 5,183 color N, NE, E, SE, S, SW, W, NW
PDC 12,000 gray N, NE, E, SE, S, SW, W, NW

for training, and it is more challenging when used for testing; see experimental
results in Section 5.

The HOC dataset [7] contains 11,881 bounding boxes, including 6,860 train-
ing samples and 5,021 test samples. The original image size is 62 × 132. The
bounding boxes are extracted from ETHZ data, see [10]. The sequences are
taken from two cameras mounted on top of a trolley. Four directions, N, S, E,
W, are labelled for each sample. The TUD dataset [1] contains 5,183 bounding
boxes, including 4,935 training samples and 248 test samples. This dataset la-
bels pedestrians for 8 directions, as in our PDC dataset. Sample images from the
HOC and TUD datasets are shown in Fig. 3, bottom. Information for all three
datasets is summarized in Table 1.

5 Experiments

We report about several sets of experiments for illustrating the performance
of the proposed PRDF framework for all datasets, the merits of the new pro-
posed PDC dataset for both training and testing tasks, the performance of the
proposed feature DCT-HOG, and when augmenting DCT-HOG with a HOG fea-
ture. Finally, the proposed algorithm is compared with state-of-the-art methods
as reported in [1–3, 24, 7]. We also provide the mean processing time for testing
one image.

5.1 RDF versus PRDF

To compare the proposed part-based random decision forest (PRDF) with the
conventional RDF, two algorithms are trained with HOG feature on the three
datasets TUD, HOC, and PDC respectively. As the testing set of the TUD
dataset only contains 248 images, it is not quite sufficient to evaluate the per-
formance; we use PDC as the test set when using TUD for training, and, cor-
respondingly, TUD as the testing set after training on PDC. The confusion
matrices are given in Tables 2 and 3. The average error, depending from the
number of applied trees, is shown in Fig. 4.

Figure 4 shows curves for the results of RDFs using different colors for differ-
ent training sets. For results of PRDFs we use squares in the colors of the used
training set. Obviously, the PRDFs outperform the corresponding RDFs (e.g.
PRDF-HOC versus RDF-HOC) for all datasets. Thus, for later experiments,
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Fig. 4. Mean errors of RDFs and PRDFs for used numbers of trees in the forest

Table 2. RDF confusion matrices. Left to right: TUD,HOC,PDC

N E S W

N 0.67 0.04 0.26 0.04
E 0.17 0.46 0.24 0.13
S 0.45 0.07 0.43 0.04
W 0.15 0.14 0.22 0.49

N E S W

N 0.77 0.07 0.07 0.10
E 0.10 0.67 0.13 0.10
S 0.09 0.05 0.78 0.07
W 0.11 0.10 0.20 0.60

N E S W

N 0.63 0.13 0.20 0.04
E 0.06 0.81 0.03 0.09
S 0.33 0.18 0.37 0.12
W 0.08 0.15 0.03 0.74

Table 3. PRDF confusion matrices. Left to right: TUD, HOC, PDC

N E S W

N 0.76 0.02 0.2 0.02
E 0.16 0.55 0.19 0.09
S 0.41 0.04 0.52 0.02
W 0.16 0.10 0.16 0.57

N E S W

N 0.84 0.03 0.07 0.06
E 0.05 0.76 0.10 0.09
S 0.05 0.02 0.89 0.04
W 0.07 0.06 0.18 0.69

N E S W

N 0.70 0.07 0.19 0.04
E 0.05 0.90 0.01 0.04
S 0.27 0.13 0.52 0.08
W 0.11 0.09 0.02 0.78

PRDF framework is adopted. The confusion matrices quantify how the PRDFs
improve the classification performance for body directions.

5.2 Dataset Comparisons

In order to compare the datasets, the PRDFs trained with HOG feature on
one of the three datasets are subsequently tested on the other two training sets
respectively. For example, a TUD trained PRDF is tested on HOC and PDC
training sets. The test results are summarised in Table 4. The mean error is
shown in Fig. 5.

In Fig. 5, the TUD-HOC means PRDF trained with TUD training set, and
HOC training set is adopted as test set. Both TUD and PDC trained PRDFs
perform better than an HOC trained PRDF when tested on TUD and PDC
training sets. The PDC trained PRDF significantly outperforms a TUD trained
PRDF over HOC, and the HOC trained PRDF over TUD. Using the HOC
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Table 4. Confusion matrices. Top, left to right: TUD-HOC, TUD-PDC, HOC-TUD.
Bottom, left to right: HOC-PDC, PDC-TUD, PDC-HOC

N E S W

N 0.10 0.23 0.36 0.31
E 0.12 0.34 0.23 0.31
S 0.10 0.19 0.37 0.34
W 0.11 0.28 0.27 0.34

N E S W

N 0.76 0.02 0.2 0.02
E 0.16 0.55 0.19 0.09
S 0.41 0.04 0.52 0.02
W 0.16 0.10 0.16 0.57

N E S W

N 0.62 0.07 0.22 0.10
E 0.04 0.46 0.28 0.22
S 0.30 0.11 0.47 0.12
W 0.08 0.24 0.18 0.50

N E S W

N 0.53 0.13 0.19 0.16
E 0.07 0.29 0.29 0.35
S 0.22 0.12 0.52 0.13
W 0.09 0.19 0.22 0.50

N E S W

N 0.70 0.07 0.19 0.04
E 0.05 0.90 0.01 0.04
S 0.27 0.13 0.52 0.08
W 0.11 0.09 0.02 0.78

N E S W

N 0.75 0.09 0.12 0.04
E 0.36 0.42 0.12 0.10
S 0.31 0.16 0.44 0.09
W 0.39 0.17 0.13 0.31

training set as testing set leads to the largest mean error. The TUD training
set is the easiest one according to this experiment. Thus, we conclude that the
proposed PDC dataset offers better generalized information for training, and
also offers challenges for testing in general.

The confusion matrices show that a TUD-trained PRDF appears to be totally
confused with respect to testing on the HOC data, but performs reasonable on
the PDC training set. An HOC-trained PRDF performs worse for classifier E
direction on both the TUD and PDC training set, while a PDC-trained PRDF
performs best for classifying E.

5.3 Feature Comparison

In this section, the PRDF is trained with three different feature settings, HOG,
DCT-HOG, or a combined HOG and DCT-HOG, for the three datasets. The
performance of nine PRDFs is shown in Fig. 6. The confusion matrices are
illustrated in Tables 3, 5, and 6.
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Table 5. PRDF(DCTHOG) confusion matrices. Left to right: TUD, HOC, PDC

N E S W

N 0.82 0.02 0.15 0.02
E 0.20 0.54 0.12 0.13
S 0.59 0.05 0.32 0.04
W 0.21 0.12 0.10 0.57

N E S W

N 0.83 0.03 0.08 0.06
E 0.06 0.73 0.11 0.10
S 0.06 0.03 0.86 0.05
W 0.08 0.07 0.17 0.67

N E S W

N 0.73 0.07 0.16 0.03
E 0.06 0.90 0.01 0.03
S 0.43 0.15 0.39 0.04
W 0.12 0.17 0.02 0.69

Table 6. PRDF(COMB) confusion matrices. Left to right: TUD, HOC, PDC

N E S W

N 0.79 0.01 0.19 0.01
E 0.17 0.54 0.16 0.13
S 0.51 0.04 0.41 0.04
W 0.18 0.10 0.12 0.60

N E S W

N 0.84 0.02 0.07 0.07
E 0.05 0.78 0.11 0.07
S 0.03 0.03 0.90 0.04
W 0.06 0.07 0.18 0.69

N E S W

N 0.72 0.07 0.16 0.04
E 0.05 0.92 0.01 0.02
S 0.36 0.16 0.44 0.04
W 0.08 0.13 0.01 0.78

Figure 6 illustrates that the HOG feature performs better than DCT-HOG
feature in the mean-error sense. But the confusion matrices show that the N
direction classification is improved by using the DCT-HOG feature when training
on the TUD and HOC datasets. The combined HOG and DCT-HOG feature
slightly improves the overall performance. The confusion matrices tell us that
the combined feature improves performance for all direction classifications except
for direction S.

5.4 Comparison with State-of-the-Art Algorithms

The proposed PRDF(COMB) is compared with two methods proposed in [7],
called FEOB, and CBH1. To ensure a fair comparison with the results in [7],
PRDF(COMB) is trained with the HOC training set. Three confusion matrices



14 Junli Tao and Reinhard Klette

are shown in Table 7. The proposed PRDF(COMG) performs best on classifying
N, E, S, and achieved the highest average accuracy (0.79).

Table 7. Confusion matrices of FEOB [23], CBH1 [23], and PRDF(COMB) on HOC
dataset. Left: FEOB (average accuracy 0.78189). Middle: CBH1 (average accuracy
0.78692). Right: PRDF(COMB) (average accuracy 0.79031)

N E S W

N 0.76 0.11 0.04 0.09
E 0.03 0.76 0.15 0.06
S 0.00 0.04 0.88 0.08
W 0.04 0.08 0.15 0.73

N E S W

N 0.77 0.10 0.04 0.09
E 0.03 0.77 0.14 0.06
S 0.00 0.04 0.88 0.08
W 0.04 0.08 0.15 0.73

N E S W

N 0.84 0.02 0.07 0.07
E 0.05 0.78 0.11 0.07
S 0.03 0.03 0.90 0.04
W 0.06 0.07 0.18 0.69

For the sake of completeness of experiments, the results of PRDF, trained
on the TUD set, are illustrated in Table 8, along with results reported in [1–3,
24]. Note that the test set contains 248 images only. We do not consider this as
being a sufficient test set for drawing general conclusions.

Table 8. Test results for 248 test images from TUD

N E S W

PRDF 0.85 0.82 0.26 0.71

[24] 0.91 0.85 0.37 0.69

[2] 0.76 0.95 0.64 0.86

[3] 0.71 0.65 0.41 0.70

[1] 0.46 0.54 0.4 0.38

Processing Time. The mean processing time for one test input over 120
trees is 0.28 seconds. As trees are independent classifiers, parallel processing
could be applied. Thus, the process time could be reduced to 2-3 milliseconds.
The given processing time was measured for a standard desktop PC, with 3.4
GHz CPU, and 8 GB RAM. All the methods are coded with C++, and compiled
with Visual Studio 2010.

6 Conclusions

This paper proposed a new pedestrian-direction classification benchmark dataset
and a new framework for solving the pedestrian direction classification task.
Experimental results prove that the proposed benchmark dataset outperforms
the existing two datasets based on defined criteria. The proposed framework
performs better than a state-of-the-art method on the HOC dataset. Results
support future work on applying derived direction information while tracking
pedestrians in sequences. Pedestrians are assumed to be located in the middle
of the given bounding boxes. Localization errors also need to be considered
when applying the proposed method. The PRDF framework may be tested with
additional features, e.g. PCA-HOG.
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