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Abstract. In this paper we propose a generic framework for the optimization of
image feature encoders for image retrieval. Our approach uses a triplet-based ob-
jective that compares, for a given query image, the similarity scores of an image
with a matching and a non-matching image, penalizing triplets that give a higher
score to the non-matching image. We use stochastic gradient descent to address
the resulting problem and provide the required gradient expressions for generic
encoder parameters, applying the resulting algorithm to learn the power normal-
ization parameters commonly used to condition image features. We also propose
a modification to codebook-based feature encoders that consists of weighting the
local descriptors as a function of their distance to the assigned codeword before
aggregating them as part of the encoding process. Using the VLAD feature en-
coder, we show experimentally that our proposed optimized power normalization
method and local descriptor weighting method yield improvements on a standard
dataset.

1 Introduction

Image search methods can be broadly split into two categories. In the first category,
semantic search, the aim is to retrieve images containing visual concepts. For exam-
ple, the user might want to find images containing cats. In the second category, image
retrieval, the search system is given an image of a scene, and the aim is to find all im-
ages of the same scene modulo some task-related transformation. Examples of simple
transformations include changes in scene illumination, image cropping or scaling. More
challenging transformations include drastic changes in background, wide changes in the
perspective of the camera, high compression ratios, or picture-of-video-screen artifacts.

Common to both semantic search and image retrieval methods is the need to encode
the image into a single, fixed-dimensional feature vector. Many successful image feature
encoders have been proposed, and these generally operate on the fixed-dimensional lo-
cal descriptor vectors extracted from densely [1] or sparsely [2, 3] sampled local regions
of the image. The feature encoder aggregates these local descriptors to produce a higher
dimension image feature vector. Examples of such feature encoders include the bag-of-
words encoder [4], the Fisher encoder [5] and the VLAD encoder [6]. All these encod-
ing methods share common parametric post-processing steps where an element-wise
power computation and subsequent l2 normalization are applied. They also depend on
specific models of the data distribution in the local-descripor space. For bag-of-words
and VLAD, the model is a codebook obtained using K-means, while the Fisher encod-
ing is based on a Gaussian Mixture Model (GMM). In both cases, the model defining
the encoding scheme is built in an unsupervised manner using an optimization objective
unrelated to the image search task.
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For the case of semantic search, recent work has focused on learning the feature
encoder parameters to make it better suited to the task at hand. A natural learning objec-
tive to use in this situation is the max-margin objective otherwise used to learn support
vector machines. Notably, [7] learned the components of the GMM used in the Fisher
encoding by optimizing, relative to the GMM mean and variance parameters, the same
objective that produces the linear classifier commonly used to carry out semantic search.
Approaches based on deep Convolutional Neural Networks (CNNs) [8, 9] can also be
interpreted as feature learning methods, and these now define the new state-of-the art
baseline in semantic search. Indeed Sydorov et al. discuss how the Fisher encoder can
be interpreted as a deep network, since both consist of alternating layers of linear and
non-linear operations.

For the image retrieval task, however, the feature learning literature is lacking. One
existing proxy approach is to also use the max-margin objective, and hence features
encoders that were learned for the semantic search task [10]. Although the search tasks
are not the same, this approach indeed results in improved image retrieval results, since
both tasks are based on human visual interpretations of similarity. A second approach
instead focuses on learning the local descriptor vectors at the input of the feature en-
coder. The objective used in this is case engineered to enforce matching, based on the
learned local descriptors, of small image blocks centered on the same point in 3-D
space, but from images taken from different perspectives [11, 12].

One reason why these two approaches circumvent the actual task of image retrieval
is the lack of objective functions that are good surrogates for the mean Average Pre-
cision (mAP) measure commonly used to evaluate image retrieval systems. Surrogate
objectives are necessary because the mAP measure is non-differentiable as it depends
on a ranking of the images being searched. The main contribution of this paper is hence
to propose a new surrogate objective specifically for the image retrieval task. We show
how this objective can be minimized using stochastic gradient descent, and apply the
resulting algorithm to select the power-normalization parameters of the VLAD feature
encoder. As a second contribution, we also propose a novel method to weight local
descriptors for codebook-based image feature encoders that reduces the importance
of descriptors too far away from their assigned codeword. We test both contributions
indepently and jointly and demonstrate improvements on a standard image retrieval
performance.

The remainder of this paper is organized as follows: In the next section we describe
standard feature encoding methods, focusing on the VLAD encoding that we use in our
experiments. In Section 3 we described the proposed objective and the resulting learning
algorithm, and in Section 4 we present the proposed descriptor-weighting method. We
present experimental results in Section 5 and concluding remarks in Section 6.

Notation:We denote scalars, vectors and matrices using, respectively standard, bold,
and upper-case bold typeface (e.g., scalar a, vector a and matrix A). We use vk to denote
a vector from a sequence v1,v2, . . . ,vN , and vk to denote the k-th coefficient of vector
v. We let [ak]k (respectively, [ak]k) denotes concatenation of the vectors ak (scalars ak)
to form a single column vector. Finally, we use ∂y

∂x to denote the Jacobian matrix with
(i, j)-th entry ∂yi

∂x j
.
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2 Image Encoding Methods

Image encoders operate on the local descriptors x ∈ Rd extracted from each image.
Hence in this work we represent images as a set I = {xi ∈Rd}i of local SIFT descriptors
extracted densely [1] or with the Hessian affine region detector [3].

One of the earliest image encoding methods proposed was the bag-of-features en-
coder (BOF) [4]. The BOF encoder is based on a codebook {ck ∈Rd}L

k=1 obtained by
applying K-means to all the local descriptors T =

⋃
t It of a set of training images. Let-

ting Ck denote the Voronoi cell {x|x∈Rd ,k = argmin j |x−c j|} associated to codeword
ck, the resulting feature vector for image I is

rB = [#(Ck ∩ I )]k , (1)

where # yields the number of elements in the set. The Fisher encoder [5] instead relies
on a GMM model also trained on

⋃
t It . Letting βi,ci, Σi denote, respectively, the i-th

GMM component’s i) prior weight, ii) mean vector, and iii) covariance matrix (assumed
diagonal), the first-order Fisher feature vector is

rF =

[
∑
x∈I

p(k|x)√
βi

Σ−1
k (x− ck)

]
k

. (2)

A hybrid combination between BOF and Fisher techniques called VLAD has been
proposed [13] that offers a good compromise between the Fisher encoders’s perfor-
mance and the BOF encoder’s processing complexity: Similarly to the state-of-the art
Fisher aggregator, it encodes residuals x− ck, but it hard-assigns each local descriptor
to a single cell Ck instead of using a costly soft-max assignment as in (2). In a later
work, [6] further proposed incorporating several conditioning steps that improved the
performance of the feature encoder. The resulting complete encoding process begins by
first aggregating, on a per-cell basis, the l2 normalized difference of each local descrip-
tor relative the cell’s codeword, subsequently rotating the resulting descriptor using the
matrix Φk (obtained by PCA on the training descriptors Ck ∩T ):

rV
k =Φk ∑

x∈I∩Ck

x− ck

|x− ck|
∈Rd , (3)

(4)

The L sub-vectors thus obtained are then stacked to form a large vector v that is then
power-normalized and l2 normalized:

v = [rV
k ]k ∈RdL, (5)

p = [hα j(v j)] j, (6)

n = g(p). (7)

The power normalization function hα(x) and the l2 normalization function n(v) are

hα(x) = sign(x)|x|α, (8)

g(x) =
x
|x|2

. (9)
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Fig. 1. Plot of hα(x) for various values of α.

The power normalization function (8) is widely used as a post-processing stage for im-
age features [14, 6, 1, 15]. This post-processing stage is meant to mitigate (respectively,
enhance) the contribution of the larger (smaller) coefficients in the vector (cf., Fig. 1).
Combining power normalization with the PCA rotation matrices Φk was shown in [6]
to yield very good results. In all the approaches using power normalization, the α j are
kept constant for all entries in the vector, α j = α,∀ j. This restriction comes from the
fact that α is chosen empricially (often to α = 0.5 or α = 0.2), and choosing different
values for each α j is difficult. In section 3 we remove this difficulty by applying our
proposed feature learning method to the optimization of the α j.

3 Feature learning for image retrieval

Feature learning has been pursued in the context of image classification [7] or for learn-
ing local descriptors akin to parametric variants of the SIFT descriptor [11, 12]. Learn-
ing features specifically for the image retrieval task, however, has not been pursued
previously. In this section we propose an approach to do so, and apply it to the opti-
mization of the parameters of the VLAD feature encoding method described in Section
2.

The main difficulty in learning for the image retrieval task lies in the non-smoothness
and non-differentiablity of the standard performance measures used in this context.
These measures are all based on recall and precision computed over a ground-truth
dataset containing known groups of matching images [16, ?]: A given query image is
used to obtain a ranking (ik ∈ {1, . . . ,N})k of the N images in the dataset (for example,
by an ascending sort of their feature distances relative to the query feature). Given the
ground-truth matches M = {ik j} j for the query, the recall and precision at rank k are
computed using the first k ranked images Fk = {i1, . . . , ik} as follows (where # denotes
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set cardinality):

r(k) =
#(Fk ∩M )

#M
, (10)

p(k) =
#(Fk ∩M )

k
. (11)

The average precision is then the area under the curve obtained by plotting p(k) versus
r(k) for a single query image. A common performance measure is the mean, over all
images in the dataset, of the average precision. This mean Average Precision (mAP)
measure, and all measures based on recall and precision, are non-differentiable, and it
is hence difficult to use them in an optimization framework, motivating the need for an
adequate surrogate objective.

3.1 Proposed objective

We assume that we are given a set of N training images and that for each image i, we
are also given labels Mi ⊂ {1, . . . ,N} of images that are a match to image i and labels
Ni ⊂ {1, . . . ,N} of images that do not match image i. We assume that some feature
encoding scheme has been chosen that is parametrized by a vector θ and that produces
feature vectors ni(θ). Our aim is to define a procedure to select good values for the
parameters θ by minimizing the following objective:

f (θ) =
1
M ∑

i, j∈Mi,k∈Ni

φ(ni(θ),n j(θ),nk(θ)), (12)

where M is the total number of terms in the triple summation and

φ(η,a,b) = max(0,ε− (ηT(a−b))). (13)

The parameter ε enforces some small, non-zero margin that can be held constant (e.g., ε=
1e−2) or increased gradually during the optimization (e.g., between 0 and 1e−1).

An objective based on image triplets similarly to (12) has been previously used in
metric learning [17], where the aim is commonly to learn a matrix W used to compute
distances between two given feature vectors ni and n j using (ni−n j)

TW(ni−n j). Our
aim is instead to learn the parameters θ that define the encoding process. In this work
in particular we learn the power normalization parameters α j in (6).

3.2 Optimization strategy

Stochastic Gradient Descent (SGD) is a well-established, robust optimization method
offering advantages when computational time or memory space is the bottleneck [18],
and this is the approach we take to optimize (12). Given the parameter estimate θt at
iteration t, SGD substitutes the gradient for the objective

∂ f
∂θ

∣∣∣∣
θt

=
1
M ∑

i, j∈Mi,k∈Ni

∂φ(ni,n j,nk)

∂θ

∣∣∣∣
θt

(14)
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by an estimate from a single (i, j,k)-triplet drawn at random at time t,

∇φit jt kt (θt),
∂φ(nit ,n jt ,nkt )

∂θ

∣∣∣∣
θt

. (15)

The resulting SGD update rule is

θt+1 = θt − γt ·∇φit jt kt (θt) (16)

where γt is a learning rate that can be made to decay with t, e.g., γt = γ/t, and the
parameter γ can be set by cross-validation. SGD is guaranteed to converge to a local
minimum under mild decay conditions on γt [18].

When the power normalization and l2 normalization post-processing stages in (6)
and (7) are used, the gradient (15) required in (16) can be computed using the chain rule
as follows, where we use the notation ∂n

∂pi
= ∂n

∂p

∣∣∣
pi

:

∇φi, j,k(θ),
∂φ

∂η

∣∣∣∣
ni

· ∂n
∂pi
· ∂p(Ii)

∂θ

+
∂φ

∂a

∣∣∣∣
n j

· ∂n
∂p j
·

∂p(I j)

∂θ
(17)

+
∂φ

∂b

∣∣∣∣
nk

· ∂n
∂pk
· ∂p(Ik)

∂θ
.

The partial Jacobians in the above expression are given below, where we use sub-
gradients for those expressions relying on the non-differentiable hinge loss:

∂φ

∂η
=

{
0, if (ηT(a−b))≥ ε

(b−a)T, otherwise
, (18)

∂φ

∂b
=−∂φ

∂a
=

{
0, if (ηT(a−b))≥ ε

ηT, otherwise
, (19)

∂n
∂p

= |p|−1
2

(
I−nnT) . (20)

The above expressions are generic and can be used for any parameter θ of the feature
encoder that one wishes to specialize. In this work we learn the power normalization
coefficients α j in (6) and hence θ =α, and the required Jacobian is

∂p
∂α

= diag([log(|vi|).|vi|αi ]i) . (21)

4 Local-descriptor pruning

In this section we propose a local-descriptor pruning method applicable to feature en-
coding methods like BOF, VLAD and Fisher that are based on stacking sub-vectors rk,
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where each sub-vector is computed from the local descriptors assigned to a cell Ck. The
proposed approach shares some similaritites with [19, 20].

Unlike the case for low-dimensional sub-spaces, the cells Ck in high-dimensional
local-descriptors spaces are almost always unbounded, meaning that they have infinite
volume.1 Yet only a part of this volume is informative visually. This suggests removing
those descriptors that are too far away from the cell center ck when constructing the
sub-vectors rk in (1), (2) and (3). This can be done by restricting the summations in (1),
(2) and (3) only to those vectors x that i) are in the cell Ck and ii) satisfy the following
distance-to-ck condition:

(x− ck)
TM−1

k (x− ck)≤ γσ
2
k . (22)

Here γ is determined experimentally by cross-validation and the parameter σk is the
empirical variance of the distance in (22) computed over those descriptors from the
training set that are in the cell. The matrix Mk can be either

anisotropic: the empirical covariance matrix computed from T ∩Ck;
axes-aligned: the same as the anisotropic Mk, but with all elements outside the diago-

nal set to zero;
isotropic: a diagonal matrix σ2

kI with σ2
k equal to the mean diagonal value of the axes-

aligned Mk.

While the anisotropic variant offers the most geometrical modelling flexibility, it also
drastically increases the computational cost. The isotropic variant, on the other hand,
enjoys practically null computational overhead, but also the least modelling flexibility.
The axes-aligned variant offers a compromise between the two approaches.

4.1 Soft-weight extension

The prunning carried out by (22) can be implemented by means of 1/0 weights

wk(x) = J(x− ck)
TM−1

k (x− ck)≤ γσ
2
kK (23)

applied to the summation terms in (1), (2) and (3). For example, for (3) the weights
would be used as follows:

rV
k =ΦT

k ∑
x∈I∩Ck

wk(x)
x− ck

|x− ck|
∈Rd . (24)

A simple extension of the hard-pruning approach corresponding to (23) consists of
instead using exponential weights

wk(x) = exp
(
− ω

σ2
k
(x− ck)

TM−1
k (x− ck)

)
, (25)

1 Although l2 normalization commonly applied to local descriptors limits the effective volume
of each cell, one should note that l2 normalization amounts to a reduction of dimensionality
by one dimension, and that l2-normalized data is still high-dimensional. Yet the question still
remains on whether pruning mechanisms other than those proposed herein exist that better
take into account the constraints on the data layout.
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Fig. 2. Percentage of pruned descriptors by anisotropic axes aligned pruning, isotropic pruning,
and anisotropic pruning. Holidays dataset with Hessian-Affine SIFT.

Fig. 3. Impact of Mahalanobis-metric based descriptor pruning on image retrieval performance
when using anisotropic axes-aligned pruning (blue), isotropic pruning (red), and anisotropic prun-
ing (green). Holidays dataset with Hessian-Affine SIFT.

where the parameter ω is set experimentally, or inverse weights

wk(x) =
σ2

k

(x− ck)TM−1
k (x− ck)

. (26)

5 Results

Setup: We use SIFT descriptors extracted from local regions computed with the Hessian-
affine detector [3] or from a dense-grid using three block sizes (16, 24, 32) with a step
size of 3 pixels [1]. When using the Hessian affine detector, we use the RootSIFT variant
following [14]. As a training set, we use the Flickr60K dataset [16] composed of 60,000
images extracted randomly from Flickr. This data set is used to learn the codebook,
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Fig. 4. Convergence plot for the α j learning procedure.

rotation matrices, per-cluster pruning thresholds and covariance matrices for the com-
putation of the Mahalanobis metrics used for pruning of local descriptors. For testing,
we use the INRIA Holidays dataset [16] which contains 1491 high resolution personal
photos of 500 locations or objects, where common locations/objects define matching
images. The search quality in all the experiments is measured using mAP (mean aver-
age precision) using the code provided by the authors [16]. All the experiments have
been carried out using the VLAD image encoder and a codebook of size 64 following
[6].

Evaluation of pruning methods: In Table 1, we evaluate the pruning approaches dis-
cussed in Section 4. Each variant is specified by a choice of weight type (hard, expo-
nential or inverse), metric type (isotropic, anisotropic or axes-aligned), and local fea-
ture (dense or Hessian affine). The best result overall is obtained using axes-aligned
exponential weighting (74.28% and 67.02% for dense and Hessian affine detections,
respectively). The choice of the weighting parameter for exponential pruning is empiri-
cally set to ω = 1.55. For completeness, we provide plots, for the case of hard-pruning,
depicting the percentage of local descriptors removed (Fig. 2) and the resulting mAP
score (Fig. 3) as a function of

√
γσk. The values plotted in Fig. 2 are averaged over all

cells Ck.

Evaluation of α learning: In Fig. 4, we provide a plot of the cost in (12) as a function of
the number of SGD iterations (16) using a dataset of M = 8,000 image triplets. The cost
drops from 0.0401 to less than 0.0385. The resulting mAP is given in Table 2, where
we present results both for the case where α is learned with and without exponential
weighting of the local descriptors. The combined effect of exponential weighting and α

learning is a gain of 1.86 mAP points.
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Descriptors mAP (%)
baseline Weights Iso Aniso Ax-align

Hessian Affine 65.60 hard 66.29 66.29 66.40
inverse 66.40 66.39 66.55

exponential 66.45 66.40 67.02
Dense 72.71 hard 73.34 73.37 73.56

inverse 73.45 73.45 73.60
exponential 73.69 73.61 74.28

Table 1. Summary of feature pruning results for all combinations of detectors-dense or Hessian-
affine, metrics - isotropic (Iso), anisotropic (Aniso), and axes-alinged (Ax-align) and weighting
schemes - hard, exponential and inverse. Underlines indicate best-in-row and bold best overall.
The baseline results are for the system in [6].

Baseline Exp. weighting only Learned α j only Exp. weighting and learn α j
72.71 74.28 74.30 74.57

Table 2. Summary of best results (with dense detection) when using (i) only exponential weight-
ing, (ii) learned α j parameters without exponential weighting, and (iii) combined exponential
weighting and learning of the α j paraemters. The baseline results are for the system in [6].

In Fig. 5 and Fig. 5 we provide two examples of top-ten ranked results for two
different query images using our proposed modifications. We also provide examples of
query images that resulted in improved (Fig. 5) and worsened (Fig. 5) ranking.

6 Conclusions

In this paper we proposed learning the power normalization parameters commonly ap-
plied to image feature encoders using an image-triplet-based objective that penalizes
erroneous ranking in the image retrieval task. The proposed feature learning approach
is applicable to other parameters of the feature encoder. We also propose, for the case of
codebook-based feature encoders, weighting local descriptors based on their distance
from the assigned codeword. We evaluate both methods experimentally and show that
they provide improved results on a standard dataset.
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Fig. 8. Query images that result in degraded ranking when using α j learning with exponential
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