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Abstract. A conceptually very simple unsupervised algorithm for learn-
ing structure in the form of a hierarchical probabilistic model is described
in this paper. The proposed probabilistic model can easily work with any
type of image primitives such as edge segments, non-max-suppressed fil-
ter set responses, texels, distinct image regions, SIFT features, etc., and
is even capable of modelling non-rigid and/or visually variable objects.
The model has recursive form and consists of sets of simple and gradually
growing sub-models that are shared and learned individually in layers.
The proposed probabilistic framework enables to exactly compute the
probability of presence of a certain model, regardless on which layer it
actually is. All these learned models constitute a rich set of independent
structure elements of variable complexity that can be used as features in
various recognition tasks.

1 Introduction

Unsupervised learning of object appearance has been a challenging task since the
very beginning of computer vision. There are many approaches to this problem,
but considering a huge number of visual categories, low computational require-
ments, easy extension-ability requirements, the most promising object repre-
sentations seem to be hierarchic/compositional ones [1, 2]. Focusing on these,
there are various hierarchically organized models proposed, taking inspiration
from different fields of science. There are nature inspired designs [3, 4], there are
models using grammars [5–7], there are very successful approaches using neural
networks [8, 9]. Learning strategies of such structures are similarly diverse, rang-
ing from semi-automatic methods when the structure is given by human and
only its parameters are learned [5] over sophisticated supervised/unsupervised
methods of deep learning [10, 9, 8].

The core question this work shall answer is that of whether it is possible to
learn both structure and parameters of a generative compositional probabilis-
tic model using a very simple algorithm based on the Expectation-Maximization
principle, that means by random initialization and iterative updating. Noticeable
difference from the deep learning is that unlike learning deep belief [10] or convo-
lutional neural network [8] this method gives an explicit structure model similar
to image grammars and requires less hyper-parameter/design choices – there is
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actually just one hyper-parameter that needs to be set and that is the maximal
allowed portion of non-modelled data. Furthermore, its individual learned com-
positions can be used as features in more sophisticated classification framework
such as SVM or AdaBoost. Similar approach [11] has been recently shown to be
very efficient in domain transfer task1. This indicates that structural approach
has very good generalization capabilities.

2 Concepts

Given a dataset which consists of a set of detected features (denoted D further
on) per image, the task is to construct a set of generative probabilistic models
that would be able to generate the dataset. This construction is designed to
work in an unsupervised manner. Following the idea of Occam’s razor or its
modern version represented by the MDL approach [12], the set of models is
to be as simple as possible. Significant reduction of the model complexity can
be achieved by sharing of model parts. This has also other practical side-effect
benefits such as computation cost reduction, smaller memory consumption, etc.
A natural form of model that allows for immediate and efficient sub-parts sharing
is a hierarchical model where the root node (in this paper the root is always at
the top) generates a number of children nodes, these children again generate
sets of its children and this scheme is repeated until the last (lowest) layer is
reached, the lower a node is the smaller its working radius is. The advantage of
this form of the model organization also is the fact that it can very naturally
model non-rigid data. For example, if the modelled object is a human body, the
model can consist of rigid sub-models of individual limbs (more precisely their
rigid pieces) on a certain layer and then on higher layers define their spatial
relations including the rotations.

In the case that the learning shall proceed without supervision, it is rea-
sonable to start from the most local properties and have the complexity grown
while proceeding to higher layers. At each layer a set of compositions capable of
generating the given data is acquired using random sampling and Expectation-
Maximization parameter learning. The word composition is used to represent
a single shareable model (actually on an arbitrary layer) which defines spatial
relations between composition’s root node and its children nodes.

2.1 Probabilistic framework

The form of the probabilistic model, which would be a member of the set of
models representing the data, is shown in the Figure 1. In the illustration, there
are actually two compositions explicitly shown, however, the nodes b12, b13 are
similar compositions. The model itself is a directed acyclic graph (DAG), the
compositions on lower layers might have multiple parents though – in a sense
that a composition can be shared by more than one higher layer models. Be-
cause the model structure is recursive, it is sufficient to describe only a single

1 Training and classification of same object classes in different datasets
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composition in detail. The following description refers to the model comp.I. in
the Figure 1. It can be interpreted this way2: the node b with probability mi gen-
erates composition at a random position ci. There can be an arbitrary number
of such structural components, but the reasonable number is ca 2–8 [13].

Mathematically, the node mi has two discrete states

P (mi|b) =

{
pi if mi = 1

1− pi if mi = 0
, (1)

where state m1 = 1 means that i-th component is generated, the state m1 = 0
means that nothing is generated in that branch. The probability model for the
position of the generated underlying child composition is normal distribution

P (ci|mi = 1) = N (µi, Σi), (2)

in the case that nothing is generated, the model branch is terminated with
constant probability

P ({}|mi = 0) = 1. (3)

Except these so called structural components, each node is also equipped
with ability of generating random patterns. This mechanism is incorporated in
the right-most branch with the node e and double-bordered node ce. The node
e is again discreet-state node and its state can be any natural number k mean-
ing that the model generates k independent random patterns – either arbitrary
composition from lower layer or so called non-structural random pattern which
basically means that it is a bunch of data that can not be explicitly modelled
using the structural model. The probability model of k is a standard Poisson
distribution

P (e|b) =
λk

k!
e−λ. (4)

The reason for the double border of the node ce is that it denotes that there can
actually be a number of such nodes, depending on the state k. However, each
such node is of the same form, there is a distribution for its position

P (ce|e) = N (µe, Σe) (5)

and also the distribution over compositions that can be generated plus the non-
structural random pattern ε is

P (ct|ce) = pt,

|c|∑
i=1

pi + pε = 1 (6)

Due to the fact that this internal state ct is always marginalized, it is not drawn
in the picture explicitly.

2 For the sake of clarity, the unnecessary indices are ommited.
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Fig. 1. The structure of the probabilistic model of a composition. The rectangular
nodes denoted with letter D are individual input data, the round nodes (a, b, c, m, e)
are internal nodes. Nodes b (c) model spatial relations of children and parent, m model
the decision if the child is present. Nodes e are discrete-state and model the number of
random structure fragments, nodes be and ce model the location of each such fragment.
Obviously, being dependent on the actual state of parent e node (non-negative number
k), there are k such nodes, which is graphically denoted by double border. Similarly,
the double border of the D nodes indicates that the nodes are actually disjoint sets of
input data and for whole data holds D = D11 ∪ D12 ∪ D13 ∪ DE ∪ DC1 ∪ DC2 ∪ DC3 .
Dashed rectangles delimit exemplar individual compositions.

The marginalized probability for non-structural random pattern data gener-
ated by node b can be written as

P (DE |b) =

∞∑
k=1

λk

k!
e−λ

k∏
i=1

∫
cek

P (cek |e)
∑
t∈T

P (DEi |ct)P (ct|cek)dcek . (7)

The marginalized probability of all data Db generated by node b then is

P (Db|b) =

(
3∏
i=1

∫
ci

P (Di|ci)P (ci|mi)P (mi = 1|b)dci + P (mi = 0|b)

)
P (DE |b).

(8)
When evaluating higher layer composition, the formula is recurrent and struc-
turally just the same, so it can be computed easily using the Message Passing
algorithm [14].
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2.2 Inference

As the probabilistic model models the simplest and smallest parts of the data at
the lowest layer, it is reasonable to start inference from bottom and proceed up
– if no bottom compositions are found then there is no reason for continuing in
searching for more complex objects, since these are build of those simple ones.
Due to the recursive character of the probabilistic model, the mechanism is just
the same on each layer and therefore it is sufficient to describe only the transition
from the layer n− 1 to the layer n.

Suppose that the given data is organized into non-overlapping groups A =
{A1, . . . , An} and each group contains some instances:

D′ = DA1
∪ DA2

∪ · · · ∪ DAn
=

=
{

1d1
1,1 d1

2,1 d2
1, . . . ,1 dε

}
∪
{

2d1
1,2 d1

2,2 dε
}
∪ . . .

{
3d2

1,3 d2
2,3 d2

3, . . . ,3 dε
} (9)

– the set of instances from the layer n − 1, each of the known probability
P (Di|idck), where i is the data group index, c indicates which composition the
instance is of and index k is the number of variant (there can be more than one
instance of a composition) – and the set of compositions C =

{
c1, c2, . . . , cn, cε

}
,

the task of inference algorithm is to find a set of instances I =
{

c1
1, c

1
2, c

2
1, . . . , c

ε
}

of compositions that model the data with reasonably high probability P (D′|cck).
Such scenario is advantageous from at least two viewpoints: i) if the composi-
tion instance cck use any instance from each group of data, it is assured that
the instance cck models all assigned data, ii) as the data groups are mutually
share-free, by choosing precisely one instance from each group, the algorithm
can not produce cyclic structure.

Due to the limited maximal complexity of compositions at each layer and the
limited receptive field, it is feasible to find the globally best instances by brute-
force enumeration of all consistent proposals in each grouping. After inferring
instances of the layer n, the grouping of the layer n− 1 becomes obsolete.

This grouping approach does have a disadvantage, though. It is apparent that
the grouping can not be optimal with respect to all candidate compositions and
consequently the approach produces sub-optimal instance when the grouping is
not in favour3 of that particular composition. However, this problem can be over-
come by involving a second mechanism – top-down optimization of instances of
low probabilities caused by missing or dislocated components similar to [15, 16].
This top-down mechanism can either search for more suitable already existing
instances or can come up with completely new instances. It is also capable of
changing the layer n grouping when it is beneficial.

2.3 Learning

Besides the probability model already introduced, the core of this work is the
learning method. First, it is necessary to return to the grouping mentioned in
previous section, these groups are referred as area from now on. To give more

3 The grouping is actually generated randomly.
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1) get layer 1 instances from an image for i← 1 to N do
2) find random grouping of instances of previous layer;
3) infer instances of current layer (bottom-up process);
4) merge the partitioning in previous layer;
5) improve the instances - find missing parts (top-down process);

end
Algorithm 1: The sketch of the inference algorithm.

precise description, an area is an artificial container which temporarily owns a
subset of instances of compositions from the lower layer (see Eq. 9). As a conse-
quence, an area always represents a well-defined subset of data, see the Figure 2
for an illustrative example. All inferred instances (the set I) in the area has to
have assigned all the content of the area – either as a part of the structural model
or as a part of non-structural random pattern. This makes the inferred instances
comparable and allows for computing the posterior probabilities of individual
instances given the area content using the Bayes formula

P (cck|D′) =
P (D′|cck)P (cc)∑
c,k P (D′|cck)P (cc)

. (10)

The learning itself is iterative and uses these probabilities P (cck|D′) as weights
for computing updated values of model parameters. First, the data is randomly
partitioned into areas of pre-set size. Then a composition is randomly created by
sampling from one of the areas. The inference algorithm over the whole data (all
areas) is run as to get all instances of the composition. These instances are then
used for update of the composition parameters in a Maximum-likelihood (further
referred as ML) manner. The model branches are conditionally independent and
therefore can be optimized separately. It can be shown that for example a ML
estimate of any of composition’s component position is

µcomp =

∑
A,k µkP (bck|DA)∑
A,k P (bck|DA)

, (11)

where A is the set of all areas and k is the index of the set of instances of the
composition c, and analogically for the other parameters. Only the parameter
λ is learned differently. The ML estimate for this parameter of the Poisson
distribution is the mean of the modelled values. In this case, it is the mean value
of the number of lower layer areas contained in the current areas. This value is
used directly as λε, for each composition is the parameter lambda different and
it is set as

λc = max(λmin, λε −N), (12)

where N is the number of components in the composition. This reflects the intent
that each composition generates on average a similar amount of data.

Besides the ML updating the parameters of the already assigned compo-
sition components, also the positions and types of neighbouring non-explained
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Fig. 2. An illustration of groups and their life cycle. The (a) shows the situation before
inference of new instances on the layer n, the (b) shows the same situation after infer-
ence. Noticeable changes are: i) two new instances, 1c21,1c71, were created, each of them
is built of different lower layer instances (1d3

1,2d7
1) vs. (1d1

2,2d5
1), ii) partitioning on the

layer n− 1 became ineffective and iii) both new layer n instances model all underlying
data.

instances are tracked. When a significant cluster is discovered, it can be added to
composition as a new component. Analogously, if any of the components prove
to be useless, it can be removed. These mechanisms enable composition to travel
within the configuration space towards at least locally most stable and frequent
form.

In the second and further iterations, the compositions are updated and one
new random composition is always added, unless the fraction of non-modelled
data drops below a given treshold. After this event has happened, the algorithm
keeps running for a predefined number of iteratiors and in each iteration one
new spare composition is sampled and if turns out to be more useful, it replaces
the least useful composition from the final set. The estimated prior probability
of a composition is taken as the usefulness measure. This can be viewed as a
simple restarting scheme in order not to end up in the first local extrema. When
the learning of one layer finishes, the final set of compositions Cfinal is selected
as the N highest probability models following the condition

∑
c∈Cfinal

pc ≥ T (13)

and the learning proceeds to higher layer and ends when no new layer can be
built. This happens when there is a single area in each piece of dataset (i.e. in
an image), because nothing can be learned from such data.

When sampling an area to be taken as an initial composition, the candidates
are weighted according to the probability P (be|DA) – that is by the probability
that the area is not well modelled by any composition. By this, the algorithm
softly focuses on yet not-modelled data.
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3 Experiments

3.1 Learning the alphabet

(a)
(b)

(c)

Fig. 3. The complete library of compositions that has been learned on the alphabet
letters data. The library consists of three compositional layers in this case. The (a)
shows the first compositional layer, the (b) middle layer and the (c) shows the top
layer. All layers are plotted in the same scale, the apparent growing fuzziness is due to
the increasing uncertainty of positions of components.

The functionality of the learning algorithm was studied on a simple yet inter-
esting dataset of rendered letters. This dataset consisted of 26 black and white
images of small alphabet letters, where each letter was present exactly once. The
noticeable fact is, that some letters differ from each other by just a tiny part
and while a human eye is very sensitive to these small differences, the proposed
method does not have any information on the meaning or importance of indi-
vidual parts of the content of images and works completely unsupervised. This
observation indicates that alphabet letters exhibit a high degree of sharing of
shape segments - there are actually only straight vertical, horizontal or slanted
lines and arcs, so the learned library of composition shall be rather small. But
it can not be too small, because if there is a strong stress on obtaining an as
compact representation as possible, there is also an imminent danger of losing
discriminative accuracy. Naturally, the smaller the library is the less discrimina-
tive the learned model is – meaning that the model is definitely not capable of
telling some letters apart. If this is to happen on the alphabet dataset, the most
expected candidates are the letters ’l’, ’i’ and possibly ’j’. Practical challenging
aspect was the fact that statistical approaches like random partitioning might
not work with so small number of images.

The data entering into the learning are not preprocessed in any way, ex-
cept for finding the edges and their orientations and random selection of edgels
reasonably distant from each other. The edgels orientations are discretized into



A Simple Stochastic Algorithm for Structural Features Learning 9

8 categories representing orientations of 0, 45, 90, 135, 180, 225, 270 and 315
degrees.

The output of the learning is shown in the Figure 3, learned compositions
are shown in groups per layers. As can be seen, all letters do have a model and
the result also follows the expectation that there might be some letters sharing
one model. It happened for the letters ’i’, ’j’ and ’l’ which are all represented
as a vertical line segment. The Figure 4 shows an example of how the data is
decomposed and hierarchically organized.
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Fig. 4. A detailed view of one branch of the learned structure for the letter ’w’, the
ellipses show the covariance matrix encoding the position uncertainty of individual
components, the gray-level of the ellipses depicts the probability that the corresponding
component is present/generated.

3.2 Learning cat faces

Second experiment had a different scenario, it was done on a single category set
of real images of cat faces from the LHI-Animal-Faces dataset [17]. The subset
of cat faces consisted of 89 images roughly on a same scale.A small selection of
images from this set is shown in the Figure 5(a).The images were preprocessed
before entering the learning algorithm in order to extract oriented edge segments.
This was done by convolving the image with a four-item set of Gabor filters and
taking edges above a threshold of (T = 0.25 · maxx,y I(x, y) – individual for
each image). Also nonmax-suppression was applied to sparsify the data. The
final edge maps for a few images is shown in the Figure 5(b). A dense edge
segment set was acquired of this data and was used for learning. In fact, any
other suitable edge/texture kernel or image descriptor could be used instead of
the edge segments.

The learning algorithm succeeded and found a three-layered set of composi-
tions capable of modelling a cat face which can be seen in the Figure 6 showing a
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(a)

(b)

Fig. 5. An illustrative selection of the input data for the second experiment. In the (a)
there are original pictures shown, what the learning algorithm really sees is shown in
the (b).

few selected learned compositions. Looking at the over-all statistics of the second
layer, there are 52 models of which about a 1/3 are models for ears, there is also
a model for pair of eyes and some face fractions. On the top layer, there are 26
models of which about eight represent full faces, there are some non-complete
faces and there are also a few models covering the ’random’ fur texture patterns.
This results indicate that the proposed probabilistic model would benefit from
higher expresivity in a sense of allowing multiple mutually exclusive components
in the individual branches – an analogy to the OR nodes in [5] – that would
merge some compositions together yielding a more compact model, but at the
risk of losing discriminability. This can be achieved by rather simple modifica-
tion of the m node of the model, see Figure 1, more specifically, by changing it
from two-state to multiple-state with appropriate probabilities.

4 Summary

In this paper, a very simple stochastic algorithm for unsupervised joint learning
of structure and parameters is described. The probabilistic model is generative
and its structure is compositional. The learning of the model is done gradually
per individual layers of compositions exploiting the maximum-likelihood princi-
ple and expectation-maximization. The produced learned compositions can be
seen as structure elements and can be used as features in various computer vision
tasks.

The functionality is demonstrated on two experiments. The first was learning
a compositional representation of alphabet letters – a compact representative of a
dataset which exhibit both compositionality and presence of multiple categories.
The algorithm succeeded in both aspects. The second experiment was on a single
category dataset of cat faces with significant within-category visual diversity.
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(a)

(b)

Fig. 6. Some of the learned cat faces are shown in the (a). In the (b), there is a selection
of lower layer compositions plotted. The first three models from the left are the building
blocks of the left-most head in the (a).
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