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Abstract. We introduce a simple and effective point descriptor, called
3D Laplacian Pyramid Signature (3DLPS), by extending and adapting
the Laplacian Pyramid defined in 2D images to 3D shapes. The sig-
nature is represented as a high-dimensional feature vector recording the
magnitudes of mean curvatures, which are captured through sequentially
applying Laplacian of Gaussian (LOG) operators on each vertex of 3D
shapes. We show that 3DLPS organizes the intrinsic geometry informa-
tion concisely, while possessing high sensitivity and specificity. Compared
with existing point signatures, 3DLPS is robust and easy to compute, yet
captures enough information embedded in the shape. We describe how
3DLPS may potentially benefit the applications involved in shape analy-
sis, and especially demonstrate how to incorporate it in point correspon-
dence detection, best view selection and automatic mesh segmentation.
Experiments across a collection of shapes have verified its effectiveness.

1 Introduction

Signatures play an important role in shape analysis. On one hand, they are
concise presentations of the model and are easily commeasurable; on the other
hand, a good signature preserves much geometric information of the shape.

Current signatures defined on 3D shapes can be classified into shape signature
(also referred to as shape descriptor) and point signature. Shape signatures are
usually defined on a whole 3D model or a partial model, while point signatures
are defined on each vertex of the mesh and capture the local or global shape
characteristics from the perspective of that vertex. Since point signatures possess
more local information, and sometimes can be easily converted to shape signature
by calculating their statistic distributions [1], they have wider applications than
shape signatures, such as point clouds registration, mesh saliency detection and
mesh segmentation.

Early work on designing point signatures mainly focused on characterising
the spatial geometric information of a shape [2–5]. While performing well in cap-
turing the spacial geometrical attributes of models ranging from local to global,
they are incompetent to describe the intrinsic frequency domain information
embedded in a 3D model, which is sometimes essential for model analysis and
understanding. Recently, some new point signatures have been proposed to re-
flect the frequency domain information [6–9]. However, they usually suffer from
heavy calculations (see the related work in Sec. 2 for detail).
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Inspired by the successful applications of Laplacian Pyramid operator applied
in image processing [10], we introduce a simple yet effective point descriptor: 3D
Laplacian Pyramid Signature (3DLPS), based on the evaluation of Laplacian
Pyramid after applying a series of Laplacian of Gaussian (LOG) operators at
each vertex on a 3D model. Every vertex on the meshed surface is then charac-
terized with a high-dimensional feature vector that measures the magnitudes of
mean curvatures, which are captured from these sequentially applied LOG oper-
ators. We show that 3DLPS has the following desirable properties: 1) it organizes
the intrinsic frequency information of a shape in an efficient, multi-scale way;
2) it shows high sensitivity and specificity; and 3) it is insensitive to articulated
objects. Due to these nice properties, 3DLPS has the potential to benefit many
applications involved in shape analysis, including point correspondence detec-
tion, best view selection and automatic mesh segmentation. We have illustrated
these across a collection of shapes. In summary, our main contributions are:

– The 3D Laplacian Pyramid Signature is introduced to characterize the geo-
metric information embedded in the shape in a concise way.

– The desirable properties of 3DLPS are explained, which ensure the effective-
ness of potential applications in shape analysis.

– The applications of point correspondence detection, best view selection and
automatic mesh segmentation based on 3DLPS are evaluated.

2 Related Work

Signatures have been extensively studied across areas as diverse as computer
vision, structure biology and others. In this paper, we mainly review the related
works that are designed as point signatures in the context of shape analysis.
Furthermore, as is related to 3DLPS, we also briefly review the applications of
the Laplacian operator and pyramid defined on 2D images and 3D shapes.

Point signatures on 3D shapes Early work on designing point signatures
is based on spatial domain. To make signatures robust against rigid transforma-
tion, a common strategy is to summarize the shape distribution in neighborhoods
of a point [2]. For instance, the spin image method [3] constructs a 2D histogram
that encodes the density of oriented points, and the shape context [4,5,11] cap-
tures the distribution over distances and angles of all other points on the shape
according to the current point. While these signatures are widely used in spa-
cial domain, they do not catch the frequency domain information, which are
sometimes essential for shape analysis and understanding.

Recent efforts to track the problem of a robust shape signature are diffusion
based approaches [6, 7, 12, 13]. This process provides a natural notion of scale
to describe the shape around a point. Rustamov [6] proposed the global point
signature (GPS), which shows that the eigenfunctions of the Laplace-Beltrami
nicely characterize the geometric features for points. Sun et al. [7] defined the
heat kernel signature (HKS) by restricting the well-known heat kernel to the
temporal domain. Dey et al. [8] merged the concept of HKS with the persistent
homology, and designed a pose-oblivious algorithm for partial shape matching.
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Aubry et al. [9] proposed the Wave Kernel Signature (WKS), which represents
the average probability of measuring a quantum mechanical particle at a specific
location. All these methods somewhat catches the frequency domain information
through a multi-scale way. However, they suffer from a computational challenge
of estimating an eigen-decomposition of a huge Laplacian matrix. On the con-
trary, 3DLPS does not require the calculation of eigenvalues and eigenvectors,
and thus is more robust and easier to compute, while still capturing the frequency
domain information for shape analysis.

Another category of approaches for defining multi-scale point signatures is
to capture the features of points at shapes that are resulted from geometry
processing operations. For example, Li and Guskov [14] first obtained a series
of increasingly smoothed version of a given shape, and then constructed point
signatures for features found at each smoothed version of the shape. Manay et
al.’s integral invariant signature [15] also falls into this category. 3DLPS is some-
what similar to this class of signatures. However, we use the Laplacian Pyramid
operators, which concentrate more on the frequency geometric information.

Applications of Laplacian-beltrami and Pyramid The discrete versions
of Laplace and Laplace-Beltrami operators, both referred to as Laplacians, are
widely used in image processing [16] and geometry processing [17]. To mention a
few, Taubin [18] used the graph Laplacian for surface fairing; Ni et al. [19] used
different weight of Laplacians to control the number of critical points; Dong et
al. [20] described an approach to the quadrangulation of manifold meshes using
Laplacian eigenfunctions; Reuter et al. [21] investigated the discrete Laplace-
Beltrami operators for shape segmentation.

Pyramid is a type of multi-scale signal representation developed by the com-
puter vision and image processing communities, in which a signal or an image
is subject to repeated smoothing and subsampling [22]. Burt and Adelson [10]
applied the Laplacian operator and Gaussian filter in the smoothing step, and
presented the Laplacian Pyramid operator for compact image coding and edge
enhancement. Kobbelt et al. [23] and Guskov et al. [24] introduced the ideas of
pyramid to 3D shape processing for mesh modeling, smoothing and sampling.

Though both the Laplacian operator and the ideas of Pyramid have been suc-
cessfully applied in image and mesh processing, we found little work has been
addressed on deriving point signatures based on Laplacian Pyramid. Since Lapla-
cian Pyramid can be regarded as a spectral decomposition and compression of
3D shapes, it is promising to apply it for capturing the frequency domain infor-
mation embedded in the shape, which would provide an alternative perspective
for shape analysis. This is the main motivation of our work.

3 3D Laplacian Pyramid Signature

Similar to real-world digital images, 3D shapes are in general both scale-variant
and highly nonstationary in space. Inspired by the successful applications of
Laplacian Pyramid decomposition in images, we define the Laplacian Pyramid
operator on 3D surface shapes. Since the Laplacian operator filters the high



4 Kaimo Hu and Yi Fang

frequency information in frequency domain, and the Pyramid decomposition
tracks 3D shapes in different frequencies, 3DLPS is supposed to be capable
of capturing the intrinsic properties of a point on different frequencies with
respect to the shape. In this section, we first give the definition and construction
algorithm of 3DLPS, and then explain its desirable attributes for shape analysis.

3.1 Definition and Construction

Fig. 1. Pipeline of 3DLPS extraction. The color ramps in B) and C) indicate the mag-
nitudes of δ-coordinates od the models before and after the corresponding operations.

Laplacian Matrix on Mesh Let M = (V,E, F ) be a triangular mesh
with n vertices. For each vertex vi, the δ-coordinates is defined as the difference
between the absolute coordinates of vi and the weighted average of its immediate
neighbors in M [17],

δi = (δ
(x)
i , δ

(y)
i , δ

(z)
i ) = vi −

∑
j∈N(i) wijvj∑
j∈N(i) wij

, (1)

where N(i) = {j|(i, j) ∈ E}. to better approximate the mean-curvature nor-
mals using δ-coordinates, we employ the “cotangent weights” wij = (cotαij +
cotβij)/(2∗ |Ωi|) as proposed in [25], where |Ωi| is the size of the Voronoi cell of
vi, and αij , βij are the two angles opposite to edge (i, j). Finally, the normalized
Laplacian Matrix L is defined as

Lij =


1 if i = j
−wij/

∑
j∈N(i) wij if (i, j) ∈ E

0 otherwise
. (2)

Laplacian Pyramid on Vertices Similar to the Laplacian Pyramid de-
composition applied in images, we decompose the Cartesian coordinates on 3D
shapes into “highpass” bands and a “lowpass” band. This is achieved by iter-
atively applying the Laplacian Matrix on the Cartesian coordinates of M . Let
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A = D−L, where D is the unit diagonal matrix, then the decomposition of the
Cartesian coordinates on 3D shapes can be represented as

D ·C = A ·C + L ·C, (3)

where C is a n×3 matrix representing the Cartesian coordinates of the vertices.
Here A ·C is the “lowpass” band, and L ·C is the “highpass” band at the current
iteration. At each iteration, the “highpass” band L ·C is concatenated to form
the vertex coordinates differences, while the “lowpass” band A·C is passed down
as the input of the next iteration (as shown in Fig. 1).

Laplacian of Gaussian on 3D Surfaces Triangular meshes are discrete
approximations of continuous surfaces defined on R3. Hence, directly applying
the Laplacian Pyramid operator may cause high noise due to the mesh irregular-
ity. To reduce its sensibility to the discrete approximation as well as the noise,
we apply the Gaussian smoothing filter each time before performing Laplacian
operator. For Vertex vi, the Cartesian coordinate after Gaussian smoothing is

C(vi) =
∑

vj∈V,||vi−vj ||<3σ

1

2πσ2
exp(−||vi − vj ||

2

2σ2
), (4)

where σ is the standard deviation of Gaussian distribution, and ||vi − vj || rep-
resents the distance between vi and vj . We use the Euclidean distance in our
experiments because it gives better results than geodesic distance and is easy
to compute [26]. Note that if ||vi − vj || ≥ 3σ, the values become very small in
Gaussian distribution, we only consider a small neighborhood in which all the
vertices has Euclidean distances smaller than 3σ with vi.

Algorithm 1: Laplacian on 3D surface mesh

Input: m: the maximum iterations;
M : the input surface mesh.

Output: the concatenated “highpass” bands C .

Initialize C as a null matrix;
for i← 1 to m do

Apply Gaussian smoothing on M using Equ. 4;
Decompose the Cartesian coordinates C on M into “highpass” band L ·C
and “lowpass” band A ·C, as formulated in Equ. 3;
C ← [C , L ·C]; B Concatenate “highpass” band
M ← A ·C. B Update M as “lowpass” band

end

The Laplacian Pyramid operation is finally shown in Algorithm 1. Given a
3D mesh M , we repeatedly apply Gaussian smoothing and Laplacian decom-
position. After each decomposition, we concatenate the “highpass” band to the
output, and update the 3D surface mesh as the “lowpass” band. The final output
is the concatenation of v’s δ-coordinates after all iterations.
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Construction of 3D Point Signature The concatenation of δ-coordinates
itself is able to characterize the mean curvatures of vertices on the surfaces.
However, it contains redundant information. To make the 3DLPS efficient for
shape analysis, we covert the concatenation of δ-coordinates into a compact and
concise representation. Suppose the concatenation of differential vertex coordi-
nates C has the form C = {δ1, δ2, ...δm}, then we define the final 3DLPS as
S = {|δ1|, |δ2|, ...|δm|}, where |δ| is the length of the vector δ.

3.2 Attributes of 3D Laplacian Pyramid Signature

Inherited from the properties of Laplacian Pyramid operator defined on 2D im-
ages, 3DLPS exhibits some nice attributes that are desirable for 3D shape anal-
ysis. In the following, we will explain them in detail.

Intrinsic and multi-frequency. By intrinsic and multi-frequency, we mean
that 3DLPS captures the intrinsic information, and represents them in a multi-
frequency way.

Laplacian operator is a smoothing schema, where the high frequency infor-
mation tends to be smoothed out first, and the low frequency information will
be retained for longer time. It is well known from differential geometry that [17]

lim
|γ|→0

1

|γ|

∫
v∈γ

(vi − v)dl(v) = −H(vi)ni, (5)

where H(vi) is the mean curvature at vi and ni is the surface normal at vi.
Therefore, the magnitude approximates a quantity proportional to the local
mean curvature [18]. This means that at each iteration in Algorithm 1, the
“highpass” band L · C encapsulates the local mean curvature normal at each
vertex.

We apply the “cotangent weights” schema to approximate the mean-curvature
normal. These geometry-dependent weights lead to L·C with normal components
only, rather than encoding the tangential components, which may be non-zero on
planar 1-rings. This makes our 3DLPS approximately captures the δ−differences
along the normal component, and only captures the local frequency geometry
information rather than mesh regularities.

With the increase of iterations, the high frequencies will be smoothed out
sequentially, and the lower frequencies will be decomposed into L · C. There-
fore, our 3DLPS represents the decreasing frequency information of the vertex.
Fig. 2 illustrates the affections of Laplacian Pyramid operations on the homer
model. We see that at the beginning, the high frequency parts (nose, fingers and
mouth) are smoothed out. With the increase of iterations, the arms and legs
shrink tenderly. Since the belly is in low frequency, it changes placidly during
the Laplacian operations. Our 3DlPS captures all these information concisely.

Sensitivity and specificity. By sensitivity and specificity, we mean 3DLPS
shows high discrimination among different points, and share high similarity
among analogous points with respect to the frequencies embedded in the shape.

The sensitivity and specificity of the 3DLPS can be deduced from the at-
tributes of intrinsic and multi-frequency. Since 3DLPS captures the features at
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Fig. 2. Affections of Laplacian Pyramid operations on homer. A) The oiginal model;
B) magnitudes of the 1st δ-coordinates; C): magnitudes of the 15th δ-coordinates; D)
magnitudes of the 30th δ-coordinates.

different frequencies, if two points are embedded with different frequency infor-
mation (e.g. the points on nose and the points on belly in Fig. 2), their 3DLPSs
will be distinctive from each other. On the contrary, if two points are embedded
with similar frequency information (e.g. the points on the left leg and the corre-
sponding points on the right leg in Fig. 2), their 3DLPS will be similar. We can
intuitively verify that from the color ramp depicted in Fig. 2.

Fig. 3. 3DLPS of different points on the giraffe model.

Fig. 3 gives a more intuitive illustration. P1 lies on the ear, where there are
plenty of high frequency information, thus its 3DLPS has large values in high
frequency components. Since P2 lies on the flat areas, all the components in the
3DLPS are stationary and low; the 3DLPS of P3 are between those of P1 and
P2, since the legs of the giraffe have higher frequency than the belly.

Insensitive to articulated deformation. By insensitive to articulated
deformation, we mean that for two models, in which one is articulated deformed
from another, their 3DLPS signatures are differs only in the joint parts, but
remains similar in other regions.
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Fig. 4. 3DLPSs of P on different poses of similar men. Due to the different local
geometries, the first few components of the 3DLPSs are a little different.

Intuitively, the articulated deformation only changes the geometries near the
joint parts, so our 3DLPSs on the two models only differ from each other in these
joint parts. Though in theory, the 3DLPS of a point P is affected by its k-ring
neighbors, where k is the iteration times, in practice the far distance neighbors
affect little of the 3DLPSs in large scales. Fig. 4 shows the corresponding points
of similar men with different poses and their according 3DLPSs. Since P is far
away from joints, their 3DLPSs are pretty similar in high frequency components.

4 Applications

Since 3DLPS concisely captures the frequency information of points, it has the
potential to benefit applications involved in shape analysis from the perspective
of frequency domain. As a brief illustration, we will show how 3DLPS is success-
fully applied in point correspondence detection, best view selection and mesh
segmentation. Other applications may also potentially benefit from 3DLPS.

4.1 Point Correspondence Detection

The general solution of correspondence detection is to define the descriptors on
surfaces or points, and then match the descriptors between them. Since 3DLPS
reflects the multi-frequency information embedded in the shape, it can be incor-
porated into the general solution for point correspondence detection.

However, the original 3DLPS is sensitive to local geometries in high frequen-
cies, whose magnitudes usually dominate the feature vectors (See the curves in
Fig. 4). To solve this problem, we define a new signature based on 3DLPS, called
Context 3DLPS, which is more robust and adaptive, yet rotation-invariant. We
apply it as the new tool for robust point correspondence detection.

Definition 1 (Context 3DLPS) Given a vertex v, we average over all
vertices in its i-th neighbor ring, and denote it as S̄i (the 0th neighbor vertex is
v itself), then the Context 3DLPS of v is defined as S(v, nr) = (S̄0, S̄1, ..., S̄nr),
where nr is the number of neighbor rings.
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The similarities of Context 3DLPSs are measured by χ2 distance in our
experiments, which is defined as

Sim(h1, h2) =

m∑
i=1

(h1(i)− h2(i))2

h1(i) + h2(i)
, (6)

where h1 and h2 are the Context 3DLPS of v1 and v2 respectively, and m is the
dimension of the Context 3DLPS.

For Context 3DLPS, the larger nr is, the larger context of information around
v we considered, yet the larger memory storage and computation are required.
In our experiments, we found nr = 10 is a good tradeoff between context infor-
mation amount and computational cost, as shown in Fig. 5.

(a) nr = 0. (b) nr = 5. (c) nr = 10. (d) nr = 15.

Fig. 5. Illustration of Context 3DLPS with various parameter nr. The color ramp
depicts the differences of Context 3DLPS between their according locations and P , in
which hot color means high differences. When nr is too small, the Context 3DLPS only
captures the very local context information, which makes its specificity low (dissimilar
points are wrongly regarded as similar).

To detect the corresponding points of P , we first calculate the Context 3DLPS
for each vertex, and then measure the similarities between P and all other ver-
tices using Equ. 6. The top k points with the smallest χ2 distances are regarded
as the candidates. To make the candidates distinct from each other and reduce
the number of candidates, we merge the candidates within the top k points as
long as their distances are smaller than a user-specified threshold ε (in experi-
ments, we set ε as 10 times the average edge length of the mesh), and set the new
merged candidate as the one whose χ2 distance is the smallest to P . Finally, Users
can manually select the best correspondence point, or apply some algorithms to
further refine the candidates [27–29]. As our main goal is to demonstrate the
power of 3DLPS, we do not involve the matching algorithms here.

Fig. 6 shows the results of corresponding point candidates detected by our
algorithm. In this experiment, we first designate points P1, P2 and P3 on model
1, and then calculate the top 3 most similar points on model 1 and model 2
respectively. In Fig 6 (a), we verify that our method is capable of detecting the
symmetric points. For instance, Q21 and Q31 are detected as the most similar
points to P2 and P3 respectively. In Fig. 6 (b), we verify that our method is
insensitive to articulated deformation. Though model 2 is a deformation of model
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(a) P1, P2, P3 and their most similar
points on model 1.

(b) The most similar points of P1, P2 and
P3 on model 2.

Fig. 6. Illustration of our methods to detect the corresponding points. Pi is the ith
user designated point, and Qij indicates the jth similar point to Pi. We designate P1,
P2 and P3 on model 1, and detect the top 3 similar points on both model 1 and model
2. Note that model 2 is an articulated deformation of model 1.

1, our algorithm can still detect Q21 and Q31 as the most similar points to P2

and P3, followed by their symmetric points Q22 and Q32. We use color ramp to
illustrate the χ2 distance between the designated points and other vertices, in
which cool colors indicate small distances.

4.2 Best View Selection

Automatic generation of best views for 3D models has drawn much attention [30],
due to its applications in 3D model browsing, automatic camera replacement,
3D scene generation and view-based 3D object recognition [31,32].

Among all the existing algorithms, one category aims at maximizing the
amount of features visible from the viewpoint. These methods usually associate
a goodness measure to a number of candidate views, where the goodness measure
is a function of some objectives related to the geometrical properties of the object
[26]. 3DLPS can be naturally incorporated as the geometrical properties for best
view selection. In addition, since it exhibits various frequency information in
3DLPS, it provides an adaptive mechanism for visualizing different frequency
information according to user specifications.

The framework of our algorithm is the same as the mesh saliency [26], in
which the only difference is we replace the mesh saliency of v by the function
f(v) defined on v based on 3DLPS. For a viewpoint P , let F (P ) be the set of
vertices visible from P , we compute the visible information from P as

U(P ) =
∑

v∈F (P )

f(v). (7)

Then the viewpoint with maximum visible information Pm is

Pm = argmax
P

U(P ). (8)

Similar to [26], we use the gradient-descent-based optimization heuristic to select
good viewpoints for efficiency.
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(a) Color ramp of the magnitudes
of the 1st component.

(b) Color ramp of the magnitudes
of the 30th component.

Fig. 7. a): different views of the magnitudes of the 1st component of the 3DLPSs. The
left view is determined as the best view by our algorithm; b) different views of the
magnitudes of the 30th component of the 3DLPSs. the right view is determined as the
best view by our algorithm.

Fig. 7 intuitively shows how magnitudes change with the variations of fre-
quency in 3DLPSs. If we define f(v) as the magnitude of the first component of
v’s 3DLPS, then the best view is selected as the left view in Fig. 7(a). Note that
this view is similar to the view based on maximizing the pure curvatures, since
both of them tend to exhibit the high frequency information. If f(v) is defined
as the 30th component of v’s 3DLPS, our algorithm tend to select the views that
exhibit the low frequency information, as shown in the right view of Fig. 7(b).

By defining different f(v) based on 3DLPS, our algorithm is adaptive to
generate different best views that maximize different information. For instance,
if we define f(v) as the 5th component of v’s 3DLPS, the best view selected by
our algorithm is as Fig 8(e).

A more reasonable strategy is to exhibit different frequency information ap-
proximately equally in the best view. To achieve this goal, we define

f(v) =

m∑
i=1

rank(v, i), (9)

where m is the length of 3DLPS, and rank(v, i) indicates the index of v sorted
according to the ith components of all vertices in ascending order. This function
normalizes the low frequency information and high frequency information into a
commeasurable metric space. Thus, by maximizing f(v)s across all the vertices
with all the specified frequencies, the best view is supposed to exhibit various
frequency information equally, as shown in Fig. 8(f).

Fig. 8 also gives a brief comparison with some of the state-of-the-art ap-
proaches. Note that the result of [26] is similar to our result in Fig. 8(f). However,
our result exhibits more information on different frequencies (refer to the color
ramp in Fig. 7 for comparison). Actually, the method proposed in [26] is exactly
the Difference of Gaussian (DOG) defined on 3D, which is an approximation of
Laplacian of Gaussian (LOG) utilized in our method. Since we separate differ-
ent frequencies and define the signature as a vector, rather than summing them
up to form a scale value [26], our method is more adaptive to exhibit different
frequency information.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Comparison of the best views of David head. a): Result of [26]; b): Result of [33];
c): Results of [34]; d): Result of [35]; e): Our result by maximizing the magnitudes of
the 15th component in 3DLPSs; f): Our result by defining f(v) as Equ. 9. Note in e)
and f), the pictures are mapped to color ramps, in which cool color means small value.
To make our best views visibly pleasant, we manually rotated our best views to the
correct upright direction.

4.3 Automatic Mesh Segmentation

By observation, we found in many models, functional parts are usually different
in frequency domain, and the boundaries between them often coincide with the
regions where the frequency magnitudes change rapidly (see Fig. 9(c)). Since
3DLPS provides a good measure for frequency differences, it provides a natural
way for segmentation of this kind of objects.

Inspired by this observation, we propose a label-swop based mesh segmen-
tation method, as shown in Algorithm 2. In this algorithm, we first initialize
the vertices with different labels, and then segment the mesh using a label-swop
mechanism, as shown in lines 5-17 in Algorithm 2. We first estimate the proba-
bility density function of each vertex (shown in line 8-9) using Gaussian weights,
and then swop the label of each vertex to its exemplar that possesses the locally
highest estimated probability density function value. Finally, the segments are
merged sequentially until the user specified segments number is achieved.

(a) (b) (c) (d)

Fig. 9. Illustration of our label-swop based mesh segmentation algorithm. a): the orig-
inal model; b): the color ramp mappings of 3DLPSs (h = 15); c): the local variations
of low frequency components in b) (nr = 3); d): the final segmentation result (n = 2).

Fig. 9 illustrates how our label-swop algorithm performs on the cup model.
In this experiments, we set n = 2, h = 15 and nr = 3. As shown in Fig. 9(c), the
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Algorithm 2: Label-swop based mesh segmentation

Input: n: the number of segments specified by users;
h: the to be used index of component in 3DLPS;
nr: the parameter to determine local regions.

Output: L: label array that represents the result.

for i← 1 to size(V ) do
L(vi)← i; B initialize vertices with different labels
M(vi)← the hth component of the 3DLPS of vi;

end
for i← 1 to size(V ) do

N(vi)← max
vj∈N(vi,nr)

||M(vi)−M(vj)||; B N(vi, nr) is vi’s nr-ring neighbors

end
for i← 1 to size(V ) do

D(vi)←
∑
j∈N(vi,nr)

N(vj) exp(− ||vi−vj ||
2

2σ2 );

end
foreach Vertex v in the mesh do

vfinal ← v;
while ∃vj ∈ N(vi, 1) such that D(vj) > D(vfinal) do

vfinal ← vj ; B swop vj as the new exemplar
end
L(v)← L(vfinal);

end
m← the number of different labels in L;
while m > n do

foreach adjacent segments Si and Sj do
vmin(i, j)← the vertex v whose D(v) is the minimum along the
boundaries of Si and Sj ;

end
vjoin ← argmax

v
D(vmin(i, j))(1 ≤ i, j ≤ m, i 6= j);

join the segments adjacent to vjoin by updating L;
end

local variations of the specified components for all the vertices clearly marked the
boundaries between the body and the handle of the cup. This leads to consistent
segmentations with human intuition.

We provide a comparison of our method with some of the state-of-the-art
methods. We conclude that for the models whose ground-truth segmentations
coincide with the low frequency variations, such as ants, octopuses, tables and
so on, our algorithm performs consistently better than existing methods (see
Fig. 10 for details).

However, our segmentation algorithm suffers from two main limitations: 1)
users have to specify the number of segments in advance; 2) for the models whose
semantic segmentations do not coincide with low frequency variations, such as
human faces, our algorithm may fail. As demonstrated in [1, 29, 42–44] that no
one automatic segmentation algorithm is better than the others for all types of
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11* 13 11* 9 11 11 11 11*

9 10 9 9* 9* 9 9 9*

10

(a) RC

11

(b) SD

9

(c) NC

7

(d) CE

9

(e) RW

9

(f) FP

9

(g) KM

9*

(h) Ours

Fig. 10. Comparison with other segmentation methods. The number below each im-
age indicates the number of the according segments, and the “*” following it means
the according segmentation approximately coincides with the ground-truth manual
segmentation. The methods used from left to right columns are a): Randomized cuts
(RC) [36]; b): Shape diameter (SD) [37]; c) Normalized cuts (NC) [36]; d): Core extrac-
tion (CE) [38]; e) Random walks (RW) [39]; f) Fitting primitives (FP) [40]; g) K-Means
(KM) [41]; h) Our method (Ours), respectively.

objects, we are confident that our algorithm provides an alternative means of
segmentation for some types of models.

5 Discussion and Conclusion

In this paper, we have proposed a simple yet efficient point descriptor, called 3D
Laplacian Pyramid signature, which reveals the frequency domain information
of points embedded in the shape. Our 3DLPS is a multi-scale representation of
the points and thus can be applied to plenty of applications involved in shape
analysis, such as point correspondence detection, best view selection and au-
tomatic mesh segmentation. Compared with existing point signatures such as
GPS, HKS and WKS, our proposed 3DLPS is more simpler to calculate, yet
efficient enough for plenty of applications, since it inherits the nice properties of
Laplacian Pyramid defined in 2D images.

However, 3DLPS still suffers from some limitations. For example, given two
isometric deformed models, the 3DLPSs of vertices on the joint regions may be
a little different, since 3DLPS simply catches the magnitudes of changes induced
by Laplacian operations. This means that 3DLPS is not completely invariant
under isometric transformations. Another limitation is that 3DLPS may suffer
from noises of high frequency information (see Fig. 5). In this case, we have to
introduce Context 3DLPS for some applications such as robust point correspon-
dence detection. We will further investigate how to solve these problems.
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