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Abstract. Real world applicability of many computer vision solutions
is constrained by the mismatch between the training and test domains.
This mismatch might arise because of factors such as change in pose,
lighting conditions, quality of imaging devices, intra-class variations in-
herent in object categories etc. In this work, we present a dictionary
learning based approach to tackle the problem of domain mismatch. In
our approach, we jointly learn dictionaries for the source and the target
domains. The dictionaries are partially shared, i.e. some elements are
common across both the dictionaries. These shared elements can rep-
resent the information which is common across both the domains. The
dictionaries also have some elements to represent the domain specific
information. Using these dictionaries, we separate the domain specific
information and the information which is common across the domains.
We use the latter for training cross-domain classifiers i.e., we build classi-
fiers that work well on a new target domain while using labeled examples
only in the source domain. We conduct cross-domain object recognition
experiments on popular benchmark datasets and show improvement in
results over the existing state of art domain adaptation approaches.

1 Introduction

Visual object recognition schemes popularly use feature descriptor such as sift [1],
hog [2] followed by a classification strategy such as svms [3]. They train on a
set of annotated training set images and evaluate on a set of similar images
for quantifying the performance. However, such object recognition schemes may
perform badly in the case of large variations between the source domain and the
target domain [4]. Variations between the source and target domain might arise
from changes in pose, illumination or intra-class variations inherent in object
categories. In Figure 1, we show sample images of the categories chair and bot-
tle from three different domains, namely amazon, dslr and webcam [5]. The
domain amazon is visually very different from the other two domain, the reason
being large intra-class variations. The difference between the domains dslr and
webcam arises because of change in pose, camera quality and lighting conditions.

To tackle the issue of variations across the source and target domains, various
domain adaptation (da) techniques have been proposed in the natural language
processing as well as computer vision communities. In Figure 2, we present the
overall idea behind a general da approach. The figure depicts the idea that a
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Fig. 1. Sample images of categories “bottle” and “chair” from the domains Amazon,
DSLR and Webcam [5]. Images from Amazon are visually very different in comparison
to the other two domains. Visual mismatch between DSLR and Webcam is relatively
less and arises from factors such as changes in pose, image resolution and lighting
conditions.

classifier trained on the source domain may need further adaptation in order to
perform well on the target domain. In the natural language processing commu-
nity, da techniques have been applied for tasks such as sentiment classification,
parts of speech tagging etc. Blitzer et al.[6] present a da technique to modify
discriminative classifiers trained on the source domain to classify samples from
the target domain. The primary aspect of their work is identifying the pivot fea-
tures, i.e. those features which occur frequently and behave similarly across the
two domains. Hal Daume [7] presents a feature augmentation approach where
source, target and a common domain representation are obtained by replicating
the original feature. Jiang and Zhai [8] present an instance weighting approach
where they prune misleading examples from the source domain and give more
weight to the labeled examples from the target domain.

In recent years, there has been a surge of interest in the visual domain adap-
tation task. Several da strategies have been proposed which adapt either the
feature representation or the classifier. These strategies are semi-supervised or
unsupervised depending on whether some labeled data from the target domain
is available or not. Utilizing labeled examples from source as well as target do-
mains, Saenko et al.[5] learn a transformation to map vectors from one domain
to another. This transformation tries to bring closer the intra-class vectors from
the two domains and push the inter-class vectors farther apart. In a similar fea-
ture transformation based approach, Kulis et al. [9] do an extension of this work
in which the vectors in the two domains can have different dimensions. Unlike
the previous two works, the feature transformation based approach presented by
Fernando et al. [10] is completely unsupervised. They model the source subspace
by the eigenvectors obtained by doing pca over the source domain and similarly
for the target subspace. They align the source subspace with the target subspace
by learning a transformation matrix. The source and the target domain samples
are then projected to their corresponding aligned subspace. Gopalan et al. [11]
present a feature augmentation based da approach where the source and the
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Fig. 2. Overall idea behind a Domain Adaptation approach is shown. Source and target
domains are Amazon and Webcam respectively. The two object categories are mug and
bookcase. Fig(a) shows a classifier which perfectly separates the two object categories
in the source domain. Fig(b) shows the same classifier misclassifies images from the
target domain. Fig(c) shows the scenario after domain adaptation, the classifier now
correctly classifies the target domain images. The target domain images aid the da
strategy. These examples can be labeled or unlabeled depending on whether the da
approach is semi-supervised or unsupervised.

target subspaces are modeled as points on a Grassmann manifold. They sample
points along the geodesic between the source subspace and the target subspace
to obtain intermediate subspaces. The data points are projected along all the
intermediate subspaces to obtain a domain independent representation. Gong et
al. [12] propose a geodesic flow kernel based approach and instead of sampling
finite number of subspaces along the geodesic from source subspace to target
subspace, they integrate over infinite number of intermediate subspaces. Jhuo
et al. [13] present a semi-supervised da approach based on low-rank approxi-
mation. The samples from the source domain are mapped to an intermediate
representation where the transformed source samples can be expressed as a lin-
ear combination of target samples. The authors consider single source domain
as well as multiple source domain scenarios in this work. Apart from the feature
adaptation based da techniques, classifier adaptation based da techniques have
also been proposed. Yang et al. [14] present a classifier adaptation based da
approach where they adapt a source domain svm classifier by using few labels
from the target domain.

Recently, sparse representation has been used for various visual da tasks such
as object recognition, face recognition [15, 16] and action recognition [17]. Zheng
et al. [17] propose a dictionary learning approach for doing cross-domain action
recognition. Given correspondence between videos from two domains, i.e. videos
of same action shot from two different views, they learn two separate dictionaries
while forcing the sparse representation for corresponding video frames from the
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two domains to be same. Using this view independent representation, action
model learned from the source view video can be directly applied on the target
view video. Ni et al. [16] present a dictionary learning based da approach when
correspondence information across domains is not available. Given a dictionary
in one domain, say source, they iteratively modify the dictionary to be suitable
for the target domain. They store all the intermediate dictionaries and use all
of them to obtain a view independent representation of images from both the
domains. Shekhar et al. [15] present a dictionary learning based approach where
they map samples from both the domains to a low dimensional subspace and
learn a common dictionary by minimizing reconstruction error for the projected
samples in the low dimensional subspace.

In our current work, we present a dictionary learning approach for learning
partially shared dictionaries across different domains. We learn separate dictio-
naries for the source and target domains. These dictionaries have some shared
atoms which represent the common information which is present in both the do-
mains. The dictionaries also have some domain specific atoms to represent the
domain specific information. We show the effectiveness of our dictionary learning
strategy by using it for the cross-domain classification task. The domain specific
information can cause confusion while doing cross-domain classification. Hence,
we ignore the domain specific information and use the representation obtained
from the common dictionary elements for training cross-domain classifier. The
highlights of our approach are

1. We present a strategy for jointly learning partially shared dictionaries across
domains.

2. We design the dictionaries to have two types of elements, i.e. domain specific
elements and domain independent elements. As the name suggests, the do-
main specific atoms represent the domain specific information whereas the
domain independent elements capture the information common to both the
domains.

3. A form of selective block sparsity arises naturally from the partially shared
dictionary learning formulation. More specifically, depending on the under-
lying domain of the signal, a specific block of sparse coefficients is forced to
consist only of zeros. A simple strategy for obtaining sparse representation
in presence of selective block sparsity is given.

4. Our dictionary learning approach can be seen as making few modifications
over an existing dictionary learning approach [18]. However, using this simple
approach, we obtain comparable results to the state of the art visual da
approaches.

2 Domain Adaptation using Partially Shared Dictionaries

2.1 Method Overview

A dictionary learned from the source domain might not be suitable for repre-
senting signals from the target domain. Using such a dictionary for representing
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Fig. 3. Overview of partially shared dictionary learning. Dictionary for each domain
consists of two types of atoms, domain specific atoms and atoms shared across the
domains. Shared atoms are learned using samples from both the domains whereas
domain specific atoms are learned using samples from the corresponding domain.

both the domains might result in a scenario where the sparse representation ob-
tained for the same class signals from the two domains are very different. Clearly,
such a representation will lead to poor cross-domain classification performance.
Hence, while designing dictionaries in the presence of domain mismatch, fur-
ther steps are required to accommodate signals from the new domains. We have
presented a partially shared dictionary learning strategy to tackle the issue of
domain mismatch. Our strategy is based on the idea that there could be some
commonalities between the source and target domains. The same set of dictio-
nary atoms can be used to represent this common information. Also, the signals
from a domain will have certain domain specific aspects. This domain specific
information can be represented well by dictionary atoms which are exclusive to
the particular domain. Using the common atoms for sparse decomposition will
lead to similar representation for the same class signals from both the domains.
Hence, such a representation is more suited for the cross-domain classification
task. The overview of our approach is shown in Figure 3. As shown in the figure,
some atoms are shared across the dictionaries from the source and the target do-
mains. Apart from these common atoms, the dictionaries also have some domain
specific atoms.

2.2 Sparse Representation of Signals

A signal y ∈ Rn can be sparsely represented using a dictionary D ∈ Rn×K ,
consisting of K atoms or prototype signals. The atoms of D can be pre-defined
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using discrete cosine transform basis [19], wavelets [20] or they can be learned
from the available signals. The learned dictionaries have been shown to perform
better than pre-defined dictionaries for tasks such as reconstruction [21]. For
learning dictionaries from the data, several efficient dictionary learning strategies
such as k-svd [22] and mod [18] have been proposed in the past. These dictionary
learning techniques solve the following optimization problem

min
D,A
‖Y −DA‖2F subject to ∀i, ‖ai‖0 ≤ T0. (1)

Here the signals are arranged along the columns of Y and the columns of A,
i.e. ai, contain the corresponding sparse representation. The dictionary learning
techniques solve this problem by alternating between solving for A, i.e. sparse
coding step and updating D, i.e. dictionary update step. In [18], the dictionary
update consists of updating all the dictionary elements while keeping the sparse
representation unchanged. The dictionary learning approach given in [22], how-
ever, updates a single dictionary atom at a time. The sparse coefficients also
change during the update so that the number of nonzero coefficients further
reduces or remains the same. The sparse decomposition problem with the l0
penalty is np hard and greedy algorithms are used to solve this. When D is
fixed, sparse representation ai can be obtained using greedy pursuit algorithms
such as omp [23]. Sparse decomposition can also be done by relaxing the l0
penalty and using a l1 penalty in its place [24].

2.3 Partially Shared Dictionary Learning

Dictionary learned from one visual domain might not be suitable for representing
signals from another visual domain. Hence, we propose a dictionary learning
strategy which jointly learns a dictionary which is suitable for both the source
as well as target visual domains. We believe that examples from any domain
can be represented effectively using a dictionary which has some domain specific
atoms as well as some domain independent atoms, i.e. which are common across
domains. This assumption is supported by the observation that instances of same
category across different domains generally have some similarity between them.
Hence, we represent the source domain dictionary Ds and the target domain
dictionary Dt as

Ds = [Dsrc Dc] ; Dt = [Dtgt Dc], (2)

where Dsrc, Dtgt are source and target domain specific atoms and Dc are the
common atoms across the two domains. Also, we represent the combined dictio-
nary D as

D = [Dsrc Dc Dtgt]. (3)

The objective for jointly learning D is given as given as

min
D,A,B

‖[Ys Yt]−D[A B]]‖2F ,

subject to aitgt = [0 0 .... 0]T , bjsrc = [0 0 .... 0]T ,

‖ai‖0 ≤ T0, ‖bj‖0 ≤ T0,

(4)
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where ai =

[
ai
src

ai
com

ai
tgt

]
, bj =

[
bjsrc
bjcom
bjtgt

]
, index i corresponds to the i− th source do-

main sample, i.e. i− th column of Ys, similarly index j corresponds to the j− th
target domain sample. Both the sparse coefficient vectors ai and bj can be seen
as a concatenation of three blocks of coefficient vectors. Depending upon the un-
derlying domain of the corresponding signal, one of these three blocks, i.e. aitgt
or bjsrc, is forced to have all elements as zero. The equality constraints thus give
rise to a specific form of block sparsity [25], which we call selective block sparsity.
The above optimization problem allows for jointly learning the source as well
as the target domain dictionaries. The equality constraint aitgt = [0 0 .... 0]T

makes sure that the dictionary atoms Dtgt are used only for representing the
target domain signals Yt. Hence, Dtgt captures only the target domain informa-
tion. Similarly, the equality constraint bjsrc = [0 0 .... 0]T makes sure that Dsrc

captures only the source domain information. The block of sparse coefficients
aicom and bjcom correspond to the common dictionary atoms Dc. As both aicom
and bjcom can have non-zero terms, the dictionary atoms Dc are used while repre-
senting signals from both the domains, hence, these atoms capture the common
information across the source and target domains.

To effectively solve the optimization problem given in Equation 4, we rewrite
it as

min
Ds,Dt,As,Bt

‖Ys −DsAs‖2F + ‖Yt −DtBt‖2F ,

subject to ‖ais‖0 ≤ T0, ‖bjt‖0 ≤ T0,
(5)

where ais =
[

ai
src

ai
com

]
, bjt =

[
bjtgt

bjcom

]
, ais is the i − th column of As, bjt is the

j − th column of Bt. We would like to point out here that to learn Ds and
Dt using Equation 5, one might be tempted to use mod and alternate between
sparse coding and dictionary update by taking derivative of the energy term
with respect to Ds and Dt. However, such an approach would not ensure the
structure we desire to be present in the dictionaries Ds and Dt, as presented in
Equation 2. We take a short digression to describe how to solve Equation 4 in case
the dictionary structure given in Equation 2 is not present. In such a scenario,
we can rewrite the optimization problem given in Equation 4 as Equation 5.
For dictionary learning, we can use mod. Obtaining ais and bjt is straightforward
and these can be obtained via omp. If ais and bjt are available, ai and bj can be
obtained trivially by concatenating a vector of zeros at appropriate position.

Now we get back to our original dictionary learning formulation. To maintain
the desired structure in the two dictionaries Ds and Dt, we further couple the
two dictionaries Ds and Dt using the following relation between the two

Dt = DsP, (6)

where P is a square matrix. Since we want some elements to be common among
Ds and Dt, we fix a set of the columns of P , i.e. Q, to have a single element as 1
and remaining elements as 0. The location of 1 in each column of Q corresponds
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Algorithm 1 Partially Shared Dictionary Learning(psdl)

Input: source domain vectors Ys, target domain vectors Yt, n
Output: D, As, Bt

initialize:Ds, P = [R Q]
for i= 1 to n do

As ← OMP (Ys, Ds)[
Btgt

Bcom

]
= Bt ← OMP (Yt, DsP )

Ds ← (YsA
T
s + YtB

T
t P

T )(AsA
T
s + PBtB

T
t P

T )−1

R← (DT
s Ds)−1DT

s EtB
T
tgt(BtgtB

T
tgt)

−1

end for

to location of common atoms Dc. Hence P can be represented as

P = [R Q]. (7)

Using Equation 7, Equation 5 can be rewritten as

min
Ds,R,As,Bt

‖Ys −DsAs‖2F + ‖Yt −DsQBcom −DsRBtgt‖2F ,

subject to ‖ais‖0 ≤ T0, ‖bjt‖0 ≤ T0,
(8)

where Bt =

[
Btgt

Bcom

]
.

To solve this optimization problem, we alternate between updating Ds and
R followed by sparse coding step. We set the first order derivative with respect
to Ds equal to zero and obtain the following closed form expression for Ds

Ds = (YsA
T
s + YtB

T
t P

T )(AsA
T
s + PBtB

T
t P

T )−1. (9)

Similarly, the update for R is done using the following closed form expression.

R = (DT
s Ds)

−1DT
s EtB

T
tgt(BtgtB

T
tgt)

−1, (10)

where Et = Yt − DsQBcom. In the sparse coding step, Ds and R is kept fixed
and omp is used to obtain the sparse representation. We summarize our partially
shared dictionary learning (psdl) strategy in Algorithm 1.

2.4 Cross-Domain Classification using PSDL

Using unlabeled data from the source and the target domains, the dictionary
D is learned as described in the previous section. The dictionary atoms which
are common across the two domains, i.e. Dc, are then used to obtain sparse
representations for signals from both the domains. The sparse decomposition
using Dc maps signals from both the domains to a common subspace. The sparse
representation of samples from source and target domain, thus obtained, are used
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directly for doing cross-domain classification. The coefficients corresponding to
Dsrc and Dtgt are ignored while doing cross-domain classification.

The dictionary atom subsets Dsrc and Dtgt represent the domain specific
information, hence, using their coefficients also for the cross-domain classifica-
tion task will create confusion for the classifier. By using just the coefficients
corresponding to Dc, we effectively extract only the common information which
is shared across the source and target domains. This results in similar sparse
representation for same class signals across the two domains. Clearly, such a
representation is better suited for the crosss-domain classification task.

As stated before, we use just the coefficients corresponding to Dc for repre-
senting signals from the source and the target domains. The classifiers are trained
using the sparse representation for plenty of labeled data from the source domain
as well as a small amount of labeled data from the target domain. We use svms
for the cross-domain classification task, as in [16].

3 Results and Discussions

We validate our approach by conducting object recognition experiments in a
cross-domain setting on benchmark datasets. We conduct the experiments using
the same experimental setup as in [12, 16]. Our dictionary learning approach
psdl is unsupervised, and does not use any label information from the source or
the target domains. We compare our dictionary learning based da approach with
various baseline approaches as well as a recently proposed dictionary learning
based da approach [16]. We also compare our approach with other da tech-
niques [11, 12].

3.1 Dataset and Representation

We conduct object recognition experiments on 4 datasets, i.e. amazon(images
downloaded from online merchants), webcam(images taken by a low resolution
webcam), dslr(images taken by a digital slr camera) and caltech(images taken
from the caltech-256 [26] dataset). The first three datasets were introduced
in [5] whereas the fourth one was first studied by [12]. Each of the dataset
are considered as a separate domain. Datasets consist of images pertaining
to the following 10 classes backpack, touring-bike, calculator, head-
phones, computer-keyboard, laptop, computer-monitor, computer-
mouse, coffee-mug, video-projector. There are atleast 8 images and a
maximum of 151 images per category in each domain. The datasets consist of a
total of 2533 images.

Scale invariant interest points were detected in the images using the surf
detector [27]. A 64 dimensional surf descriptor was used to describe the patch
around the interest points. A codebook consisting of 800 visual words was con-
structed by clustering random descriptors from the amazon dataset, using k-
means clustering. A histogram representation was obtained for each of the im-
ages by obtaining the count of each of the visual words in the image. All the
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histograms were z-score normalized to have zero mean and unit deviation along
each dimension.

3.2 Experiments

For experiments, two domains are picked from the datasets. We use one of them
as the source domain and the other is used as the target domain. Goal of the
experiments is to classify target domain data points. We conduct experiments
in unsupervised setting as well as semi-supervised setting. In the unsupervised
setting, labeled examples are present only in the source domain. In the semi-
supervised setting, along with the labeled source examples, we also sample few
labeled examples from the target domain. When webcam or dslr are the source
domains, we sample 8 labeled points from them. In case amazon or caltech are
the source domains, 20 labeled examples are sampled. In semi-supervised setting,
3 labeled examples are sampled from the target domain. For dictionary learning
using psdl, we utilize unlabeled samples from both the domains. The optimal
parameters for PSDL(number of dictionary atoms) and for the svm classifier
are obtained by empirically searching over the parameter space. Sparse repre-
sentation is obtained using Orthogonal Matching Pursuit(omp) [23]. Following
the previous works [12, 16, 11] , all the experiments are repeated 20 times and
the mean classification accuracy over the 20 trials is reported in each case.

Table 1. Classification accuracies for psdl is compared with baseline approaches as
well as the da approaches given in [11, 12, 16]. For baseline approaches we learn source
and target domain dictionaries using [18]. The acronyms A, C, D, W represent the
domains Amazon, Caltech, DSLR and Webcam respectively. In the notation C → A,
C is the source domain and A is the target domain. Similar notation is followed for the
other dataset pairs. Experiments are done in semi-supervised setting.

Method C → A C → D A → C A → W W → C W → A D → A D → W

svmS 40.6 45.7 36.5 26.5 23.2 30.6 35.3 69.7

svmST 46.4 52.1 38.9 38.7 31.0 40.2 42.3 74.1

modsource 44.9 50.5 39.2 46.6 27.3 38.5 37.6 67.2

modtarget 49.2 53.6 39.4 50.7 34.2 44.4 44.3 72.0

sgf[11] 40.2 36.6 37.7 37.9 29.2 38.2 39.2 69.5

gfk[12] 46.1 55.5 39.6 56.9 32.8 46.2 46.2 80.2

Ni et al.[16] 50.0 57.1 41.5 57.8 40.6 51.5 50.3 87.8

psdl 53.9 59.4 41.8 57.7 37.0 46.8 48.9 83.3

In Table 1, we compare our approach with baseline approaches as well as
other popular da approaches. This experiment is done in a semi-supervised set-
ting, i.e. we use few labeled examples from the target domain along with the
labeled examples from the source domain. svmS , svmST and mod based dic-
tionary learning approaches are taken as the baseline in this experiment. svmS
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Table 2. Classification accuracies for psdl is compared with baseline approaches as
well as the da approaches given in [11, 12, 16]. The acronyms A, C, D, W represent the
domains Amazon, Caltech, DSLR and Webcam respectively. In the notation C → A,
C is the source domain and A is the target domain. Similar notation is followed for the
other dataset pairs. Experiments are done in unsupervised setting.

Method C → A C → D A → C A → W W → C W → A D → A D → W

modsource 39.8 42.1 37.0 36.2 19.8 26.8 30.1 55.3

modtarget 44.4 44.0 36.8 38.2 30.5 35.4 34.5 69.5

sgf[11] 36.8 32.6 35.3 31.0 21.7 27.5 32.0 66.0

gfk[12] 40.4 41.1 37.9 35.7 29.3 35.5 36.1 79.1

Ni et al.[16] 45.4 42.3 40.4 37.9 36.3 38.3 39.1 86.2

psdl 47.6 48.5 39.8 38.9 31.8 36.0 37.9 79.1

refers to svm classifiers learned using only the source examples, svmST refers to
svm classifiers learned using source as well as target domain examples. We use
mod for learning dictionaries from the source as well as the target domains. For
modsource, sparse decomposition of signals from both the domains is done using
the dictionary learned from just the source domain. Similarly, for modtarget,
the dictionary learned from the target domain is used for sparse representation.
We also present the results given in the dictionary learning based da approach
given in [16]. We also compare our results with two other da approaches [11, 12].
Our dictionary learning approach as well as [16], always outperform the baseline
approaches as well as the da approaches given in [11, 12]. For the dataset pair
webcam and dslr, all the approaches perform better compared to the other
dataset pairs. The reason for this high classification accuracy is the high simi-
larity across these two domains, i.e. these datasets consist of images of the same
object instances obtained using different imaging devices. On the other hand, all
the approaches tend to show low accuracy for some dataset pairs, for example
amazon and caltech. This can be explained by the large variations across these
two domains. We observe that for the first four dataset pairs, our method per-
forms almost as good or better than [16]. For the remaining dataset pairs, [16]
outperforms our method. In Table 2, results are reported for experiments in un-
supervised setting. For the unsupervised setting, psdl as well as [16] outperform
the baseline approaches as well as [11, 12]. Like semi-supervised setting, here also
psdl lags behind [16]for the last four cases. For these cases, training domain
has 8 labeled examples whereas for the first four cases, it has 20 examples. In
the objective given in Eqn 8, the target reconstruction term may dominate over
the source term when the source has fewer samples than the target domain. For
tasks 5-8 (in Table 1 and Table 2), there are only 8 samples in the source domain.
We believe this leads to a common dictionary which represent the target domain
well but not the source domain.
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Fig. 4. Average reconstruction error for target dataset is plotted as a function of num-
ber of dictionary atoms. Dc represents the shared dictionary and Dsrc the source
domain dictionary. The shared dictionary Dc does a better reconstruction of the tar-
get domain samples in comparison to Dsrc. For (a), the source and target domains are
Amazon and Caltech respectively and for (b), Caltech and Amazon.

In Figure 4, we show the comparison between the average reconstruction error
obtained by dictionaries Dc and Dsrc while representing the target domain.
Irrespective of the dictionary size, Dc results in less reconstruction error, thus
showing that it is more suited for representing the target domain. In Figure 5,
we show three test images from the target domain and corresponding top five
nearest neighbors from the source domain. We provide nearest neighbors for two
cases, i.e. results obtained via our dictionary learning based approach and no
adaptation case using original features. In all the three examples, improvement
because of our approach is clearly observable.

4 Conclusion

We present a partially shared dictionary learning approach. Our approach allows
dictionaries from the source and the target domains to share some atoms. We
use the shared atoms to represent signals from both the domains. This results in
similar sparse representation for same class signals across the two domains. Our
results show that such a representation is better suited for cross-domain visual
object recognition task.

We show the effectiveness of our approach by performing cross-domain object
recognition on the benchmark datasets. We also compare our approach with
various existing approaches and show improvement in results over the existing
state of art approaches. For our future work, we plan to learn discriminative
shared dictionaries by utilizing available label information.
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Fig. 5. Test images from the dslr domain on the left and two adjacent rows of cor-
responding nearest neighbors from the amazon domain. The top row adjacent to each
query image is obtained using our dictionary learning approach, bottom row adjacent
to each query corresponds to nearest neighhbors obtained with original features.
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