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Abstract. Image-set clustering is a problem decomposing a given im-
age set into disjoint subsets satisfying specified criteria. For single vector
image representations, proximity or similarity criterion is widely applied,
i.e., proximal or similar images form a cluster. Recent trend of the im-
age description, however, is the local feature based, i.e., an image is
described by multiple local features, e.g., SIFT, SURF, and so on. In
this description, which criterion should be employed for the clustering?
As an answer to this question, this paper presents an image-set clus-
tering method based on commonality, that is, images preserving strong
commonality (coherent local features) form a cluster. In this criterion,
image variations that do not affect common features are harmless. In the
case of face images, hair-style changes and partial occlusions by glasses
may not affect the cluster formation. We defined four commonality mea-
sures based on Diverse Density, that are used in agglomerative clustering.
Through comparative experiments, we confirmed that two of our meth-
ods perform better than other methods examined in the experiments.

1 Introduction

Image-set clustering is a problem dividing a given image set into disjoint image
subsets (clusters). Images belonging to a cluster should satisfy some criteria, e.g.
mutual similarity or proximity. The image-set clustering can be utilized for many
applications. For example, the clustering can be used as a chunking process of
training images for accelerating the learning process of large-scale image classi-
fication systems. Also, the cluster information helps image annotation, labeling,
and arranging the pictures to create photo albums.

For single vector image descriptions, similarity or proximity criterion is widely
applied, i.e., mutually similar images (proximal image vectors) form a cluster.
However, recent trend of the image description is the local feature based, i.e., an
image is described by multiple local features, e.g. SIFT[1], SURF|[2], and so on.
Such image descriptions have some advantages over single-vector description, i.e.,
robustness against occlusions and geometric transformations. This description
principle can be generalized from local features to any other features. That is,
an image can be described by arbitrary number of vectors depending on the
amount of intrinsic information in the image. In this description, which criterion
should be used for the clustering?
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Of course, Bag of Features (BoF)[3] is a useful description that enables us to
use many algorithms developed for the single-vector image description. If we em-
ploy BoF description, we can keep relying on similarity or proximity based clus-
tering algorithms. BoF vector description, however, requires large scale feature-
vector clustering to create a code book (visual words), which accumulates the
occurrence of local features. This clustering consumes significant computational
time and memory. Also, since the performance depends on the code book size,
we have to run the vector clustering many times by changing the codebook size.
Because of these reasons, we stick on the question above, i.e., which criterion
should be used for image-set clustering for multiple-vector image description.

This paper responds to the question that commonality of the feature vectors
can be a criterion of image-set clustering. The term “commonality” in this paper
means the number and/or strength of commonly existing features across the
image set. Basically, similarity or dissimilarity is defined between two images, but
commonality measure is naturally defined on an image set. From this viewpoint,
it is clear that commonality and similarity are essentially different criteria.

Based on this idea, we propose an image-set clustering method, i.e., images
preserving strong commonality (coherent feature vectors) form a cluster. This
clustering method has the robustness against common feature preserving image
variations. In the case of face images, hair-style changes and partial occlusions
by glasses rarely affect the clustering result.

We first define four commonality measures based on Diverse Density (DD)[4,
5]. These measures are used in agglomerative (bottom-up) clustering that iter-
atively merges the image-set pair having the maximum commonality measure
to create hierarchical image-set clusters. Thus, we get four clustering methods.
Through comparative experiments conducted on “the ORL database of face”
consisting of 400 face images and a part of “Nister’s image dataset”, we con-
firmed that two of our methods are almost competitive and perform better than
other methods including k-means++[6] and Ward’s clustering[7] applied to BoF
vectors and Hausdorff clustering applied to multiple-vector image descriptions.

2 Related Works

Clustering methods can be classified into two types “partitional” and “hierar-
chical” methods[8]. Partitional clustering divides given dataset into several sub-
sets without checking all possible subset systems. On the contrary, hierarchical
clustering builds possible cluster hierarchy, which is represented by tree-shaped
data structure known as dendrogram. Of course the partition algorithm is more
efficient than hierarchical one, because all possible subsets are not examined.
But, this drawback of hierarchical clustering can be relaxed by introducing stop
conditions.

K-means clustering[9, 10Jand k-medoid clustering[11] are the popular par-
tition clustering methods under the assumption that the number of clusters is
known. In contrast to the k-means clustering designed for vector data, k-medoids
chooses data points as cluster centers (medoids or exemplars) so as to work in
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any metric space. For vector data, k-means clustering is one of the most popular
method, but it depends on the initial locations of the cluster centers. For solving
this problem, k-means++[6] (k-means clustering with cluster center initializa-
tion) has been proposed.

Hierarchical clustering can further be classified into agglomerative (bottom-
up) and divisive (top-down) methods [12]. Both methods require linkage metric:
agglomerative clustering iteratively merges cluster pairs having minimum link-
age metric, and divisive clustering extracts the subcluster pairs having maximum
linkage metric by separating a cluster. The computational cost of divisive clus-
tering is more expensive than agglomerative clustering, because of the bigger
number of separation cases.

Based on the discussion above, we can notice that agglomerative clustering
is one of the simplest clustering method. It only requires linkage metric, and
the computational cost is not so big. Because of this simplicity, we employ this
algorithm and focus on the linkage metric design.

Most linkage metric is obtained by extending the between-image distance to
between-image-set distance. This framework is represented by Lance-Williams
dissimilarity updating formula[13]. This formula is defined as

(iU j, k) = cud(i, k) + a;d(j, k) + Bd(i, j) +v1d(i, k) —d(G, k)], (1)

where ¢, j and k represent image clusters, oy, a;, 8, and «y are the parameters
that define agglomerative criterion, and | - | represents the absolute value. Each
image clusters have centers g;, g; and g;, and the between-class dissimilarity is
defined based on the distance between cluster centers. Just by assigning these
parameters, dissimilarity definition, and cluster center update formula, wide va-
rieties of agglomerative clustering algorithms can be described [14]. For example,
Ward’s clustering method|[7], which merges the cluster pair so as to minimize the
variance of the merged cluster, can be described by the following settings.
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where |- | and ||-|| represents the number of elements in the cluster and Euclidian
norm, respectively.

The other approach is to employ between-set distance in agglomerative clus-
tering. The most popular one is Hausdorff distance. This measure is the greatest
of all the distances from a data point in one set to the closest data point in the
other set. This metric is often used in the template matching scenario, because
the metric is inverse proportional to the resemblance of two dataset distribu-
tions[15]. For the image clustering, however, Hausdorff distance is not suitable
because of its excessive sensitivity to the outliers. For example, if a feature vec-
tor leaps into one set at the furthest point from the other set, the Hausdorff
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distance between them changes. That is, only one vector may drastically change
the distance between two sets.

Same as the linkage metric, similarity measure can be defined and used in
agglomerative clustering. This approach has wider variations than metric ap-
proach. This is because the similarity measure has lesser axioms than metrics
and bigger degree of freedom. Furthermore, just by providing similarity values
between any pairs instead of defining explicit form of similarity function, we can
perform clustering like affinity propagation[16].

A question arose here, how do we define the linkage metric for multi-vector
representation of images? Of course, when we employ Bag of Features (BoF)[3]
image description, we can keep using standard clustering methods, such as k-
means++ or Ward’s method. The other possibility is the Hausdorff clustering
between two sets of feature vectors. The method, however, is not suitable for
linkage metric, because one image may contain wide variety of vectors and the
Hausdorff distance is very sensitive to the outliers, as mentioned above.

As discussed above, no effective clustering method for multiple-vector image
description has been proposed so far.

In the following sections, we propose commonality preserving clustering in
Section 3, comparative experiments of image-set clustering conducted over “the
ORL database of face” and a part of “Nister’s image dataset” are shown and
discussed in Section 4, and we conclude the discussion in Section 5.

3 Commonality Preserving Image-Set Clustering

In this section, we define a commonality measure between two image sets for
agglomerative clustering. This commonality measure is defined based on Diverse
Density (DD) DD(x), which represents how the feature & commonly appears
in positive bags (images) and never appears in negative bags. By integrating
the value DD(x) in the whole feature space, we can define the commonality
measure. In some cases, it may be necessary to find the maxima of DD(x) for
common feature extraction from positive bags. For such computation, EM-DD
has been proposed. This is an accelerated hill-climbing method of DD(x) in the
feature space. In this section, we shortly introduce both DD and EM-DD, and
define four commonality measures based on them.

3.1 Diverse Density

In the field of MIL[4, 5], common feature extraction has been regarded as one
of the essential problems, which can be formalized as the local maxima search
problem of DD in the feature space. Compared with other sophisticated MIL
methods, DD is very sensitive to the incorrect labeling. That is, if a positive
feature leaps into a negative bag (image) or a feature is removed from a positive
bag (image), the value of DD may change drastically. This sensitivity is unwanted
property for many MIL applications that use manually labeled data. But for
commonality preserving clustering, this sensitivity is welcome, because the task
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is not extracting features from incorrectly labeled data, but gathering images
preserving strong commonality.
Based on the following definitions and terminology, we define the DD.

Bag B : A set of instances. This corresponds to an image in our problem.

Label +, — : We assign positive labels to those bags where we want to found
out the commonality. Also, negative labels are assigned to those bags where
the commonality never be expected. These are denoted by Bj, (i=1,...,m)
and B;, (i =1,...,n), respectively.

Instance B;“j, B;; : An element belonging to a bag. This corresponds to a local

feature vector. Positive and negative instances are denoted by B;rj € B and

B;; € B, , respectively.

First, the following function represents a potential generated by an instance B;;
at a point x in feature space.

P(a|By;) = exp (—M) . ()

g

The maximum and the minimum values of this potential are 1 and 0, respectively.
The following function represents the integrated potential P(z|B;") generated
by instances in a positive bag B;'.

PiBf)=1- [[ (1-P(=B])). (5)

+ Rt
B eB;

Subtraction of an individual potential from 1 can be regarded as the similar
meaning to negation and the product can be regarded as logical AND. Under
this interpretation, Equation (5) can be regarded as integration by logical OR
of the individual potentials in the positive bag by applying De Morgan’s laws.
For negative bag, integrated potential from a negative bag B, can be defined

as follows.
P@By)= [[ (1-P(x|By)). (6)
B eB;

Same as the interpretation of Equation (5), this integration can be regarded as
logical NOR.

The potentials generated by positive and negative bags are further integrated
by their product to obtain Diverse Density DD(x) .

DD(z) EHP(SC|BZ+)HP(:B‘B;) . (7)

At a local maximum of DD(x) having enough value in the feature space, the
point @ can be regarded as a common local feature among the positive bags and
does not contain similar features in all negative bags.

By integrating the DD(x) value in whole feature space, we can measure the
commonality of the local features in a positive image set.
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3.2 EM-DD

DD(x) can be regarded as a commonality measure at a point x in the fea-
ture space. We sometimes need the points that locally maximize DD(x) for
determining the features specifying the given cluster (positive and negative im-
age sets). EM-DD[17] estimates a local maximum of DD in the feature space
by hill climbing iterations, in which an accelerated approximation of DD like
EM-algorithm[18] is employed. EM-DD algorithm iteratively finds local maxima
in the feature space starting from all positive instances. The DD is defined in
Equation (7), but the computation using all positive and negative instances is
cumbersome. For avoiding this, EM-DD approximates DD value by using proxi-
mal instances, each of which is the 1-nearest instance picked up from a positive
or negative bag. Since this selection process is similar with expectation process,
and the hill climbing can be regarded as maximization process, this algorithm is
called EM-DD.

3.3 Commonality Between Two Clusters

In this section, we discuss how to define the commonality measure between two
image sets. The measure should represent how many and/or strong common local
features are preserved after merging two image sets. According to this principle,
the measure C can be easily defined as follows.

Ch(AUB) = / DD} (8)

where A and B represent positive image sets, N negative image set, and JF feature
space. This commonality Cy(AUB) is obtained by integrating D D(x) over feature
space F. However, this computation is practically impossible, because the feature
space F is infinitely vast.

For avoiding this endless computation, the computation of DD(x) can be
restricted on sampling points. In this case, one positive image set is assigned
as the positive image set and the other is used to define the sampling point in
the feature space. So as to produce a commonality measure that is independent
of number of sampling points, we compute the sample mean of DD(x). By
assigning the image set A to produce sampling point set Sy in feature space and
B as positive image set, we get

3 (B) = — 3 DD(x), (9)

|8A| TES,

where Sy represents the feature set extracted from all images in the image set
A. This computation is possible, but the resulted value has asymmetric property
depending on the assignment as shown in Equations (10).

C3*(B) # CS*(A). (10)
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Algorithm 1 Agglomerative clustering

Initialize: Create singleton clusters, each of which consists of a single image.

Stepl: Merge the cluster pair having maximum commonality measure among all clus-
ter pairs.

Step2: If the number of cluster is greater than one, go to Step 1.

End:

For guaranteeing the symmetric property, we first define a commonality measure
by taking arithmetic mean as

Ch(8,B) = S(C(A) + G (B)). ()

We can also define other commonality measure by taking geometric mean as

CZ(A,B) = /C*(A)  CS* (B). (12)

The above definitions require excessive sampling points in the feature space
for big image data sets. For avoiding this problem, we can reduce the number of
sampling points by applying EM-DD to image set A to produce reduced sampling
point set M. By using this as a point set, we can define other commonality
measure as

1
ci(B) = > DD(=). (13)
Same as the discussion above, we propose the following commonality measures:

CR(A,B) = S (C™(A) +C" (B)), (14)

N =

Ch(A,B) = /M (4) « C1 (B). (15)

As discussed above, we propose four commonality measures, CL(A, B), C3(A,B),
C3(A,B), C4(A,B) in this paper. These commonality measures are used in the
Algorithm1.

4 Experiments

We conducted comparative experiments on image-set clustering. We first intro-
duce the normalized mutual information (NMI)[19] for evaluating the accuracy
of the clustering results. Next, we describe the experimental settings and pa-
rameter tuning of different methods (Only the resulted parameters are shown in
this paper because of the page limitation). Finally, we compared NMI scores by
changing number of clusters, and examine images in resulted clusters.
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4.1 Evaluation Criterion

We employ NMI for measuring the clustering accuracy. Let X be the set of
clusters obtained by a clustering algorithm and Y obtained from the ground
truth. Then, the NMI measure between X and Y is defined as

Iy
MM = )+ my 2 o

where
I(XY) = H(X,Y) — HX|Y) — H(Y[X), (17)

is the mutual information between X and Y, H(X,Y) and H(X|Y) are the joint
and conditional entropies of X and Y, respectively. When X and Y are the same
set of clusters, NMI1(X,Y) is 1. Conversely, When NMI(X,Y) is nearly 0, X and
Y are different set of clusters. By using NMI(X,Y), we evaluate the clustering
accuracy.

4.2 Experimental settings
The experimental settings are shown below.

Methods to be Compared
In the experiments, we compare the following clustering methods. K-means++
and Ward’s clustering are applied to BoF vectors.

Agglomerative Clustering with C}(A,B): AM_ALL(c), where o repre-
sents the parameter in Equation(4).

Agglomerative Clustering with C3(A,B): GM_ALL(c), where o repre-
sents the parameter in Equation(4).

Agglomerative Clustering with C3(A,B): AM_EM (o), where o repre-
sents the parameter in Equation(4).

Agglomerative Clustering with C4(A,B): GM_EM (o), where o repre-
sents the parameter in Equation(4).

k-means++ Clustering: KM PP(num), where num represents the code
book size.

Ward’s Clustering: WARD (num), where num represents the code book
size.

Hausdorff Clustering: HAUS. For both between-image (feature set) dis-
tance and between-image-set distance, Hausdorff distance is used.

Image Dataset
In the experiments, we use “the ORL database of face” and “Nister’s image
dataset”, because we have to know the ground truth for the evaluation. The
ORL database consists of 400 face images, ten different images of each of
40 distinct subjects. Nister’s image dataset consists of 10200 images, four
different images taken under different conditions of each 2550 objects. For
the Nister’s dataset, top 400 images (100 objects) are used.
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Local Features
The local features used in the experiments are 64D SURF features extracted
by using OpenCV 2.4.2 library.

Note that we didn’t use negative images in the experiments, because of the
fairness, i.e., k-means++, Ward’s Clustering, and Hausdorff Clustering do not
use negative images.

4.3 Parameter tuning

Except for Hausdorff clustering, all methods have parameters: proposed methods
have parameter o, k-means++ and Ward’s Clustering are applied to BoF vectors
that depend on the code book size num. These parameters are tuned so as to
maximize NMI(X,Y) for given dataset.

In this paper, detailed parameter tuning results are omitted, and only the re-
sulted parameters are shown. For ORL database, AM_ALL(0.01), GM _ALL(0.05),
AM_EM (0.005), GM _EM(0.01), KM PP(50) and WARD(500) were the best
in examined parameters. For Nister’s dataset, AM_ALL(0.05), GM_ALL(0.05),
AM_EM(0.005), GM_EM (0.01), KM PP(30) and W ARD(50) were the best in

examined parameters.

4.4 Comparative Results

We compared NMI scores of different clustering methods with tuned parameters
described above. Figure 1 shows the graphs of NMI scores on ORL database. The
horizontal and vertical axes represent the number of clusters and NMI score, re-
spectively. From this figure, GM _ALL(0.05) and AM _ALL(0.01) are competitive
and provide the better results than other methods. The best NMI score is ob-
tained at #cluster=>58. The third best method is GM _EM (0.01), and the fourth
best is WARD(500). Following these methods, NMI scores of AM_EM (0.005),
KMPP(50), and HAUS degenerates in this order.

Figure 2 shows the graphs of NMI scores on Nister’s image dataset. From
this figure, AM_ALL(0.05) and GM_ALL(0.05) are almost competitive and
perform better than other methods. The third best method is GM_EM (0.01).
W ARD(50) and AM _E M (0.005) are almost competitive. Following these meth-
ods, NMI scores of KM PP(30), and HAUS degenerates in this order.

Table 1 summarizes the best NMI scores for different clustering methods
on different image datasets. From this table, we can notice that AM_ALL and
GM_ALL are almost competitive and perform better than other examined meth-
ods. Following these methods, GM_EM and WARD are performing better than
AM_EM and k-means++ , and Hausdorff clustering is the worst.

This means that agglomerative clustering based on Equations (11) and (12)
have advantages over other clustering methods. Ward’s method and k-means+-+
have been widely applied to many clustering tasks and proven as standard clus-
tering methods. But, the experimental results demonstrate that some common-
ality based clustering methods perform better than these method applied to BoF
image representation.
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Fig. 1. NMI graphs of different clustering methods for the ORL database of faces using
best parameters: Horizontal axis is the number of clusters, vertical is the NMI score.

Table 1. The NMI scores of different clustering methods on different image datasets.
For the ORL database, NMI scores are measured at #cluster=40. For Nister’s image
dataset, NMI score is measured at #cluster=100.

dataset clustering method

(#clusters) | AM_ALL GM_ALL AM_EM GM_EM KMPP WARD HAUS

ORL(40) | .874106  .877920 .789015 .830801 .728934 .840150 .496100

Nister(100) | .917861 .911005  .841304 .879985 .823335 .844039 .729781

This implies that multiple-vector representation of images is better than BoF
representation for some tasks. If this is true, there is a chance to renew Pattern
Recognition or Image Retrieval algorithms for multiple-vector representation
without using BoF.

4.5 Examples of Clustered Images

Figure 3 shows examples of clustered images of ORL database by using GM _ALL
(0.05) at #cluster=58, where the NMI score becomes maximum. The correct
clustering results (a)~(d) demonstrate that wearing glasses, small rotation, scale
change and local shading do not affect the clustering results. The incorrect results
(e)~(h) show that if there exists similar images of other subjects, that may cause
mis-clustering.

Figure 4 shows examples of clustered images of Nister’s dataset by using
GM_ALL(0.05) at #cluster=100. The correct clustering results (a)~(d) demon-
strate that rotations, homography, and partial occlusions do not affect the clus-



Title Suppressed Due to Excessive Length 11

1
S —
09 ,//"A:,r" - T
- e =
08 4/ / i
ey
/. b
o7/ o
|/
N i
o /
o /
Sos -
s |
z |
04 H B
“
|
03 | -
02 Il AM_ALL(0.05) — ||
GM_ALL(0.05)
AM_EM(0.005) —
GM_EM(0.01) —
01 KMPP(30)
WARD(50)
0 Il Il Il Il Il Il T HAUS —

0 50 100 150 200 250 300 350 400
#cluster

Fig. 2. NMI graphs of different clustering methods for Nister’s image dataset using
best parameters: Horizontal axis is the number of clusters, vertical is the NMI score.

tering results. The incorrect results (e)~(h) show that if there exists common
local features, e.g. frets and strings found in guitar and balalaika and background
carpet textures may cause mis-clustering.

As shown above, objects having distinctive features can be clustered correctly,
but objects including common local features may be clustered incorrectly. If we
can properly assign negative samples, this problem can be solved or relaxed.

5 Conclusion

This paper proposes commonality preserving clustering method for local fea-
ture representation of images. Four commonality measures are proposed based
on Diverse Density and examined through extensive experiments. As a result,
agglomerative clustering methods using two commonality measures defined by
Equations (11) and (12) are almost competitive and perform better than exam-
ined methods including k-means++-, Ward’s method, and Hausdorff clustering.

Essentially, similarity or dissimilarity is defined between two images, but
commonality measure is naturally defined on an image set. From this viewpoint,
it is clear that commonality and similarity are essentially different and the idea
of commonality preserving clustering has not been proposed so far.

The commonality measure represents the number and strength of commonly
existing features across the image set. The advantages of commonality preserving
clustering are 1) it can be applied directly to the multiple-vector representation
of images without using BoF (code book is not necessary), 2) we can guarantee
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Incorrectly clustered results.

Fig. 3. Examples of clustering results on ORL database by GM_ALL(0.05) at #clus-
ter=>58, where NMI score becomes maximum. Correct clusterings, in other words cluster
has all the images of the same subject in the dataset, are from (a) to (d), and incorrect
clustering are from (e) to (h).
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Incorrectly clustered results.

Fig. 4. Examples of clustering results on Nister’s dataset by GM _ALL(0.05) at #clus-
ter=100. Correct clusterings, in other words cluster has all the images of the same
subject in the dataset, are from (a) to (d), and incorrect clustering are from (e) to (h).

the integrity of clusters in terms of common features, 3) some commonality
measure produce better clustering results than other methods.

In the experiments, we didn’t use negative images for guaranteeing the fair-
ness. But, by properly assigning negative images, we can emphasize the distinc-
tive features and enlarge the difference between clusters. Also, we can create
models representing clusters by using EM-DD and the resulted models can be
utilized in the classifier. These tasks should be done in the future works.
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