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Abstract. We investigate the gains in precision and speed, that can
be obtained by using Convolutional Networks (ConvNets) for on-the-fly
retrieval – where classifiers are learnt at run time for a textual query from
downloaded images, and used to rank large image or video datasets.
We make three contributions: (i) we present an evaluation of state-of-
the-art image representations for object category retrieval over standard
benchmark datasets containing 1M+ images; (ii) we show that ConvNets
can be used to obtain features which are incredibly performant, and yet
much lower dimensional than previous state-of-the-art image represen-
tations, and that their dimensionality can be reduced further without
loss in performance by compression using product quantization or bina-
rization. Consequently, features with the state-of-the-art performance on
large-scale datasets of millions of images can fit in the memory of even a
commodity GPU card; (iii) we show that an SVM classifier can be learnt
within a ConvNet framework on a GPU in parallel with downloading the
new training images, allowing for a continuous refinement of the model
as more images become available, and simultaneous training and rank-
ing. The outcome is an on-the-fly system that significantly outperforms
its predecessors in terms of: precision of retrieval, memory requirements,
and speed, facilitating accurate on-the-fly learning and ranking in under
a second on a single GPU.

1 Introduction

On-the-fly learning offers a way to overcome the ‘closed world’ problem in com-
puter vision, where object category recognition systems are restricted to only
those pre-defined classes that occur in the carefully curated datasets available
for training – for example ImageNet [1] for object categories or UCF-101 [2] for
human actions in videos. What is more, it offers the tantalising prospect of de-
veloping large-scale general purpose object category retrieval systems which can
operate over millions of images in a few seconds, as is possible in the specific in-
stance retrieval systems [3–7] which have reached the point of commercialisation
in products such as Google Goggles, Kooaba and Amazon’s SnapTell.

Current on-the-fly systems typically proceed in three stages [8–11]: first,
training data for the user query are compiled, commonly by bootstrapping the
process via text-to-image search using e.g . Google Image Search as a source of
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Fig. 1. Architecture of our on-the-fly object category retrieval system. The
entire framework aside from the image downloader is resident on the GPU, with data
stored in GPU memory outlined in green. Its operation is split into: (i) iterative train-
ing, as initiated by a user text query and (ii) periodic model testing to obtain a ranking
over the target dataset (refer to text for further details).

training images; second, a classifier or ranker is learnt for that category; third, all
images/videos in a dataset are ranked in order to retrieve those containing the
category. The aim is for these stages to happen on-line in a matter of seconds,
rather than hours.

Previous methods for on-the-fly learning have been limited by the retrieval-
performance/memory/speed trade off. In particular, very high-dimensional fea-
ture vectors were required for state-of-the-art classification performance [12–14],
but this incurred both a severe memory penalty (as features for the dataset need
to be in memory for fast retrieval) and also a severe speed penalty (as comput-
ing a scalar product for high-dimensional features is costly) both in training
and ranking. Despite the excellent progress in compression methods for nearest
neighbour search by using product quantization [15] or binary encoding [16, 17],
compromises still had to be made.

In this paper we show that in the context of on-the-fly category retrieval,
Convolutional Networks (ConvNets) [18] with GPU training [19] can signifi-
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cantly improve on all three of: retrieval precision, memory requirements, and
ranking speed. The whole pipeline, from computing the training image features
and learning the model to scoring and ranking the dataset images is implemented
on the GPU and runs in a highly-parallel, online manner. We thus demonstrate
a system that is able to go from a cold-query to results in a matter of second(s)
on a dataset of million(s) of images. The architecture of our proposed system,
from input of text query to display of ranked results, is summarized in Figure 1
(refer to Section 4 for details).

In terms of retrieval performance, we build on the recent research that shows
that deep ConvNet features significantly outperform shallow features, such as
Fisher Vectors [13, 12], on the image classification task [19–21]. However, our
contributions go further than simply using ConvNet features in an on-the-fly
architecture: we take the full advantage of the GPU computation for all retrieval
stages, in parallel with downloading the new training images on the CPU. This
novel GPU-based architecture allows a time budget to be set, so that an SVM,
trained on the available images within the time limit, can be used to (re-)rank
the dataset images at any stage of the process (for instance, every 0.5s). This
architecture is in strong contrast to the standard on-the-fly architectures [8],
where SVM training only begins once all training images have been downloaded
and processed, and ranking follows after that.

We first perform a comprehensive evaluation of the performance of ConvNet-
based image features for category-based image retrieval (Section 2). We start
with a standard object category recognition benchmark (PASCAL VOC 2007 [22]),
and then add a large number of distractor images to take the dataset size to 1M+
images (the datasets are described in Section 2). We assess retrieval performance
over these two datasets (VOC and VOC + distractors) under variation in the
training data – either using VOC training images (i.e. a curated dataset) or
using images from Google Image search (i.e. the type of images, possibly with
label noise, that will be available in the real-world on-the-fly system).

With our goal being ranking of millions of images on a conventional GPU-
equipped PC, we then investigate, in Section 3, how retrieval performance is
affected by using low-dimensional features (still originating from a ConvNet).
Low-dimensional features (e.g. hundreds of components rather than thousands)
have two advantages: they use less memory, and scalar products are faster,
both in training and ranking. We cover a spectrum of methods for achieving
a low-dimensional descriptor, namely: (i) reducing the dimensionality of the last
ConvNet layer; (ii) product quantization of the ConvNet features and (iii) bi-
narization of the ConvNet features. It is shown that a combination of a low-
dimensional final ConvNet feature layer with product quantization produces
features that are both highly-compact and incredibly performant.

Finally, based on these investigations, we propose a GPU architecture for on-
the-fly object category retrieval in Section 4, highly scalable, capable of adapting
to varying query complexity and all running on a single commodity GPU. An
extended version of this paper is available on arXiv1.

1 http://arxiv.org/abs/1407.4764/
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2 Evaluating Large-scale Object Category Retrieval

This section describes the evaluation protocol used to assess the performance
of the image representations φ(I) described in Section 3 and of the on-the-
fly training architecture introduced in Section 4. We begin by describing the
datasets used for evaluation, and then describe the three different scenarios in
which these datasets are used, with each subsequent scenario moving closer to
modelling the conditions experienced by a real-world large-scale object category
retrieval system.

One difficulty of evaluating a large-scale object category retrieval system is
the lack of large-scale datasets with sufficient annotation to assess retrieval per-
formance fully, in particular to measure recall. The PASCAL VOC dataset [22]
provides full annotation for a set of twenty common object classes, facilitating
evaluation using common ranking performance measures such as mean average
precision (mAP), but is much too small (∼10k images) to evaluate the perfor-
mance of a real-world system. Conversely, the ILSVRC dataset [1], while being
much larger (∼1M+ images), does not have complete annotation of all object
categories in each image. Therefore, ranking performance (e.g . recall or mAP)
cannot be measured without further annotation, and only object category clas-
sification metrics (such as top-N classification error per image), which do not
accurately reflect the performance of an object category retrieval scenario, can
be used. Additionally, in this work we use the ImageNet ILSVRC-2012 dataset
to pre-train the ConvNet, so can not also use that for assessing performance.

As a result, for evaluation in this paper, we use a custom combination of
datasets, carefully tailored to be representative of the data that could be ex-
pected in a typical collection of web-based consumer photographs:

PASCAL VOC 2007 [22] is used as our base dataset, with assessment over
seventeen of its twenty classes (‘people’, ‘cats’ and ‘birds’ are excluded for reasons
explained below). We use the provided train, validation and test splits.

MIRFLICKR-1M [23, 24] is used to augment the data from the PASCAL
VOC 2007 test set in our later experiments, and comprises 1M unannotated
images (aside from quite noisy image tags). The dataset represents a snapshot
of images taken by popularity from the image sharing site Flickr, and thus is
more representative of typical web-based consumer photography than ImageNet,
which although also sourced from Flickr was collected through queries for often
very specific terms from WordNet. In addition, MIRFLICKR-1M has been con-
firmed to contain many images of the twenty PASCAL VOC classes.

2.1 Evaluation Protocol

A linear SVM is trained for all classes, and used to rank all images in the target
dataset. For the object category retrieval setting the ‘goodness’ of the first few
pages of retrieved results is critical, as the larger the proportion of true positives
for a given object category at the top of a ranked list, the better the perceived
performance. We therefore evaluate using precision @ K, where K = 100.
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Adopting such an evaluation protocol also has the advantage that we are able
to use the 1M images from the MIRFLICKR-1M dataset despite the fact that
full annotations are not provided. Since we only need to consider the top K of the
ranked list for each class during evaluation, we take can take a ‘lazy’ approach
to annotating the MIRFLICKR-1M dataset, annotating class instaces only as
far down the ranked list as necessary to generate a complete annotation for the
top-K results (for more details of this procedure, refer to scenario 2 below). This
avoids having to generate a full set of annotation for all 1M images.

2.2 Experimental Scenarios

Scenario 1: PASCAL VOC. We train models for seventeen of the twenty
VOC object classes (excluding ‘people’, ‘cats’ and ‘birds’) using both the training
and validation sets. Following this, a ranked list for each class is generated using
images from the test set and precision @ K evaluated.

Scenario 2: Large-scale Retrieval. Training is undertaken in the same man-
ner as scenario 1, but during testing images are added from the MIRFLICKR-1M
dataset. There are two sub-scenarios:

Scenario 2a – we test using images from the PASCAL VOC test set (as in
scenario 1) with the addition of the entirety of the MIRFLICKR-1M dataset.
For each class, we remove all (lazily annotated) positive class occurrences in
the ranked list which are retrieved from MIRFLICKR-1M, as the purpose of
this scenario is to test how our features perform when attempting to retrieve a
small, known number of class occurrences from a very large number of non-class
‘distractor’ images.2

Scenario 2b – this time we exclude all images from the PASCAL VOC dataset,
and instead evaluate precision @ K solely over the MIRFLICKR-1M dataset.
The purpose of this scenario is to test how our features perform over a real-
world dataset with unknown statistics. In practice, it is an easier scenario than
scenario 2a, since the MIRFLICKR-1M dataset contains many instances of all
of the PASCAL VOC classes.

Scenario 3: Google Training. Testing is the same as in scenario 2b, but
instead of using PASCAL data for training, a query is issued to Google Image
search for each of the PASCAL VOC classes, and the top N ∼ 250 images
are used in each case as training data. This scenario assesses the tolerance to
training on images that differ from the VOC and MIRFLICKR-1M test images:
the Google images may be noisy and typically contain the object in the centre. It
also mirrors most closely a real-world on-the-fly object category retrieval setting,
as the queries in practice do not need to be limited to the PASCAL VOC classes.
There are again two sub-scenarios, with different data used for the negative
training samples in each case:

2 The prevalence of the PASCAL VOC classes ‘people’, ‘cats’ and ‘birds’ in the
MIRFLICKR-1M data explains why we exclude them, as restricting the annotation
of these classes to reasonable levels proved to be impossible.
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Scenario 3a – the images downloaded from Google Image Search for all other
classes, except for the current class, are used as negative training data (this
mirrors the PASCAL VOC setup).

Scenario 3b – a fixed pool of ∼ 16, 000 negative training images is used. These
training images are sourced from the web by issuing queries for a set of fixed
‘negative’ query terms3 to both Google and Bing image search, and attempting
to download the first ∼ 1, 000 results in each case. This same pool of negative
training data is also used in Section 4.

3 Retrieval Performance over Image Representations

In this section, we perform an evaluation of recent state-of-the-art image repre-
sentations for the object category retrieval scenarios described in Section 2.2.

ConvNet-based features, which form the basis of our on-the-fly system de-
scribed in Section 4, have been shown to perform excellently on standard image
classification benchmarks such as PASCAL VOC and ImageNet ILSVRC [20,
25] [21, 26]. We therefore focus our evaluation on these features, employing 2048-
dimensional ‘CNN M 2048’ image features of [21] as the baseline. We compare
them to a more traditional shallow feature encoding in the form of the Improved
Fisher Vector (IFV) [13]. Implementation details for ConvNets and IFV are
given in Section 3.2. We explore the effects of reducing the dimensionality of our
features on their retrieval performance using the following methods:

Lower-dimensional ConvNet output layer – One way of reducing the dimen-
sionality of ConvNet features consists in retraining the network so that the last
fully-connected (feature) layer has a lower dimensionality. Following [21], we
consider the ‘CNN M 128’ network configuration with a 128-dimensional feature
layer. Using such network in place of the baseline ‘CNN M 2048’ can be seen as
discriminative dimensionality reduction by a factor of 16.

Product quantization (PQ) has been widely used as a compression method
for image features [15, 27], and works by splitting the original feature into Q-
dimensional sub-blocks, each of which is encoded using a separate vocabulary
of cluster centres pre-learned from a training set. Here we explore compression
using Q = 4, 8-dimensional sub-blocks.

Binarization is performed using the tight frame expansion method of [28], which
has been recently successfully applied to local patch and face descriptors [29,
30]. The binarization of zero-centred descriptors φ ∈ Rm to binary codes β ∈
{0, 1}n, n > m is performed as β = sgn(Uφ) where sgn is the sign function:
sgn(a) = 1 iff a > 0 and 0 otherwise, and the Parseval tight frame U is computed
by keeping the first m columns of an orthogonal matrix, obtained from a QR-
decomposition of a random n× n matrix.

3 miscellanea, random selection, photo random selection, random objects, random
things, nothing in particular, photos of stuff, random photos, random stuff, things
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Fig. 2. Sample precision-rank curves and retrieved results for two queries over the
combined VOC+MIRFLICKR data (Scenario 2a). In the bottom half of the figure,
the top row in each case shows the first few results returned for each method and the
second shows the top retrieved false positives with their rank.

3.1 Results and Analysis

Scenario 1 (VOC Train/VOC Test). The PASCAL VOC dataset does not
pose any major challenges for any of our features, which is not surprising given
the close to decade of research on representations which perform well on this
dataset. Even for the most challenging classes (e.g . ‘potted plant’) IFV produces
fairly good results, with the top 12 images being true positives (Prec @ 100
= 0.58), and the top 92 images being true positives in the case of our 2048-
dimensional ConvNet features (Prec @ 100 = 0.83).

Scenario 2a (VOC Train/VOC+distractors Test). Adding 1M distrac-
tor images from the MIRFLICKR-1M dataset has a significant impact on the
results, with the task now being to retrieve true positives that constitute less
than ∼ 0.02% of the dataset. This is a more challenging scenario, and under
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VOC Only Large-scale Retr. Google Training

Scenario [1] [2a] [2b] [3a] [3b]

(a) FK 512 82.3 29.3 80.5

(b) CNN 2K 92.1 55.4 95.4 88.5 90.9

(c) CNN 2K PQ 90.7 55.1 96.4 88.2 91.9

(d) CNN 128 92.1 51.0 95.1 88.1 92.3

(e) CNN 128 noaug 88.8 45.4 93.1 87.1 91.1

(f) CNN 128 BIN 2K 91.5 52.3 94.0 89.6

(g) CNN 128 BIN 1K 90.0 50.1 94.0 89.5

(h) CNN 128 PQ 90.1 50.5 94.6 88.2 92.1

(i) CNN 128 PQ-8 88.8 47.4 93.1 87.7 91.1

Table 1. Retrieval results (Mean Prec @ 100) for the evaluation scenarios described
in section 2.2.

this setting the superior performance of the ConvNet-based features, when com-
pared to the state-of-the-art shallow representation (IFV), is much clearer to see.
Some sample precision-rank curves for two queries, one particularly challenging
(‘sheep’) and another less so (‘motorbike’) are shown in Figure 2. We can make
the following observations:

IFV Performance – It can be seen that IFV ([a] in Table 1) performs the worst of
all methods, despite being much higher dimensional (∼ 1000×) and taking much
longer to compute (∼ 200×) compared to our CNN-128 method ([d]). Nonethe-
less, even for challenging classes such as ‘sheep’ IFV manages to pull out a few
true positives at the top of the ranked list. However, the relative performance
drop with rank is much sharper than with the ConvNet-based methods.

Bursty Images – comparing the top-ranked negatives of the FK-512 method ([a])
for ‘sheep’ to those of the CNN-2048 method ([b]), it can be seen that IFV
appears to mistakenly rank highly ‘bursty’ images comprising repeating patterns
or textures. This phenomenon is particularly evident for natural, outdoor scenes
which explains why the performance drop of IFV is particularly severe in the
‘sheep’, ‘cow’ and ‘horses’ classes, as it appears that the ConvNet-based features
are much more robust to such textured images.

Diversity – The diversity of the retrieved results is also much greater for ConvNet-
based representations than for IFV, indicating that the classifier is able to make
better generalisations using these features. For example, as seen in Figure 2,
whereas the top four retrieved results for the query ‘motorbike’ for the FK-512
method ([a]) all show a rider in a similar pose, on a racing bike on a race track,
the top four retrieved results for the CNN-2048 method ([b]) depict a variety of
different motorcycles (road, racing, off-road) from several different angles.

For the most part, compression of the ConvNet features does not appear to
reduce their diversity appreciably, with the top-ranked results for all ConvNet
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Dim Compression New Dim Storage Comp. Time

(bytes) / 1M ims. / im (s)

(a) 83,968 – 312.8 GB 10.32

(b) 2048 – 7.63 GB 0.35 (0.061)

(c) 2048 PQ 4 dims/sq (16×) 512 488 MB + 0.061

(d) 128 – 488 MB 0.34 (0.061)

(e) 128 noaug 488 MB 0.083 (0.024)

(f) 128 BIN 2048 bytes (2×) 4096 244 MB + 0.38 ms

(g) 128 BIN 1024 bytes (4×) 2048 122 MB + 0.22 ms

(h) 128 PQ 4 dims/sq (16×) 32 30.5 MB + 3.9 ms

(i) 128 PQ 8 dims/sq (32×) 16 15.3 MB + 2.0 ms

Table 2. Dimensionality, storage requirements and computation time. The
rows in this table correspond to those in Table 1. Timings for compression methods
are specified as additional time added to the total feature encoding time, and those in
parenthesis indicate GPU timings where applicable.

methods, whether compressed or not, appearing to exhibit a similar diversity of
results.

Compression – As mentioned above, the drop in performance in moving from
ConvNet-based features to IFV is much greater than that incurred by any of the
compression methods, and this seems to be strongly connected with the robust-
ness of the ConvNet-based features, whether compressed or not, to the kind of
‘bursty’ textured images which IFV is susceptible to. This is remarkable given
that comparing the size of the largest uncompressed ConvNet representation
CNN-2048 ([b]) to the smallest compressed one, CNN-128-PQ-8 ([i]), there is
a ∼ 512× size difference. In the case of the CNN-128-BIN-2K method ([f]),
the mPrec @ 100 actually increases marginally when compared to the non-
compressed codes ([d]) which, when visually inspecting the rankings, again can
be explained by the additional robustness brought by compression.

The binary representations ([f] & [g]), combined with a linear SVM, also
exhibit competitive performance despite the reduced memory footprint. The
ranking of such features can be significantly sped-up using hardware-accelerated
Hamming distance computation, which, however, requires a different ranking
model, which is left for future work. For its superior compression ratios and neg-
ligible impact on performance, product quantization remains an obvious choice
for the compression of ConvNet features. The fact that the ConvNet features are
very sparse, with the CNN-128 representation typically being over 60% zeros,
is one reason why they are so amenable to compression, and it is possible that
with compression methods geared specifically to capitalise on this sparsity even
higher compression ratios could be acheived.
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Fig. 3. Difference between retrieved results when training using VOC data
and Google training data. Results are shown over the MIRFLICKR-1M dataset
(Scenarios 2b and 3b).

Scenario 2b (VOC Train/MIRFLICKR Test). Given that the MIRFLICKR-
1M dataset contains many instances of all of the PASCAL VOC classes, moving
to testing solely on MIRFLICKR leads to a jump in performance of the results
across all methods. Nonetheless, this scenario provides a closer representation
of the performance of a real-world on-the-fly object category retrieval system,
given that the image statistics of the MIRFLICKR-1M dataset are not known
in advance.

Scenario 3a (Google Train/MIRFLICKR Test). Switching to noisy train-
ing images from Google rather than the pre-curated PASCAL VOC training im-
ages as expected results in a small drop (∼ 6%) across the board for all methods.
However, the precision at the top of the ranking remains subjectively very good.
Nonetheless, as shown in Figure 3, the actual images returned from the dataset
are very different, which reflects the differences in the training data sourced from
Google Image search versus that from the curated dataset. For example, a query
for ‘chair’ returns predominantly indoor scenes with regular dining-table chairs
when using VOC training data, and more avant-garde, modern designs, generally
centred in the frame when using Google training data.

Scenario 3b (Google Train + negative pool/MIRFLICKR Test). In
this scenario, we switch to using a fixed pool of negative data sourced from a set
of ‘negative’ queries, and it can be seen how this improves the results by up to
∼ 5%. This may be a result of the larger negative training pool size (∼ 16, 000
images vs. ∼ 4, 000 images when using queries for all other VOC classes to
provide the negative data as we do in Scenario 3a). Given the assumed lack of
coverage in the fixed negative image pool (as it is sourced by issuing queries for
deliberately non-specific terms to facilitate its application to as broad a range of
queries as possible), this suggests that to a certain extent lack of diversity can
be made up for by using a larger number of negative training images.

3.2 Implementation Details

Our implementation of IFV and ConvNet image representations follows that
of [21]. In more detail, for IFV computation we use their setting ‘FK IN 512 (x,y)’,
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which corresponds to: (i) dense rootSIFT [31] local features with spatial exten-
sion [32], extracted with 3 pixel step over 7 scales (

√
2 scaling factor); (ii) Im-

proved Fisher vector encoding [13] using a GMM codebook with 512 Gaussians;
(iii) intra normalisation [33] of the Fisher vector.

Our ConvNet training and computation framework is based on the pub-
licly available Caffe toolbox [34]. The two ConvNet configurations, considered in
this paper (‘CNN M 2048’ and ‘CNN M 128’) are pre-trained on the ImageNet
ILSVRC-2012 dataset using the configurations described in [21]4. Namely, they
contain 5 convolutional and 2 fully-connected layers, interleaved with rectifica-
tion non-linearities and max-pooling. The stack of layers is followed by a 1000-
way soft-max classifier, which is removed after pre-training is finished (turning
a ConvNet from an ImageNet classifier to a generic image descriptor). The only
difference between the two ConvNets is the dimensionality of the second fully-
connected layer, which is 2048 for ‘CNN M 2048’ and 128 for ‘CNN M 128’.

In order to provide a similar setup to our on-the-fly architecture in Sec-
tion 4, which uses a linear predictor 〈w, φ(I)〉 learnt using SVM hinge loss and
a quadratic regulariser, as our learning stage we use a standard linear support
vector machine implementation. The C parameter is determined using the VOC
validation set for scenario 1, and fixed at 0.25 for all other experiments.

4 On-the-fly Architecture

Having evaluated various image representations in Sect. 3, we now describe the
architecture of the object category retrieval system, which fully exploits the
advantages of ConvNet image representations. From the user experience point of
view, the main requirement to our system is instant response: the first ranking of
the repository images should be obtained immediately (in under a second), with
a potential improvement over time. This dictates the following design choice:
downloading the training images from the Internet should be carried out in
parallel with training a model on the already downloaded images in the on-line
fashion. As a result, at any point of time, the current model can be used to
perform ranking of the dataset images.

For this approach to work, however, image representation should satisfy the
following requirements: (i) highly discriminative, so that even a handful of train-
ing samples are sufficient to learn a linear ranking model; (ii) fast-to-compute, to
maximise the amount of training data processed within the allocated time bud-
get; (iii) low memory footprint, to allow for storing large-scale datasets in the
main memory, and ranking them efficiently. As has been demonstrated in Sect. 3,
a ConvNet image representation is a perfect match for these requirements. In-
deed, pre-training on a large image collection (ImageNet) leads to highly discrim-
inative representation, and even a few training samples are sufficient for training
an accurate linear model; ConvNet features can be computed very quickly on
the highly-parallel GPU hardware; they have low dimensionality (even without
PQ compression) and can be instantly scored using a linear model on the GPU.

4 http://www.robots.ox.ac.uk/~vgg/software/deep_eval/
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Our on-the-fly architecture is illustrated in Fig. 1. It is divided into the
CPU-based front-end (which controls the graphical user interface and downloads
the training images from the Internet) and the GPU-based back-end, which
continually trains the ranking model on the downloaded images and periodically
applies it to the repository. The category retrieval is carried out as follows.
Off-line (pre-processing). To allow for fast processing, the ConvNet features
for the target dataset images are pre-computed off-line, using the CNN-128 ar-
chitecture. We also prepare the fixed negative image pool for all queries by
issuing our negative pool queries (see Section 2.2) to both Bing and Google im-
age search, and downloading the returned URLs. The negative image feature
features are also pre-computed. The memory requirements for storing the pre-
computed features are as follows: 488 MB for the MIRFLICKR-1M dataset and
78 MB for the pool of 16K negative features. It is thus feasible to permanently
store the features of both negative and dataset images in the high-speed GPU
memory even without compression of any kind (a consumer-grade NVIDIA GTX
Titan GPU, used in our experiments, is equipped with 6GB RAM). As noted in
Section 2, the ConvNet features can be compressed further by up to 16× using
product quantization without significant degradation in performance, making
datasets of up to 160M images storable in GPU memory, setting 1GB aside for
storage of the model (compared to 10M images without compression), and more
if multiple GPUs are used. Many recent laptops are fitted with a GPU contain-
ing similar amounts of memory, making our system theoretically runnable on a
single laptop. Furthermore, whilst storing the target repository on the GPU is
preferable in terms of the ranking time, in the case of datasets of 1B+ images,
it can be placed in the CPU memory, which typically has larger capacity.
On-line (CPU front-end). Given a textual query, provided by a user (e.g . in
a browser window), the front-end starts by downloading relevant images, which
will be used as positive samples for the queried category and fed to the GPU
back-end. At regular time intervals, the front-end receives a ranked list of dataset
images from the back-end, and displays them in the user interface.
On-line (GPU back-end). The GPU back-end runs in parallel with the front-
end, and is responsible for both training the ranking model and applying it to the
dataset. Training an L2-regularised linear SVM model is carried out using the
mini-batch SGD with Pegasos updates [35]: at iteration t, the learning rate is 1

λt ,
where λ is the L2-norm regularisation constant, set to 1 in our experiments. Each
batch contains an equal amount of positive and negative samples; the total batch
size was set to B = 32 in our experiments. The training commences as soon as
the first positive image has been downloaded and is received from the front-end,
after which B random crops are taken each iteration from the pool of positive
training images downloaded so far. The front-end in the meantime will continue
downloading new images from the Internet, constantly increasing the size of the
positive image pool and the diversity of the extracted crops. We note that while
the positive image features need to be computed on-the-fly, this is very quick in
the case of ConvNets. Ranking takes place using the current SVM model every
τ seconds (we used τ ∼ 0.18). As mentioned above, the pre-computed dataset
features are pre-stored on a GPU, so the scores for 1M images are computed in
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Fig. 4. Precision @ 100 against training time for four queries using our on-
the-fly architecture. The number of images in the dynamically expanding positive
image training pool over time is also marked on the plot. The top-4 returned images
for the ‘sheep’ query at the first four time-steps (up to 0.73s) is shown to the right.
False positives are outlined in red, and new images in the top-4 at each time step are
outlined in blue. Even for this moderately challenging query, the model settles in under
a second.

≈ 0.01s. The 1M scores are then ranked (also on GPU, ≈ 0.002s) and the list of
the top-ranked images is passed to the front-end to be displayed to the user. All
components of the GPU back-end are implemented within the same framework,
derived from Caffe [34].

4.1 System Performance

In order to evaluate the real-world performance of the system, we ran queries for
several PASCAL VOC classes and tracked how the performance (measured in
terms of Precision @ 100) evolved over time. To simulate the latency introduced
by downloading images from the Internet, we limited the rate of positive images
entering the network to 12 images/second (which is what we found to be a
typical average real-world rate on our test system). These images were sampled
randomly from the top-50 image URLs returned from Google Image search.

The results of these experiments for four classes are shown in Figure 4. Even
for some of the most challenging PASCAL VOC classes ‘sheep’ and ‘softa’, the
performance converged to its final value in ∼ 0.6 seconds, and as can be seen
from the evolving ranking at each time-step the ordering at the top of the ranking
generally stabilizes within a second, showing a good diversity of results. For easier
classes such as ‘aeroplane’, convergence and stabilization occurs even faster.

In real terms, this results in a typical query time for our on-the-fly archi-
tecture, from entering the text query to viewing the ranked retrieved images,
of 1–2 seconds and often less to complete convergence and stabilization of
results. However, one of the advantages of our proposed architecture is that it
is adaptable to differing query complexity, and we can return good results early
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! ‘Lion’ – CNN 128 (Prec. 1.0 @ 100)

! ‘Truck’ – CNN 128 (Prec. 0.95 @ 100) ! ‘Capybara’ – CNN 128 (Prec. 0.14 @ 100)

! ‘Cake’ – CNN 128 (Prec. 0.92 @ 100)

Fig. 5. Sample results for queries outside of the twenty PASCAL VOC
classes. False positives are outlined in red.

whilst still continuing to train in the background if necessary, exposing the clas-
sifier to an expanding pool of training data as it is downloaded from the web
and updating the ranked list on-the-fly.

Novel On-the-fly Queries. Although experimental results have thusfar only
been presented for the PASCAL VOC classes, the advantage of an on-the-fly
architecture is that no limitation is imposed on the object categories which
can be queried for, as a new classifier can be trained on demand (in our case
using Google Image search as a ‘live’ source of training data). We present some
additional selected results of the on-the-fly system in Figure 5, using the same
setup as in Scenario 3b and query terms disjunct from the twenty PASCAL VOC
classes. It can be seen that the architecture is very much generalisable to query
terms outside of the PASCAL category hierarchy.

5 Conclusion

In this paper we have presented a system for on-the-fly object category retrieval,
which builds upon the recent advances in deep convolutional image representa-
tions. We demonstrated how such representations can be efficiently compressed
and used in a novel incremental learning architecture, capable of retrieval across
datasets of 1M+ images within seconds and running entirely on a single GPU.

For larger datasets the CPU, or multiple GPU cards, could be employed
for ranking once the classifier has been learnt on the GPU. Along with further
investigation of how the diversity of the ranked results changes over time, this
is the subject of future work.
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