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Abstract. In this work, we propose an Expert Decision Fusion (EDF)
system to tackle the large-scale indoor/outdoor image classification prob-
lem using two key ideas, namely, data grouping and decision stacking.
By data grouping, we partition the entire data space into multiple dis-
joint sub-spaces so that a more accurate prediction model can be trained
in each sub-space. After data grouping, the EDF system integrates soft
decisions from multiple classifiers (called experts here) through stack-
ing so that multiple experts can compensate each other’s weakness. The
EDF system offers more accurate and robust classification performance
since it can handle data diversity effectively while benefiting from data
abundance in large-scale datasets. The advantages of data grouping and
decision stacking are explained and demonstrated in detail. We conduct
experiments on the SUN dataset and show that the EDF system out-
performs all existing methods by a significant margin with a correct
classification rate of 91%.

1 Introduction

Indoor/outdoor scene classification is one of the basic scene classification prob-
lems in computer vision. Its solutions contribute to general scene classification [1–
6], image tagging [7–9], and many other applications [10–13]. As compared to
general scene classification problems, the indoor/outdoor scene classification
problem has a clearer definition, namely, whether the scene is inside or outside
a man-made structure with enclosed roofs and walls. Since the man-made struc-
ture is well-defined, the decision is unambiguous under various circumstances.

Indoor/outdoor classification allows a precise characterization of a wide range
of images with diversified semantic meanings. For example, images from 1©
kitchen to 9© green house in the left column of Fig. 1 should all be classified
as indoor images. In contrast with other scene classification problems [14–16],
semantic objects in the scene may not help much in the decision. For example,
indoor 5© swimming pool and outdoor 5© swimming pool in Fig. 1 share the same
salient semantic object (i.e., the pool), yet they should be classified differently
from the aspect of indoor/outdoor scene classification. The same observation
occurs in quite a few real-world images.
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Fig. 1. Exemplary indoor and outdoor scene images from the test dataset are given in
the left and right of the dash line, respectively.

Millions of images have been created every day due to the popularity of smart
phones. Due to the huge size and great diversity of image data, applications such
as large-scale image search [17] and tagging [18] will benefit from accurate in-
door/outdoor classification results. Several methods, including SP [19], VFJ [20],
SSL [21], PY [22], KPK [23] and XHE [24], were proposed to tackle this prob-
lem based on image datasets consisting of about 1,000 images. It is not clear
whether the reported performance of these methods is scalable to large-scale
datasets consisting of more than 100,000 images. This is the main focus of our
current research.

To address the large-scale indoor/outdoor scene classification problem, we
propose an Expert Decision Fusion (EDF) system that consists of two key ideas
– data grouping and decision stacking. In contrast with prior art, the proposed
EDF system is less concerned with the search of new features but on a meaningful
way to partition the dataset and organize basic indoor/outdoor classifiers in an
effective way to lead to a more accurate and robust classification system. For
convenience, each basic indoor/outdoor classifier is called an “expert” in this
paper.

The design of the EDF system can be described as follows. We select a set of
experts as the constituent members of the EDF system. After evaluating a few
existing indoor/outdoor image classifiers [19–33], we choose 6 experts. They are
SP [19], VFJ [20], SSL [21], PY [22], KPK [23] and XHE [24]. Furthermore, we
developed three new experts (namely, HSH, TN and HDH) on our own. To han-
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dle the problem of data diversity, we propose an effective way to partition data
samples into multiple groups, where data in one group are more homogeneous
to model and predict. Furthermore, the EDF system integrates soft decisions
of constituent experts via stacking [34–36] to offer a better classification perfor-
mance than each individual expert in each partitioned sub-space. To illustrate
the advantage of the EDF system, we label all images in the SUN [24] dataset
(consisting of 108,754 images in total) with the indoor/outdoor ground truth,
and compare the performance of a set of methods.

There are several contributions of this work. First, to the best of our knowl-
edge, this is the first study on the large-scale indoor/outdoor scene classification
problem with a dataset exceeding 100,000 images. The developed methodology
and learned experience contribute to the fundamentals of “big data” science and
engineering. Second, three new indoor/outdoor image classifiers (or experts) are
proposed as constituent members in the EDF system. Third, we demonstrate
the power of data grouping and decision stacking in the design of the EDF
system. Finally, the proposed EDF system reaches a correct classification rate
of 91% against the SUN dataset, which offers 6-26% performance improvement
over other benchmarking methods. Besides, we show that it provides a scalable
solution by examining its performance as a function of different sizes of the SUN
dataset.

One important lesson learned from our current study is that, as the data size
becomes larger, there are two competing factors that have a high impact on the
performance of a classification system – data diversity and data abundance. The
former demands a better classifier design. In this work, we propose the use of
data grouping and decision stacking to achieve this goal. Once the data diversity
problem is addressed, data abundance actually helps improve the performance
of a robust classifier.

The rest of this paper is organized as follows. We describe constituent experts
in the EDF system in Sec. 2, which include existing indoor/outdoor scene clas-
sifiers as well as three newly developed classifiers. Then, the design of the EDF
system is detailed in Sec. 3. Experimental results are reported and discussion is
given in Sec. 4. Finally, concluding remarks and possible future extensions are
presented in Sec. 5.

2 Description of Constituent Experts

2.1 Six Experts from Existing Work

Many indoor/outdoor scene classification solutions have been proposed in the
past 15 years. The main focus has been on the selection of discriminant features.
Low-level features such as color, texture and shape have been examined. For
example, color histograms [19, 21, 23] and color moments [20] are two popular
features. The global color pattern of tiny images [24] offers another color descrip-
tor. Besides the RGB color space, other color spaces such as Ohta [37], LST and
HSV, were studied [19, 21, 23]. Texture features were applied to indoor/outdoor
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scene classification [19, 21]. The MSAR [38] and the multi-scale wavelet [39] are
used as local texture descriptors.

Features such as edge angle histograms [23] and responses of Gabor filters
(GIST, [22, 29]) were used in recent works. KPK [23] partitions an image into
one horizontal block in the top portion and four vertical blocks in the middle and
lower portions and assigns different weights to features in these five blocks for
further processing. Rather than partitioning an image into blocks, PY [22] com-
putes the GIST [40] features from the original image and its edge map separately
and cascades the two responses into a feature vector.

The performance of these classifiers approaches to their limits quickly as the
image dataset becomes larger. We choose six of them as constituent experts of
the EDF system, denoted by SP [19], VFJ [20], SSL [21], PY [22], KPK [23] and
XHE [24]. We implement all of them by ourselves in the experimental section
since none of the source codes is available.

Feature extraction and classifier training are two basic steps in developing
an expert. Machine learning has been widely used in classifier training. The
K-Nearest Neighbor (KNN) algorithm and the Learning Vector Quantization
(LVQ) [41]) were considered in [19, 29] and [20], respectively, where the choice of
a good distance measure was the main issue. Later, the Support Vector Machine
(SVM) [42] was used in [21–23] and the Probability Neural Network (PNN) [43]
became popular due to their good performance and the availability of open
source codes.

2.2 Three New Experts

We propose three new experts based on the features of Thermal Noise (TN), the
Hue-Saturation Histogram (HSH) and the Hue-Dark Histogram (HDH). Their
justification and implementation are detailed below.
The TN Expert. Thermal noise [44] arises in the image acquisition process
due to poor illumination, high temperature, etc. Typically, indoor scenes have
weak lighting sources and lower temperatures while outdoor scenes have stronger
natural light and higher temperatures. For this reason, we propose to use TN to
differentiate indoor/outdoor scenes. In the feature extraction step, noise levels
in different color channels are calculated as a descriptor. First, we adopt a bi-
lateral filter approach [45] to denoise each channel of the RGB, HSV and YUV
color representations of an input image. Then, absolute differences between the
original and the denoised image channels are computed to yield 9 noise maps
for a single color image. Finally, standard deviations of all noise maps are con-
catenated to form a feature vector. In the model training step, we adopt linear
SVM in the package [42] and the 5-fold cross validation process for performance
evaluation.
The HSH Expert. The HSV color space is strongly linked to human visual
perception. Here, we use a “modified” Hue-Saturation Histogram (HSH) to char-
acterize the global color distribution of an image based on the following obser-
vation. Image pixels with low value (V) and low saturation (S) components do
not contribute to the discrimination of indoor/outdoor scenes since too dark or
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bright pixels are not reliable in the decision. Hence, the hue-saturation histogram
is only calculated in a partial volume of the HSV color space by excluding dark
and bright pixels in our implementation. That is, for a pixel with its HSV color
coordinates (h, s, v) we will include this pixel in the histogram calculation only
if v ≥ Tv, s ≥ Ts. Otherwise, it is abandoned. Tv and Ts are empirically set to
0.2 and 0.1, respectively. We quantize the hue values into 16 bins and adopt a
5-bin saturation histogram for each hue bin. Consequently, we obtain an 80-bin
hue-saturation histogram of an image. This HSH descriptor is used to train a
linear SVM classifier to yield the HSH expert.
The HDH Expert. The dark channel was introduced in [46]. For a given pixel,
its dark channel value, denoted by D, is the lowest one among its R, G, B three
channel values. We have an interesting observation, namely, the dark channel
patterns are different for indoor and outdoor scenes. Bright red objects in indoor
scenes, such as the carpet in 2© parlor and sheet in 3© bedroom in Fig. 1, usually
have small dark channel values since they have small values in green and blue
channels. In contrast, due to lighting conditions, red objects in outdoor scenes,
such as walls in 1© urban and the sunset halo in 3© beach in Fig. 1 have larger
dark channel values. Furthermore, we observe different relations between certain
colors and their dark channel values in indoor and outdoor images. To model this
relationship and design a suitable feature, we partition an image into 4× 4 = 16
sub-images and calculate the hue-dark histogram in each sub-image. For the hue-
dark histogram, we quantize the hue channel values into 16 bins and compute
a 5-bin dark value histogram in each hue bin to result in a 80-bin hue-dark
histogram (HDH). Then, we concatenate the HDH descriptors of 16 sub-images
to yield the final HDH descriptor, which is a 1280-dimensional feature vector.
Again, a SVM model is used to train the HDH expert.

2.3 Feature Selection via ANOVA

A correct classification rate of 90% for several experts such as SP, VFJ and
SSL was reported before on experiments with around 1,000 images. However,
when the data size becomes much larger, we see a significant performance drop
between the training stage and the testing stage for experts with a high di-
mensional feature vector. This phenomenon is attributed to the over-fitting of
high-dimensional feature vector in the training stage. We list the feature vec-
tor dimension of each expert in Table 1. To avoid the overfitting problem in
classifier training and reduce the training-testing performance gap, one solution

Table 1. The feature dimension numbers of experts before (labeled as “original”) and
after (labeled as “selected”) the ANOVA feature selection process.

Experts SP VFJ SSL PY KPK XHE TN HSH HDH

Original 1536 600 880 1024 80 768 9 80 1280

Selected 360 40 280 300 80 500 9 80 240
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Fig. 2. The correct classification rate curve of SP with top D dimensions of the SP
feature vector used as the training features and being evaluated by 5-fold cross valida-
tion.

is to select a smaller set of discriminant features. In the following, we use the
well-known analysis of variance (ANOVA [47]) method for feature selection.

One of the most widely used tools in ANOVA is the F-test [48]. For a single
feature dimension, its F-value is defined as the ratio of the between-group vari-
ance and the within-group variance. Let Ȳ be the mean of all data in this feature
dimension, and K is the number of groups. We have indoor/outdoor two groups
so that K = 2. We use Ȳi and ni to denote the sample mean and the observation
number over this dimension in the ith group. Then, the between-group variance
of a single feature dimension can be written as

V arbg =

K∑
i=1

ni(Ȳi − Ȳ )2/(K − 1). (1)

Furthermore, its within-group variance can be expressed as

V arwg =
∑
ij

ni(Yij − Ȳi)
2/(N −K), (2)

where Yij is the jth observation in the ith out of K groups and N is the overall
sample size. Finally, the F-value can be written mathematically as

F =
V arbg
V arwg

. (3)

In classification, the larger F value is, the more discriminative this feature
dimension is. After computing the F values of all feature dimensions of an ex-
pert’s feature vector, we rank them from top to bottom and select the top D as
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desired features for classification. Fig. 2 shows the performance curve of the SP
expert as a function of the D value. We select the 360 dimensions with larger F
values for SP based on this figure since the performance becomes saturated after
the use of 360 feature dimensions. In our implementation, different experts have
different numbers of selected feature dimensions. This result is listed in Table 1.

3 Design and Analysis of EDF System

Instead of adopting a single classifier, the idea of using a system of classifiers to
improve the overall classification performance has been investigated before. For
example, SP [19], SSL [21] and the work in [29] all adopt a two-stage classification
system. At the first stage, they partition images into 4× 4 = 16 sub-images and
determine indoor or outdoor labels for each sub-image individually. Then, the
decisions of these 16 sub-images are integrated by either voting or training a
second-level classifier to make the final decision for the whole image. There is
a major difference between EDF and the above idea. That is, the EDF system
does not integrate decisions from sub-images but decisions from multiple experts
made for the whole image. In the following, we first conduct the analysis on a
single expert’s decision in Sec. 3.1. Then, we explain the “diversity gain” of any
two experts in Sec. 3.2. Finally, we discuss the structure of the EDF system in
Sec. 3.3.

3.1 Analysis of Single Expert Decision

Before considering the collaboration of experts, we first analyze the decision
behavior of a single expert. Without loss of generality, we use expert KPK as
an illustrative example. For the jth image sample, denoted by Ij , KPK can

generate a soft decision score, dkpkj , for it using its sample-to-boundary distance
normalized to the range [0, 1], where 0 and 1 indicate the indoor and outdoor
scenes with complete confidence, respectively. When there is only one expert, we
need to quantize the soft decision score into a binary decision. That is, we divide
interval [0, 1] into two subintervals S1 = [0, T ) and S2 = [T, 1], where 0 < T < 1

is a proper threshold value (typically, T = 0.5). If dkpkj ∈ S1, Ij is classified to

an indoor image. Otherwise, dkpkj ∈ S2 and Ij is classified to an outdoor image.

Fig. 3. The distribution of soft KPK decision scores dkpk from 5,000 random samples.
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When soft decision score dkpkj is closer to threshold T , expert KPK is less
confident about its decision. To take this into account, we may partition the
entire decision interval into 3 subintervals S1 = [0, T1), S2 = [T1, T2), and S3 =
[T2, 1], where 0 < T1 < T2 < 1 are two thresholds. Parameters T1 and T2 are set
to 0.35 and 0.65 in our implementation. Subintervals S1 and S3 are called the
confident regions while subinterval S2 is called the uncertain region.

We show the distribution of soft KPK decision scores collected from 5000
sample images randomly selected from the SUN database in Fig. 3, where red
circles and green crosses denote indoor and outdoor image samples, respectively.
To avoid the overlap of cluttered samples along the x-axis, we generate a ver-
tical random shift between -0.1 to 0.1 for each sample, which is purely for the
visualization purpose and has no practical meaning. We see that most red circles
are in S1 while most green crosses are in S3. They can be correctly classified by
KPK. On the other hand, there are few red circles in S3 and few green crosses
in S1, and they will be misclassified by KPK. There are some red circles and
green crosses in S2, which are difficult to set apart using the soft KPK decision
scores. It is apparent that the criteria of a good expert can be stated as:

1. it has a larger ratio of correct versus incorrect decision samples in S1 and
S3; and

2. it has a smaller percentage of samples in S2.

We will discuss ways to achieve the above goal by inviting the second expert to
join the decision-making process in Sec. 3.2.

To gain more sights, we show the KPK soft scores of all 18 images in Fig. 1
in Fig. 3. Note that we select the images in Fig. 1 carefully so that there are
three representative indoor and outdoor images in each sub-interval in Fig. 3.
Visual inspection of these sample images will help us understand the strength
and weakness of KPK.
Images in the Uncertain Region. For images in S2, KPK cannot make a firm
decision. Indoor images 4©- 6© and outdoor images 4©- 6© lie in this region. The
two swimming pool images, images 5© in both indoor and outdoor categories,
have similar elements such as blue water and dark tops. In addition, indoor and
outdoor images 6© also share similar color patterns.

For images in S1 and S3, KPK has confident soft scores. They can be further
divided into two cases.
Correctly Classified Images. Indoor images 1©- 3© and outdoor images 7©-
9© are correctly classified. Recall that KPK partitions an image into 5 blocks
(namely, one horizon block in the top and four parallel vertical blocks in the
lower portion). Indoor images 1©- 3© have small dkpk values since they all have
red and wooden objects at the bottom part of the images and shell-white ceilings
or walls, which are easy to classify with KPK’s block-based color and edge de-
scriptors. Similarly, the top horizontal block carries the valuable sky information
for outdoor images 7©- 9©.
Misclassified Images. Outdoor images 1©- 3© and indoor images 7©- 9© are
misclassified although their scores fall in the confident regions. They are called
outliers. Outdoor images 1©- 3© all have dark colors and clear edge structures
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over the entire image, which misleads KPK. The blue top part of indoor image
7© is also misleading. Indoor image 8© is difficult since its wall contains the
outdoor view and painting. Indoor image 9© can be even challenging to human
being since one may make a different decision depending on the existence of the
ceiling and the wall.

For the outlying images, low-level features mislead KPK to draw a confident
yet wrong conclusion. Human can make a correct decision by understanding the
semantic meaning of the scenes such as the river, the street and the ocean in
outdoor images 1©- 3©, respectively. Furthermore, indoor images 3© and 7© have
the same semantic theme (bedroom) but different low-level features (color and
texture patterns).

It is well known that there exists a gap between low-level features and high-
level semantics of an image, which explains the fundamental limits of experts
that rely purely on features in decision-making. Despite the semantic gap, a well-
designed feature-based classifier can offer a reasonable classification performance
due to the strong correlation between good low-level features and high-level
semantics in a great majority of images.

3.2 Diversity Gain of Two Experts

As the size of image data becomes larger and their contents become more diver-
sified, it is challenging to design a single expert that can handle all image types
effectively. It is a natural idea to get the opinions of multiple experts and com-
bine their opinions to form one final decision. In this subsection, we consider the
simplest two-expert case. Intuitively, such a system may not work well under the

Fig. 4. The distribution of KPK-PY soft decision scores for the same 5,000 randomly
picked samples shown in Fig. 3.
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following two scenarios: 1) if the opinions of two experts are too similar to each
other; or 2) if one expert is significantly better than the other. In both scenarios,
we do not benefit much by inviting the second expert in the decision process.
Scenario (2) is self-evident. We will focus on scenario (1) by investigating the
diversity gain of the two-expert system.

Without loss of generality, we choose KPK and PY as the two experts. The
soft decision scores of expert PY, denoted by dpy, for the same 5,000 samples are
plotted along the vertical axis in Fig. 4. The jth sample image represented by a
red circle (indoor) or a green cross (outdoor) has a 2-D coordinate, (dkpkj , dpyj ),
whose coordinate domain is called the KPK-PY soft decision map. With differ-
ent combinations of soft decisions from the two experts, we can divide the 2-D
decision space into 9 regions. KPK and PY have consistent opinions in their soft
decisions in regions 1, 5 and 9, complementary decisions in regions 2, 4, 6 and
8, and contradictory opinions in regions 3 and 7.

By comparing Figs. 3 and 4, we see that PY can help KPK in resolving
some decision ambiguities in regions 4-6. That is, PY can offer more confident
scores for images in regions 4 and 5 than KPK. Similarly, KPK can help PY in
resolving some decision ambiguity in regions 2, 5 and 8 since KPK is confident
for images in regions 2 and 8. KPK and PY offer complementary strength since
they examine different low-level features in evaluating an input image. KPK
focuses on the local color and edge distributions while PY focuses on global
scene structures. Indoor/outdoor images 2©, 4©, 6© and 8© are exemplary images
in regions 2, 4, 6 and 8, respectively.

We focus on indoor/outdoor images 4© and 6©, for which KPK does not have
a confident score. Recall that PY [22] does not partition an image into multiple
sub-images but computes the GIST features from the original image and its
edge map separately and cascades the two responses into a feature vector. As a
result, PY can make a more confident decision. PY’s decisions on indoor image
4© (complicated scene structure for the whole image) and outdoor image 6©
(textures of grass and leaves) are correct, yet PY’s decisions on indoor image
6© (similar to outdoor image 6©) and outdoor image 4© (consisting of many
straight vertical lines similar to the view observed inside a church building) are
not accurate. Since there are more indoor images than outdoor images in region
4 and more outdoor images than indoor images in region 6, PY does contribute
to the correct classification rate in regions 4 and 6.

The same discussion applies to regions 2 and 8, where KPK helps PY in
resolving ambiguity in a positive way. Region 5 remains to be ambiguous in the
two-expert system. If the two experts share very similar opinions, most samples
will fall in regions 1, 5 and 9 so that the two-expert system does not offer a
clear advantage. On the other hand, if the two experts have good but diversified
opinions, we will observe more samples in the four complementary regions and,
as a result, the overall classification performance can be improved.

Finally, PY and KPK have conflicting opinions in regions 3 and 7. To resolve
the conflict, we can invite another expert in the decision making process as
detailed in the next subsection.
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3.3 Structure of EDF System

We use Fig. 5 to explain the design methodology of the EDF system. It consists
of the following two stages.

First, we perform data grouping by considering a two-expert system (say,
KPK and PY shown in this figure). Given the KPK-PY soft decision map, we
partition the data sample space into 9 regions. Generally speaking, the data
grouping technique is a powerful pre-processing step in machine learning. Its
main purpose is to enhance the correlation between training and testing sam-
ples. A good grouping strategy can contribute to the overall performance of the
learning-based system significantly. We have tried different combinations of two
experts from nine experts introduced in Sec. 2, and found that KPK and PY
provide the best results due to their excellent individual performance and good
complementary property. After grouping, the diversity of data samples in each
region is reduced.

Second, we fuse the soft decisions of all nine experts in each region. We
compare two methods in Sec. 4 – voting and stacking. For voting, we binarize
the soft decision of each expert and use the simple majority voting rule to fuse
expert’s decisions. For stacking, we build a meta-level classification model that
takes soft scores of all experts as the input features and make a final binary
system decision. Since the training data in each region are different, different
meta-level data models are built for different regions. The meta-level classifier
is trained by linear SVM using samples with known binary outputs and, then,
the trained model is used to predict samples with unknown binary outputs in
the test. The correct classification rates of voting-based and stacking-based EDF

Fig. 5. The structure of the EDF system, where Stacking #3 indicates the stacking
method in Region 3 of the joint KPK-PY soft decision map.
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systems are compared in Sec. 4. We will show that the stacking approach provides
a better result.

Both grouping and stacking provide powerful tools to handle the problem
of data diversity. Through grouping, we have more and smaller homogeneous
datasets rather than one large highly heterogenous dataset. Through stacking,
we can improve the robustness of the final decision in each region by leveraging
the complementary strength of multiple experts.

4 Experimental Results

In the indoor/outdoor scene image classification literature, datasets used by
other research groups are either too small or not available to the public. For
example, the Kodak consumer image dataset, tested by SP [19] and SSL [21],
contains 1343 images. Coral, used by VFJ [20], is not available to the public. A
benchmark of 1000 images used in [29] is also not available. KPK [23] collects
around 1200 images from the Internet, yet they are not released to the public.
Two datasets consisting of 390 and 968 images, respectively, and used in [43]
are accessible from their websites. Recently, a very large dataset, SUN, was
published by [24] for the general scene classification benchmark. It consists of
397 well-sampled scene category indexes and 108,754 images. We labeled the
whole SUN dataset into 47,260 indoor images and 61,494 outdoor images. Our
experiments are conducted with respect to this dataset.

First, we show the correct classification rates of nine experts against the full
SUN dataset in Table 2 without data grouping. The 5-fold cross validation is
adopted in the experiment and the averaged performance is listed. There are one,
three and five experts with correct classification rates between 60-69%, 70-79%
and 80-89%, respectively. Expert KPK has the best performance with a correct
classification rate of 85.30%.

Next, we show the correct classification rate achieved by nine experts and
the EDF system in Regions 1-9 in Table 3, where the 5-fold cross validation is
conducted in each region and the averaged performance is reported. For the last
row, we perform the weighted sum of correct rates in nine regions based on their
sample population to derive the results with respect to “all” data samples. For
EDFV , we binarize the soft decision of each expert and use the voting scheme
to fuse expert’s decisions. The majority rule is used to select the final system
decision. For EDFS , we adopt the stacking scheme to fuse experts’ decisions.
That is, we build a meta-level on top of all soft decisions which learns the fusion
rule with an SVM classifier that treats experts’ soft decisions as features. We

Table 2. Correct classification rate of nine experts conducted on the full dataset (in
the unit of %).

SP VFJ SSL PY KPK XHE TN HSH HDH

82.80 79.01 84.69 82.28 85.30 78.68 64.52 77.84 82.23
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Table 3. Classification performance comparison of nine experts and EDF in Regions
1-9 on the full dataset (in the unit of %).

SP VFJ SSL PY KPK XHE TN HSH HDH EDFV EDFS EDF

1 92.22 92.22 92.22 92.22 92.22 92.22 92.22 92.22 92.22 92.22 92.43 92.43

2 76.91 75.99 78.24 80.07 75.96 75.96 75.92 75.94 77.34 75.96 86.32 86.32

3 71.63 61.18 73.18 70.07 66.17 73.18 61.47 66.75 70.49 77.48 81.36 81.36

4 83.46 83.22 83.67 83.22 83.22 83.22 83.22 83.32 83.41 83.22 85.58 85.58

5 68.96 56.87 70.50 65.21 60.23 70.16 61.57 66.14 67.79 68.23 79.84 79.84

6 81.17 81.07 81.72 80.90 81.09 80.99 80.87 81.06 81.70 80.90 86.32 86.32

7 70.04 63.06 71.72 68.68 66.14 71.06 63.06 64.62 68.80 65.60 80.12 80.12

8 72.51 70.56 72.58 75.35 70.37 72.44 70.35 70.58 72.05 70.51 81.54 81.54

9 96.70 96.74 96.74 96.75 96.74 96.74 96.74 96.74 96.74 96.74 96.74 96.74

All 88.64 87.44 88.96 88.64 87.87 88.73 87.56 88.00 88.56 88.52 91.15 91.15

see that the performance of EDFS is no worse than EDFV in all regions. Thus,
it is chosen to be the final EDF solution.

By comparing results in Table 2 and Table 3, we see clearly that the per-
formance of each expert has improved a lot (ranging from 4-11%) due to data
grouping. After data grouping, the performance gap among different experts nar-
rows down significantly. Their correct classification rates now are in the range
of 87.44-88.96%. The EDF system can achieve a correct classification rate of
91.15% by stacking all experts in each region. With the combination of group-
ing and stacking, the EDF system can outperform traditional experts (without
grouping) by a margin of 6-26%.

Finally, we plot the performance of each individual expert (without data
grouping) and the EDF system as a function of the size of the dataset in Fig. 6.
We select subsets of increasing sizes randomly from the SUN dataset and list
the size in the x-axis while the averaged correct classification rate using the 5-
fold cross validation is shown in the y-axis. The vertical segment on each marker
indicates the standard deviation of a particular test. We see that the performance
of some individual experts stay flat while others drop as the data size becomes
large. In contrast, the performance of the EDF system improves as the data size
becomes larger.

When the data size becomes larger, there are two competing factors that
influence the performance of a classification system in two opposite directions.
On one hand, the data become more diversified and the performance of an expert
may go down if its model cannot handle a diversified data set. On the other hand,
the number of similar data (i.e., belonging to the same data type) becomes more.
Data abundance helps improve the performance of learning-based classifiers.
Fig. 6 implies that the data diversity problem is under control by the robust
EDF system so that the EDF system benefits more from data abundance. We
expect the EDF system performance to be level-off at a certain data size although
we have not yet observed such a phenomenon in Fig. 6. This is because that the
EDF system does not address the semantic gap issue.
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Fig. 6. Comparison of classification performance of nine experts and EDF as a function
of the size of dataset.

5 Conclusion and Future Work

An Expert Decision Fusion (EDF) system was developed to address the large-
scale indoor/outdoor image classification problem in this work. As compared
with the traditional classifiers (or experts), the EDF system consists of two key
ideas: 1) grouping of data samples based on the soft decisions of two experts
into 9 regions; and 2) stacking of soft decisions from all constituent experts
to enhance the classification performance in each region. It was shown by ex-
perimental results that the proposed EDF system outperforms all traditional
classifiers in the classification accuracy by a margin of 6-26% on the large-scale
SUN image dataset. The classification performance of EDF improves as the size
of the dataset grows, which can be explained by its capability of handling data
diversity. With this capability in place, as the dataset grows to a very large size,
data abundance becomes a more dominant factor than data diversity. Thus, the
EDF system offers a robust and scalable solution.

As discussed in Sec. 3, there is some fundamental limits in the feature-based
classifiers since they do not take the image semantics into account. We expect to
see a point where the performance of EDF becomes saturated, which will be the
true upper performance bound of EDF. To achieve this goal, we need to look
for some dataset even larger than SUN. To improve the performance of EDF
furthermore beyond the saturation point, we need to look for semantic-based
experts. This is clearly a very challenging problem since it involves object and
scene recognition. Finally, a good indoor/outdoor image classifier is an important
pre-processing step to scene analysis. It is desirable to leverage our current results
to obtain better methods for scene classification and recognition.
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36. Džeroski, S., Ženko, B.: Is combining classifiers with stacking better than selecting
the best one? Machine learning 54 (2004) 255–273

37. Ohta, Y.I., Kanade, T., Sakai, T.: Color information for region segmentation.
Computer graphics and image processing 13 (1980) 222–241



Large-scale Indoor/Outdoor Image Classification via EDF 17

38. Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution
simultaneous autoregressive models. Pattern recognition 25 (1992) 173–188

39. Daubechies, I., et al.: Ten lectures on wavelets. Volume 61. SIAM (1992)
40. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation

of the spatial envelope. International journal of computer vision 42 (2001) 145–175
41. Kohonen, T., Kangas, J., Laaksonen, J., Torkkola, K.: Lvq pak: A software pack-

age for the correct application of learning vector quantization algorithms. In:
Neural Networks, 1992. IJCNN., International Joint Conference on. Volume 1.,
IEEE (1992) 725–730

42. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 2 (2011) 27

43. Gupta, L., Pathangay, V., Patra, A., Dyana, A., Das, S.: Indoor versus outdoor
scene classification using probabilistic neural network. EURASIP Journal on Ap-
plied Signal Processing 2007 (2007) 123–123

44. Johnson, J.B.: Thermal agitation of electricity in conductors. Physical review 32
(1928) 97

45. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Com-
puter Vision, 1998. Sixth International Conference on, IEEE (1998) 839–846

46. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (2011) 2341–
2353

47. Iversen, G.R., Norpoth, H.: Analysis of variance. Sage (1987)
48. Lomax, R.G., Hahs-Vaughn, D.L.: Statistical concepts: a second course. Routledge

(2013)


