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Abstract. In augmented reality applications for handheld devices, ac-
curacy and speed of the tracking algorithm are two of the most criti-
cal parameters to achieve realism. This paper presents a comprehensive
framework to evaluate feature tracking algorithms on these two param-
eters. While there is a substantial body of knowledge on these aspects,
a novel feature introduced in this paper is the use of error associated
with the estimated directional movement in performance measurements
to improve the evaluation framework. The work described in this paper
is a comparative evaluation of nine widely used feature point tracking
algorithms using the developed measurement framework and the results
are interpreted based on the characteristics of the algorithms as well as
the characteristics of test image sequences.

1 Introduction

In the field of computer vision, feature point tracking is the standard method
most often used to extract motion information in an image sequence. There
are many applications of feature point tracking in robotics, human computer
interaction, surveillance and activity monitoring. In this study we have focused
on evaluation of feature point tracking algorithms, which can be used to estimate
the 3D pose of a calibrated 2D camera in augmented reality applications. This is
important, for example, when we want to project a 3D object in a scene captured
on a 2D camera. In this evaluation we have considered algorithms error rate,
speed, robustness to unexpected changes of image properties and suitability for
augmented reality applications.

The well-known feature point tracking algorithms require the image sequence
to be of good quality. Algorithms use varying sets of assumptions (for exam-
ple brightness consistency assumption in Kanade Lucas Tomasi (KLT feature
tracker). The processing power consumed by different algorithms vary widely.
In all of these algorithms, occurrence of a non-admissible event in an image se-
quence adds an element of uncertainty that affects the robustness of the output.

In this study, nine feature point tracking algorithms have been evaluated
and compared. The objective of this study is to understand the performance
and robustness of the algorithms under the criteria of their capability to oper-
ate on handheld mobile platforms with built-in cameras. The images captured
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using such devices may possess a lower image quality and may be subjected to
involuntary device movements.

This paper is organized as follows. Section 2 includes the details of the algo-
rithms used and section 3 describes the data set used for the evaluation. Section
4 focuses on the evaluation methods and section 5 describes the results.

2 Tracking Algorithms

Feature trackers can be categorized to two main types as Trackers using Optical
Flow Algorithms and Trackers using Feature Descriptor Matching Algorithms.

For both of these types, feature points are required to be identified as an
initial step. Typically, feature points allow them to be distinctively identified
among other points.

Feature descriptors that store locality information of points are used in fea-
ture descriptor matching algorithms. Speeded Up Robust Features (SURF) [10],
Scale Invariant Feature Transform(SIFT) [5], Shi-Tomasi Corner Detector [12],
Binary Robust Invariant Scalable Keypoints (BRISK) [13], and Oriented FAST
and Rotated BRIEF (ORB) [7] are feature detectors that are used in the im-
plementation of algorithms that are compared in this work. Also, the feature
detectors SURF, SIFT, BRISK and ORB have feature description capabilities
in addition to detection. Furthermore, Fast Retina Keypoint (FREAK) [1] fea-
ture descriptor has also been used in this comparison. Trackers using optical flow
algorithms and trackers using feature descriptor matching algorithms with differ-
ent types of feature detectors and descriptors have been evaluated. Descriptions
of different types of algorithms along with the names that are being referred in
this paper are shown in Table 1.

Table 1. Description of trackers.

Tracker Type of tracker Feature
detector

Feature
descriptor

BRISK Feature matching BRISK BRISK

FARNEB Dense optical flow, using Gunnar Farnebacks al-
gorithm

Shi-Tomasi -

FREAK Feature matching SURF FREAK

KLT Lukas Kanade Optical flow Shi-Tomasi -

ORB Feature matching ORB ORB

SIFT Feature matching SIFT SIFT

SIFTSURF Feature matching SIFT SURF

SURFSIFT Feature matching SURF SIFT

SURF Feature matching SURF SURF
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It should be noted that when tracking feature points using a combination
of a detector and a descriptor, certain combinations (for example, SIFT and
FREAK) are not used if an improved version of an algorithm is used in another
combination (for example, SURF and FREAK where SURF is an improved ver-
sion of SIFT [10]). Furthermore, we have selected to evaluate only the currently
known best performing algorithm in a family of algorithms (for example, Harris
Corner detector [9] is not evaluated in favour of Shi-Tomasi Corner detector).

3 Evaluated Dataset

Table 2. Description of dataset.

Video Main challenging factors Number of
Frames

Resolution : 1280*720

1 Illumination variation, Scale variation 540

2 Autofocus, Motion blur, Very slow camera movement 469

3 Motion blur, High speed movements in all direction 290

4 Camera rotation, Shaky camera 273

5 Camera rotation, Autofocus, Motion blur 436

6 Camera rotation and translation, Autofocus, Motion blur 428

7 Camera rotation and translation, Ellipse shape camera path 700

8 Autofocus, Movement in all directions, Change in background
texture

656

9 Illumination change, Autofocus 488

Resolution : 1920*1080

10 Illumination change, Autofocus, Motion blur, Specular reflection 142

11 Background texture change 526

12 Specular reflection, Very slow camera movements, Camera rota-
tion

393

13 Scale variation 548

14 Camera rotation, translation, Specular reflection 604

15 Camera rotation and translation, Scale variation, Shaky camera
movements

526

16 Camera rotation and translation, Scale variation, Shaky camera
movements

450

Resolution : 640*480

17 Camera rotation and translation, Scale variation, Shaky camera
movements

502

In order to select the best tracking algorithm for augmented reality appli-
cations in handheld devices, it was decided to use a dataset that include all
the challenging factors in the expected context. The challenges considered were
motion-blur, illumination variation, scale variation, camera rotation, occlusion,
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shaky camera and changes of the focal point. The occurrence of these features
in the dataset is elaborated in the Table 2.

All the videos used as the dataset was captured using several mobile de-
vices to ensure that the quality and the characteristics mimic live data which is
expected to be received by an operational system.

4 Evaluation Method

The evaluation requires a set of feature points in the image sequence with known
positions. This is called the ground truth. To obtain the ground truth few points
were tracked throughout the image sequence manually. These points were se-
lected after carefully observing the whole image sequence for features that can
be clearly distinguished by the human eye (for example, the marked point in
Fig. 1). The manual tracking of selected points was done by more than one
tester and the averages of the tracked points were taken as the ground truth in
order to reduce the human error.

Fig. 1. Example of a manually tracked point.

The execution of implemented tracking algorithms with prepared video input
gives a sequence of homography matrices as output. From these, for each frame in
each image sequence, a perspective transformation is applied by using the first
frame of the image sequence as the reference. Let ground truth points of the
reference frame be P

′

g0, P
′

g1, P
′

g2 and P
′

g3. Then, using the homography matrix
corresponding to a frame, the approximate positions of Pg0, Pg1, Pg2 and Pg3 in
that frame is computed as shown in equation 1.

< P
′

g0, P
′

g1, P
′

g2, P
′

g3 >= H < Pg0, Pg1, Pg2, Pg3 > (1)

P
′

g0, P
′

g1, P
′

g2 and P
′

g3 are the estimated points in nth frames which are
corresponding to the ground truth points of that frame and H is the homography
matrix.
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Accuracy and performance are the two aspects which are considered in this
paper. In order to measure the accuracy, the estimates taken are (1) the distance
between projected points and the ground truth, which is the distance error and
(2) the optical flow deviation angle, which is the directional error.

4.1 The distance error

Fig. 2. Distance between the tracking points.

Taking the point P1 in Fig. 2 as a point of the ground truth and P2 in (b) of
Fig. 2 as the corresponding tracked point by the algorithm the Euclidean distance
between P1 and P2 was measured using equation 2. There d stands for the
Euclidean distance between P1 and P2, x1, x2, y1 and y2 are the corresponding
x, y coordinates of the points.

d =
√

(x1 − x2)2 + (y1 − y2)2 (2)

4.2 The directional error

In Fig. 3 (a) P1 is a ground truth point in the nth frame and in Fig. 3 (c), P2 is
a point that is being tracked by the algorithm, corresponding to P1 in Fig. 3 (a).
P

′
1 and P

′
2 are the points in the (n+1)th frame and those are corresponding to

P1 and P2 in Fig. 3 (a) and (c). Taking the vector between P1 and P
′
1 as U

′

and the vector between P2 and P
′
2 as V

′
where

V
′

= (v1, v2) (3)

U
′

= (u1, u2) (4)

The cosine of the angle between U
′

and V
′

can be obtained by equation 5.

cos(α) =
u1.v1 + u2.v2√
(u2

1+u
2
2)∗(v21+v22)

(5)
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This angle is an indication of the directional movements.

Fig. 3. The transition between nth frame and (n+1)th frame.

4.3 Speed

In order to obtain an estimation of the performance of each algorithm the number
of frames processed for a single unit of time was taken, using the same operating
platform conditions.

4.4 Aggregated score

For a complete comparison all three measurements need to be aggregated into
one score that will give the final ranking. The approach used in this work is
to standardize the scores of each criterion and doing a weighted summation
(equation 6).

FinalScoreT =
β ∗ ZS,T + γ

Zd,T
+ δ

Zα,T

β + γ + δ
(6)
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In equation 6 β, γ and δ are the weights used according to the required
priority for the speed, the distance error and for the directional error.

S =

∑v
i=1

∑fi
j=1

1
ti,j∑v

i=1

∑fi
j=1 1

(7)

Ed =

∑v
i=1

∑fi
j=1

∑pi,j
k=1 di,j,k∑v

i=1

∑fi
j=1

∑pi,j
k=1 1

(8)

Eα =

∑v
i=1

∑fi
j=1

∑pi,j
k=1 αi,j,k∑v

i=1

∑fi
j=1

∑pi,j
k=1 1

(9)

Where v is the size of dataset, f is the number of frames in ith video and ti,j
is the time taken to process the jth frame of ith video and pi,j is the number of
points marked as groundtruth in jth frame of ith video. d is the distance error
(equation 2) and α is the directional error (equation 5).

In equation 6 ZS,T is the standardized value of S in equation 7 for the
selected tracker T , Zd,T is the standardized value of Ed in equation 8 and Zα,T
is the standardized value of Eα in equation 9.

5 RESULTS

In analyzing the results, it was necessary to identify the characteristics of the
image sequences. For this purpose, the amount of approximated blur presented
in a video and the average contrast and color depth of each image in a video
were taken in to account.

To obtain approximated blur measurement, the reciprocal of number of edges
in the scene was considered. The number of edges was obtained using Canny Edge
Detector [4].

To identify the illumination change, the three channel RGB image sequences
were converted in to grey scale. For each image the average of pixel values were
taken as it reflects the average intensity of the image.

For each image the standard deviation of pixel values were taken as the
measurement of color depth. The results of the analysis are summarized below.
In the figures related to interpretation of results the legend which is followed is
depicted in Fig. 4. The area shown by a red rectangle is the focused area in each
graph.

5.1 Tracker BRISK

This tracker exhibited poor performance in the presence of blur caused by motion
as well as in the presence of blur caused by autofocus. This is due to BRISK
descriptors storing different values for the same feature in the presence of blur.
This behavior of the tracker on Video 2 is illustrated by Fig. 5.
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Fig. 4. Legend used in graphs.

Fig. 5. Distance, angle and blur measure of Video 2 —Tracker BRISK.

5.2 Tracker FARNEB

This tracker indicates a gradual increase in error with time (Fig. 6) (Fig. 7).

Fig. 6. Distance measure of Video 3 — Tracker FARNEB.

Sudden differences in image intensities are not handled well (Fig. 8). As
this is an optical flow algorithm this tracker cannot handle fast rotations of the
camera. Fig. 9 illustrates four frames from the image sequence of Video 12 which
contains camera rotation along with the tracked points.

It can be observed that moving closer to a tracked feature is handled well if
the feature gives the ability to identify the magnitude of flow in two orthogonal
directions. Features points that resemble corners are most suited for this scenario.
Fig. 10 illustrates three frames from the image sequence of Video 14 taken at
difference distances along with the tracked point. From that it can be identified
that corners are the best tracked points. Poorly tracked points are marked with
colored rectangles.
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Fig. 7. Distance measure of Video 11 — Tracker FARNEB.

Fig. 8. Distance measure and average of pixel values of Video 1 — Tracker
FARNEB.

Fig. 9. Camera rotation in Video 12.

Fig. 10. Points tracked in Video 12 –Tracker FARNEB.
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5.3 Tracker FREAK

This tracker is not capable of handling blur caused by autofocus or fast motion
of the camera (Fig. 11). As observed, orientation changes and scale variations of
the features are handled well by tracker FREAK.

Fig. 11. Distance, angle and blur measure of Video 2 – Tracker FREAK.

Fig. 12 illustrates the trajectories of ground truth points in Video 13. Starting
points are indicated in red and end points are indicated in blue. It can be seen
that the video has been subjected to scale variation. The distance error related
to that is illustrated in Fig. 13.

Fig. 12. Trajectories of ground truth points in Video 13.

Fig. 13. Distance measure of Video 13 — Tracker FREAK.
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5.4 Tracker KLT

This tracker depicts a gradual increasing error proportionate to the time (Fig. 14).
In Tracker KLT, sudden difference in image intensity of image sequence disrupts
the tracking process (Fig. 15). Blurring caused by autofocus or fast motion does
not have an effect on this tracker (Fig. 16). This tracker as an optical flow algo-
rithm which incorporates a simple motion model cannot handle rotation.

Fig. 14. Distance measure of Video 11 – Tracker KLT.

Fig. 15. Distance measure and average of pixel values of Video 1 – Tracker KLT.

Fig. 16. Distance measure and blur measurement of Video 2 – Tracker KLT.

5.5 Tracker ORB

Tracker ORB has the capability to handle sudden intensity changes (Fig. 17).
Accuracy of tracking decreases with scaling of the features being tracked. Mo-
tions blur and blur caused by autofocus does not affect the tracking performance
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(Fig. 18) and this tracker exhibits a considerable accuracy even at the time where
the orientation changes of the features exist.

Fig. 17. Distance measure and average of pixel values of Video 1 – Tracker ORB.

Fig. 18. Distance measure and blur measurement of Video 10 – Tracker ORB.

5.6 Tracker SIFT, Tracker SIFTSURF, Tracker SURFSIFT,
Tracker SURF

These trackers use different combinations of SIFT and SURF feature detector
and descriptor. The performance of trackers that use SURF as the descriptor
show poor performance relative to the trackers that use SIFT descriptor.

6 CONCLUSION

The overall evaluations of the algorithm′s consider the algorithms accuracy and
speed. For accuracy two measures are used which are the distance error and the
directional error. For speed the number of frames processed per second is used.

By considering only the criterion of error distance it can be concluded that
Lucas Kanade optical flow algorithm (Tracker KLT) demonstrates the best per-
formance consistently. But it should be noted that this algorithm does not handle
rotation accurately due to the motion model utilized in the algorithm. Both op-
tical flow algorithms have shown low distance error in comparison to feature
matching algorithms. Among the feature matching algorithms Tracker ORB al-
gorithm and the Tracker SURFSIFT algorithm shows consistent performance
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which is in the range of the optical flow algorithms. It can be concluded that
optical flow algorithms can process translation and give consistent tracking but
fails on rotation. Feature matching algorithms can handle rotation but fails on
motion blur and give inconsistent tracking output.

When the evaluated algorithms are listed in ascending order according to the
number of frames processed per second, it can be concluded that Tracker KLT
is the fastest algorithm. It can be observed that the margin between Tracker
KLT (Tracker 4) and the rest of the algorithms is very high. Most of the feature
matching algorithms have very low speed scores except for the algorithm which
uses BRISK detector and descriptor. The dense optical flow algorithm is also in
the range of feature matching algorithms. This is due to the fact that KLT is a
sparse optical flow algorithm and only considers a few number of feature points
compared to the feature matching algorithms and dense optical flow algorithm.

According to the directional error, it can be concluded that optical flow algo-
rithms which takes into account the motion details found within two consecutive
images to estimate the succeeding position of a point will give more accurate
output in contrast to feature matching algorithms which only use the locality
information stored in the feature vectors. The dense optical flow algorithm has
the best score for this criterion.

Modern mobile devices has the ability to capture high resolution images
typically having camera specifications in range 4MP to 20MP or more. But two
devices with the same camera specification can give different qualities in the same
conditions. It is clear that the higher resolutions give accurate results but at the
cost of speed. This is due to the fact that mobile platforms have restrictions
on the number of calculations per second and memory available. Some of the
interesting issues found was due to software features such as auto focusing and
auto white balancing. Auto focusing created blur in the image sequence while
AWB created intensity changes which were undetectable to normal viewing but
disrupted Tracker performance.

Normally a user using a mobile device for AR will be restricted to certain
types of movements. Movements that include translation, circular motion around
an estimated center (example: Walking around an augmented object) and scal-
ing (Moving towards and backwards). Pure rotations can be expected to be less
frequent as it is not a normal viewing movement as it does not change the per-
spective of viewing. Thus it would be much profitable to have a fast and accurate
tracker for the more prevailing movements and have another algorithm to han-
dle rotations supporting the main algorithm in use. According to the results it
can be concluded that sparse optical flow algorithms are better equipped for
handling translation at high speeds whereas feature matching algorithms take
much more time to process a frame but better at handling rotations (orientation
changes). This is due to the fact that sparse optical flow algorithms consider
the information within a constrained area around selected keypoints and use a
simplified motion model which allows for fast processing. Feature matching uses
the information from the complete frame and takes much more time for pro-
cessing as the complexity of calculations are much higher but this allows to find
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correspondence between images regardless of the motion/scaling that occurred
by not having restrictions on the motion model.

Our context of augmented reality requires both speed and accuracy for a
satisfactory outcome. When the scores are calculated (equation 6) with the
values β = 0.3, γ = 0.4 and δ = 0.3 the final score of each tracker is in Table 3.

Table 3. Final score of trackers.

Tracker Final Score

KLT 2.27411145

FARNEB 0.231517254

ORB 0.142172204

FREAK -0.326357422

SURFSIFT -0.371670024

SIFT -0.388266766

BRISK -0.461264852

SURF -0.560889913

SIFTSURF -0.672624851

7 FUTURE WORK

It must be noted that the implementation of these algorithms are basic.Using
different optimization techniques the performance of these algorithms can be im-
proved. Furthermore there are many combinations of descriptors, detectors and
optical flow algorithms that have not been evaluated in this study. Evaluating
these optimizations and new algorithms can be done using the same method
proposed in this paper.
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