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Abstract

Convolutional neural network (CNN) is mainly composed of convolution, pooling,
and non-linear activation layers. Nowadays, almost all networks use only 2×2 max
pooling or convolution layers with stride of 2 for downsampling. This technique is known
to be good at extracting good feature, but it also has the constraint that feature map size
is always reduced dramatically to half. In this work, we propose a simple new sampling
technique that we call non-integer strided sampling (NSS), which enables free feature
map size change so that it is not always reduced to half. Using this NSS layer, we
design a new type of network architecture, GradualNet, which makes the feature map
size change more smoothly than it is in existing networks.

Our results show that NSS can improve the performance of networks without having
more parameters. Moreover, we propose other interesting possibilities for a CNN archi-
tecture based on the NSS layer. This result reveals that previous networks have been
stuck in a stereotype, and this could be an important discovery in CNN architecture that
has the potential to resolve this stereotype.

1 Introduction
During the development of convolutional neural network (CNN) [3, 4, 9, 11, 17, 18], the
basic form of CNN architecture underwent many changes in various parts, such as depth, or
filter size. However, the downsampling method was not changed. Already downsampling
with stride of 2 [2, 3, 4, 19] has become a stereotype of CNN. We only use 2×2 max pool-
ing [6, 7, 10, 16, 22] or convolution with stride of 2 [2, 3, 4, 20, 21] to reduce feature map
sizes. However, it is just one way of reducing the feature map size, and it is not necessarily
the best way to reduce the feature map size by half every time. Thus, we need to perform
more extensive investigations on how to downsample or upsample effectively in the CNN.

When we use convolution, the information we can obtain from 30× 30 and 15× 15
feature maps is quite different. In a 30×30 feature map, the 3×3 convolution filter sees only
1/10th of the image at a time (Figure 2, left). However, if it is applied to a 15× 15 feature
map, then the filter sees 1/5th of the image each time (Figure 2, right). This indicates that the
characteristic and quality of information we can extract by convolution significantly depends
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Figure 1: Simple description of the proposed non-integer strided sampling (NSS). In this
figure, a 4×4 feature map is transformed to a 3×3 (upper) or 5×5 (lower) feature map by
averaging the corresponding values. This can be applied to any middle feature map. The
transformed feature map size is not restricted; it can be decreased or increased to any size.

on the spatial size of the feature maps to which the convolution is applied. Therefore, if
convolutions can be applied to feature maps with a larger set of candidate spatial resolutions,
we can potentially increase the set of the candidate information that can be extracted by
convolutions. However, existing CNN typically exhibits only a certain size of feature maps
as inputs for the convolution layer. In case of the CIFAR [8] dataset, typical networks only
observe three levels of feature map sizes: 32, 16, and 8 [2, 3, 4, 20, 21]. It is missing the
opportunity to obtain additional types of information that can come from more extensive set
of candidate feature map sizes. For example, we can obtain more information at the first
downsampling stage if we use feature map sizes with a finer granularity, such as 20 and 24,
instead of using only 16.

We propose a non-integer strided sampling (NSS). It is a simple new idea that feature
map size can be gradually reduced or increased in a network. As illustrated in Figure 1,
when the 4×4 feature map is given, we can generate both a 3× 3 feature map and a 5× 5
feature map freely, depending on user’s choice. The strength of our method mainly comes
from two points. First, it does not need any additional learnable parameters. Second, feature
map size can be freely changed. The proposed method can be used for both downsampling
and upsampling, and it can induce a gradual change in feature map size throughout the
network. Our method can be applied to any form of network. Therefore, ResNet [3, 4]
and any other network can be transformed to have a gradually decreasing feature map size
while preserving the number of parameters. We call this transformed network GradualNet
or GradNet, which means that the feature map size is changed more gradually or smoothly
than in existing networks. Therefore, GradNet is not a specifically defined type of network;
rather, it is a generic term for networks that use NSS.

Our research makes the following contributions: 1. We propose a novel technique, NSS,
to change the feature map size freely without having more parameters. 2. We suggest new
types of network architecture to make feature map size change gradually throughout the
network while existing networks experience radical changes. 3. We show that it is not
always necessary to reduce the feature map size in a classification task. By increasing the
feature map size in the middle of the network, performance can be further improved. 4. By
applying the idea of a PyramidNet by Han et al. [2], we finally create a smooth network that
changes both the feature map size and the number of channels gradually.

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{Han, Kim, and Kim} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Veit, Wilber, and Belongie} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Han, Kim, and Kim} 2017



JOO, YIM, AND KIM: UNCONSTRAINED CONTROL OF FEATURE MAP SIZE USING NSS 3

Figure 2: Same convolution filter which is applied to feature map of different sizes. It
observes totally different information although it is the same convolution layers. Left: 30×
30 feature map with the 3×3 convolution filter. Right: 15×15 feature map with the same
3× 3 convolution filter.

2 Related Work
Fractional max pooling (FMP) is the method proposed by Graham and Benjamin [1]. To the
best of our knowledge, FMP [1] is the most famous technique that enables the free change
of feature map size. FMP also claims the same idea with us that the feature map size could
be changed freely. It aims to reduce the feature map size with a ratio between 1 and 2 by
modifying the kernel size of max pooling. FMP uses 1×1, 1×2, 2×1, 2×2 max pooling
randomly depending on the input and output feature map sizes. By using FMP layers, a
new network is created that does not use downsampling with stride of 2. However, FMP
tries to pick the largest values out of multiple regions with different sizes, so information is
extracted in an uneven way. More importantly, FMP only works for downsampling with a
ratio between 1 and 2 and is not applicable to upsampling.

Veit et al. [20] tried to verify the effect of removing an individual layer in the ResNet [3,
4]. As mentioned by these authors, removing individual layer of ResNet only causes a slight
performance reduction compared with other plain networks like the VGG network [17].
However, even in the ResNet, removing the downsampling blocks causes a relatively high
performance reduction because the layers double the number of channels at once. Pyramid-
Net [2] addresses this phenomenon by increasing the number of channels gradually through-
out the network and not abruptly. Therefore, the ensemble effect of PyramidNet is stronger
than that of ResNet, and it is good at generalization. We think that this phenomenon is not
only due to the abrupt change in the number of channels but also the sharp downsampling.
Therefore, we focus on the feature map size, whereas PyramidNet focuses on the number
of channels. We try to use both PyramidNet and GradNet in a combined way in this paper.
Ultimately, we obtain a perfectly smooth form of network that is well balanced.

3 Effect of Downsampling
Before the main experiment, we conducted an experiment to compare ability of two networks
using convolution with stride of 3 and stride of 2. This comparison will help us to understand
the effect of the downsampling scales. In this section, the proposed NSS layer is not used.

Based on the 26-layer ResNet, we designed three networks to compare downsampling
with stride of 2 and stride of 3 fairly for the CIFAR dataset [8]. The first network (Net-
A) is modified to have three convolution layers with stride of 2 at 4th, 7th,and 10th residual
modules. Then, this network has a 4×4 feature map at the last. Following the general setting,

Citation
Citation
{Graham} 2014

Citation
Citation
{Graham} 2014

Citation
Citation
{Veit, Wilber, and Belongie} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Han, Kim, and Kim} 2017

Citation
Citation
{Krizhevsky and Hinton} 2009



4 JOO, YIM, AND KIM: UNCONSTRAINED CONTROL OF FEATURE MAP SIZE USING NSS

Model CIFAR-10 CIFAR-100 # of Parameters
Net-A (stride 2) 92.77 69.55 1.10M
Net-B (stride 3) 92.31 69.23 1.56M
Net-B’ (stride 3) 92.11 68.08 1.12M

Table 1: Top-1 accuracy on CIFAR dataset. This early experiment shows the effect of down-
sampling size. All three networks are based on the 26-layer ResNet. The first model uses
stride of 2, and the other two models use stride of 3.

the number of channels starts from 16 and doubles when the feature map size reduces to half
(# of channels: 16→ 32→ 64→ 128). Second network (Net-B) is designed to have two
convolution layers with stride of 3 at the 5th and 9th residual modules. We only used two
downsampling steps to make the last feature map size same as that of the Net-A. In the
similar way, the number of channels is multiplied by 3 when the feature map size reduces
to a third (# of channels: 16→ 48→ 144). However, this Net-B has more parameters than
the Net-A. Therefore, we also created a Net-B’ (# of channels: 16→ 44→ 120) that has a
similar number of parameters as the Net-A while maintaining the architecture of the Net-B.

We used CIFAR classification datasets [8]. CIFAR contains 32×32 pixel color images
consisting of 50k training images and 10k test images. CIFAR-10 is composed of 10 classes,
and CIFAR-100 is composed of 100 classes. For those data, we followed the standard data
augmentation method, as other studies have generally done for CIFAR dataset. The original
data were padded with four pixels and randomly cropped for training; mirroring was also
used. All the training settings follow the settings of the ResNet.

Table 1 shows the test accuracy of above three networks. (From now on, every results
shown in this paper are average of three runs). Both the CIFAR-10 and CIFAR-100 results
show that Net-A is better than both Net-B and Net-B’. Net-B shows lower performance than
the Net-A although it has more parameters. This is because downsampling with stride of
3 lost a great deal of information at training stage compare to the stride of 2. This is why
downsampling with stride of 3 or larger is rarely used at present. This result suggests that
downsampling with smaller stride can be even better than the existing downsampling with
stride of 2. If it is true that downsampling with stride of 3 is worse than downsampling with
stride of 2, then downsampling with smaller stride can also be even better. The result of this
section is consistent with the motivation of our study.

4 Method

4.1 Non-integer Strided Sampling

Our proposed algorithm is a simple technique that can change the feature map size without
any constraints. We can understand this NSS as a simple average sampling with a non-integer
stride. This stride can be larger than 1. In this case, output feature map is smaller than input
feature map. The stride can also be smaller than 1. In this case, the output feature map is
larger than the input feature map. The output layer of NSS is simply generated from the
input layer with only one parameter, namely stride.

Consider one of the selected input layers I ∈ Rh1×w1×m, where h1, w1, and m represent
the height, width, and number of channels, respectively. Suppose the output layer of NSS is
generated as O ∈ Rh2×w2×m, where h2, w2, and m represent the height, width, and number
of channels, respectively. It is clear that the input and output layers have the same number
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Figure 3: Magnified view of Figure 1 (upper) when the 4×4 feature map is transformed to
the 3×3 feature map. Each αi, j,h,w value indicates the area of Ii, j,c that contributes to Oh,w,c.

of channels. Moreover, any natural numbers can be chosen for h2 and w2. Now, the stride
of height becomes sh =

h1
h2

, and the stride of width becomes sw = w1
w2

. To obtain the output
feature map, each input feature map Ic ∈Rh1×w1 is equally divided into h2×w2 grid regions.

NSS operation is performed in each of h2×w2 regions, and the average is calculated
depending on the area occupied by each pixel value. Mathematically, the NSS algorithm is
described by the steps outlined below. For every (h,w) ∈ {1, · · · ,h2}×{1, · · · ,w2}, Oh,w,c is
calculated from the following range of input feature map of the same channel number:

Ph,w = {(i, j) | bsh(h − 1)c < i ≤ dshhe and bsw(w − 1)c < j ≤ dswwe}. (1)

This is the expression of the corresponding region for each output point Oh,w,c in the equally
divided region of the input feature map. Let’s see an example. Let I ∈ R4×4×C, and let
O ∈ R3×3×C like Figure 1 (upper). Then, for any c ∈ {1, · · · ,C}, equally divided region for
O2,2,c in I becomes Ph,w = {2,3}×{2,3} following the eq.(1). From this specified region
Ph,w, we can calculate the output feature map value. We obtain the following equation, which
expresses the weighted average:

Oh,w,c =
1

shsw
∑

(i, j)∈Ph,w

αi, j,h,w · Ii, j,c, (2)

where αi, j,h,w ∈ (0,1] represents how much each Ii, j,c is contained in the equally divided
region for Oh,w,c. Simply, it is the weight of the Ii, j,c pixel contributing to Oh,w,c. A simple
diagram is illustrated in Figure 3 to explain the NSS algorithm.

The mathematical formulation is quite complex, but it is not difficult to understand con-
ceptually, as it represents a simple averaging method. It calculates the weighted sum of cor-
responding areas and divide this by shsw to normalize the value. Therefore, if sh = 2,sw = 2,
then it behaves like the existing 2×2 average pooling. Furthermore, if sh = h1,sw = w1, then
it is the existing global average pooling. NSS includes several types of known sampling
methods, but it is more general. One of the important thing here is that NSS does not need
much computation since it just computes weighted averages of feature maps. NSS sampling
steps have FLOPs about only 0.1% of overall computation.
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Figure 4: Illustration of architecture of the (a) ResNet and (b) GradNet. Existing networks
reduce feature map size dramatically by half. However, in GradNet, the feature map size is
reduced slowly; therefore it can learn information from various sizes of feature maps.

4.2 Design of Network: GradNet

The strength of our method does not stem from the averaging algorithm; rather, it is from the
architecture, which uses the middle size feature maps with smoother forms. We designed an
architecture GradNet that reduces feature map size gradually. We distributed the downsam-
pling stage over several steps in GradNet. A feature map of size 32 can be reduced to 24 and
then 16 if we use a two-step distribution. Moreover, as stated above, there is no restriction,
so other ways of making GradNet is possible. A simple version of GradNet architecture
is demonstrated in Figure 4(b). The existing integer strided downsampling method (Fig-
ure 4(a)) is quite straightforward in several ways, but the feature map size of our network is
reduced smoothly and looks more natural.

By using NSS, we can change any kind of network into a smoother form. The NSS layer
can be applied to any position that does not make conflict with a predetermined feature map
size. For example, we can apply the NSS layer to every layer in the VGG network [17]
except the fully connected layers. In case of ResNet, it has an element-wise addition layer,
so it can be applied only after the addition in ResNet. However, if we apply the NSS at
the very bottom layer, then we can loss much information that can be extracted from high-
resolution images. Therefore, from now on, NSS of GradNet always starts from the same
position where the baseline network’s first downsampling step occurs. In case of the 26-layer
ResNet, it has 12 residual modules. Therefore, NSS can be applied to the 8 steps because
26-layer ResNet has first downsampling step after 4th residual module. At each step, the
feature map size can be reduced as desired; therefore several types of GradNet can exist.

When there are n locations where NSS can be applied, we simply name each GradNet
with n numbers in the order from the bottom to top, depending on how much the feature
map size is reduced at each NSS layer. For the 26-layer ResNet described above, n is 8. We
call these n numbers the Sampling Parameter of GradNet, d ∈ Nn. Therefore, Figure 4(b)
can be labeled by d = 4-4-4-4-2-2-2-2. Alternatively, let us express it as d = 44-24 for the
convenience when the same NSS steps are repeated. If there is a bar on the number, it implies
upsampling. Therefore, 3̄ means that the feature map is increased by 3 using the NSS layer.
We describe the results of an experiment that uses upsampling in Section 5.3.
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5 Experiment
We conducted four experiments to verify the effectiveness of our proposed algorithm. First,
with the same number of parameters, we show that our proposed architecture can improve the
original networks a great deal by changing only the feature map sizes. Second, we compare
our idea with the existing FMP algorithm [1]. Third, we create a classification network that
has upsampling stages in the middle of the network. Finally, by applying the concept of
PyramidNet [2] to our GradNet, we can additionally improve the network. Eventually, the
network will no longer need to work in a step-like form.

5.1 Improvement of the baseline networks
We trained our GradNet and baseline ResNet on the CIFAR [8], SVHN [13] and ImageNet
[15] datasets. We used a 38-layer ResNet with 18 residual modules. There are three baseline
networks depending on how it reduces the feature map size. The first one is the original
ResNet that uses convolution with stride of 2 to reduce feature map size. The second and
third baselines use 2×2 max pooling and 2×2 average pooling, respectively. The baseline
networks setting is same for the experiments in Section 5.2.

As stated above, GradNet can be generated from any kind of network. There are no rules,
so any form of network architecture can be generated. In this work, we used three GradNets
with the following characteristics: the first network downsamples equally over four times,
which can be expressed as d = [6-0-0]4; the second downsamples equally over six times,
which can be expressed as d = [4-0]6; and the third gradually changes every feature map
through the networks, which is d = 212. These three architectures change feature map sizes
more gradually than existing networks.

Accuracy results are shown in Table 2. There are some interesting observations from
these results. The proposed GradNet outperforms baseline networks by a large margin. Es-
pecially, GradNet d = [4-0]6 shows 5.22% higher performance than the original ResNet in
C100. In addition, GradNet d = [6-0-0]4 shows 4.16% higher performance than ResNet in
C10. This is a remarkable result, as we only changed the size of the feature map while
using the same number of parameters. From these results, we can see that smoothly chang-
ing the feature map size using the NSS layer is helpful for the learning. In GradNet, each
convolution layer can learn various types of information.

When data augmentation was applied, the difference becomes smaller. However, our
GradNet still outperforms original networks in all the cases. This is a interesting result that
the performance difference is related to the data augmentation. Data augmentation helps the
network to observe various types of feature maps that are translated and mirrored. Therefore,
the role of data augmentation and the proposed method overlap considerably in terms of
enhancing the diversity of feature maps that the network can observe. Data augmentation
can compensate for the abrupt change in feature map size induced by downsampling with
stride of 2. Therefore, the additional benefit of the GradNet is less in this case compared to
the case without data augmentation.

At first, we expected that the gradual change could be effective in learning knowledge
at several scales. However, what we can observe is that the d = [6-0-0]4 and d = [4-0]6

networks show higher performance than the d = 212 network. From this result, we realize
that the network needs a reasonable amount of steps to learn certain information from the
feature map of a specific size. Reducing the size of the feature map quickly before learning
some intermediate-level information can become an obstacle for training. Therefore, to ex-
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Model Downsampling C10 C10+ C100 C100+ SVHN
ResNet Conv, stride 2 85.32 92.05 54.78 67.63 95.76
ResNet 2×2 Max pool 86.39 91.87 56.57 67.78 95.70
ResNet 2×2 Ave pool 87.02 92.16 58.18 68.10 95.94
GradNet [6-0-0]4 88.45 92.73 59.79 68.45 96.24
GradNet [4-0]6 88.44 92.41 60.00 68.47 96.33
GradNet [2]12 88.31 92.30 59.80 67.57 96.17

Table 2: Top-1 accuracy on CIFAR [8] and SVHN [13] datasets. We used the 38-layer
ResNet as the baseline. The sampling param of GradNet denotes how much the feature map
sizes are reduced at each of the 18 residual modules. C means CIFAR, and ‘+’ sign represents
standard data augmentation is used. In all the cases, GradNet outperforms original networks.

Model Top-1 Top-5
ResNet 68.80 88.45
GradNet 69.90 89.24

Table 3: Top-1 and Top-5 accuracy on ImageNet [15] datasets. We used the 34-layer ResNet
as the baseline. GradNet is made to distribute all the downsampling steps of baseline over
two steps.

tract important knowledge effectively, it is necessary to have relaxation stages in the middle;
following this, we can learn various types of information by reducing the feature map size
gradually and smoothly.

ImageNet [15]: CIFAR [8], and SVHN [13] are small scale datasets that have small im-
ages. To show the robustness of our method, we’ve also compared our result on well-known
large scale classification dataset ImageNet. The result is described in Table 3. In this exper-
iment, random cropping with 224× 224 and mirroring are used for the data augmentation.
Even with data augmentation, we can observe significant improvement. As ImageNet has
larger images, there is larger amount of decrease in feature map size when using usual 2x2
downsampling. So, NSS would be more helpful since GradNet makes it possible to observe
feature maps of various intermediate sizes. For this experiment, GradNet is designed to
distribute the downsampling of baseline networks over two steps.

Plain network: We’ve also conducted experiment on the plain network VGG [17] that
has a different structure from ResNet. Experimental results on VGG [17] is described in
Table 4. GradNet also outperforms original VGG network by a large margin on all the
datasets. Our algorithm also works for plain network. For this experiment, GradNet is
designed to distribute the downsampling of baseline networks over two steps.

From above several experiments, we confirm that our method is robust to various settings.

Model C10 C10+ C100 C100+ SVHN
VGG 81.83 91.08 47.79 66.19 94.81
GradNet 84.80 91.81 53.32 68.63 95.28

Table 4: Top-1 accuracy on CIFAR and SVHN datasets. We used a plain network VGG
instead of ResNet to show that our algorithm works well for general other network. GradNet
is designed to distribute the downsampling of baseline networks over two steps
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5.2 Comparison with FMP

FMP is the most well-known method in which it is possible to reduce the feature map size
with ratio between 1 and 2. We compared our method with FMP under the same conditions.
We used 38-layer ResNet as a baseline as above. Table 5 shows the classification result
of two networks using FMP and NSS. Our GradNet shows better performance than FMP
network in both CIFAR-10 and CIFAR-100.

Model Downsampling CIFAR-10 CIFAR-100

FMP [4-0]6 90.66 65.21
FMP [6-0-0]4 91.59 67.17
GradNet [4-0]6 92.41 68.47
GradNet [6-0-0]4 92.73 68.45

Table 5: Top-1 accuracy on CIFAR datasets with data augmentation. FMP and GradNet are
compared with same network architecture and sampling parameters.

Moreover, we try to upsample middle feature maps in the network by using the NSS layer
in Section 5.3. This is one thing that FMP cannot do because it is limited to downsampling
with ratio between 1 and 2. FMP seems free to change the feature map size, but unlike our
proposed method, it is not completely free.

5.3 Upsampling in the Classification Task

All the known classification networks only use downsampling steps. Upsampling or unpool-
ing is mostly used for segmentation tasks [5, 12, 14]. As we stated above, NSS has another
strength that upsampling is also possible to any size. This is why the name of our proposed
idea is NSS, not ‘non-integer strided downsampling.’

We designed several GradNet architectures that can tell us about the effect of upsampling
in classification tasks. Because larger feature map size is difficult to train, usually complex
network that has bigger capacity is required. So, we used WRN-28-4 which has four times
as many channels than original ResNet. Using the WRN-28-4 as a baseline network, we
designed two types of GradNet with upsampling. This is a new type of classification network.
The result is shown in Table 6. The GradNet with d = 4̄2-62-54 outperforms any other
networks for both datasets. This improvement of the performance is caused by the fact that
it observes even more diverse set of feature maps. Looking at a feature map larger than size
32 can be helpful to learn a new kind of knowledge in the CNN. This is a very surprising
result, and it opens various new potentials for upsampling in CNN architectures.

Model Downsampling CIFAR-10 CIFAR-100
WRN-28-4 Conv, stride 2 87.48 63.83
GradNet [8-0]2-[4-0]2 91.64 68.34
GradNet 44-24 91.61 69.18
GradNet 4̄4-104 91.42 69.26
GradNet 4̄2-62-54 91.89 69.84

Table 6: Top-1 accuracy on CIFAR datasets without data augmentation. The bar on the
sampling param of GradNet means that the size of the feature map is increased by that
amount. For example, 4̄ means the feature map size is increased by 4
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Model CIFAR-10 CIFAR-100
ResNet 84.87 52.43
PyramidNet 85.54 54.18
GradNet 85.84 55.05
PyramGradNet 86.39 55.69

Table 7: Top-1 accuracy on CIFAR datasets without data augmentation. We used the 26-
layer ResNet as the baseline. PyramidNet uses “add, α=48”, GradNet uses sampling param
of 212 from the bottom, and PyramGradNet uses the both settings together.

5.4 Pyramidal Gradual Network

GradNet aims to have gradual change in the feature map size because dramatic change is
not helpful for learning various types of information. However, this simple architecture is
not completely smooth because its number of channels does not change gradually. By com-
bining GradNet and Pyramidnet, we can create a completely smooth network. We designed
a experiment that show the effect of combination of two networks. We call the combined
version of the two networks as PyramGradNet.

The result is shown in Table 7. As we expected, GradNet and PyramidNet shows higher
accuracy than ResNet, and PyramGradNet outperforms others. As a result, GradNet and
PyramidNet assist each other, since each has own specific advantages, while they both aim
to accomplish similar goals. Therefore, this result gives potentials of continuous form of
CNN.

Although PyramidNet has similar flavor, our work is different from PyramidNet as we
focus on different hyper parameter. PyramidNet is about the number of channels but with
usual 2×2 downsampling. Our work controls spatial resolutions of the feature maps.

6 Conclusion

CNN has a stereotype that we can only reduce or increase the feature map size with an integer
ratio. In this work, we designed a new sampling method that does not have any restrictions
when changing the feature map size.

We conducted several experiments to show the advantages of our network, GradNet. We
compared this with several other baselines, and there were surprising improvements with
the same number of parameters. We also showed that it outperforms the existing method
FMP. In addition, we create a new type of classification network that uses upsampling layers
by employing NSS. Moreover, by applying the idea of PyramidNet, we achieved a more
powerful, and continuous form of network. This is a novel observation and important step
for solving various problems associated within the CNN structure.
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