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Abstract

Conditional Batch Normalization (CBN) has proved to be an effective tool for visual
question answering. However, previous CBN approaches fuse the linguistic informa-
tion into image features via a simple affine transformation, thus they have struggled on
compositional reasoning and object counting in images. In this paper, we propose a nov-
el CBN method using the Kronecker transformation, termed as Conditional Kronecker
Batch Normalization (CKBN). CKBN layer facilitates the explicit and expressive learn-
ing of compositional reasoning and robust counting in original images. Besides, we
demonstrate that the Kronecker transformation in CKBN layer is a generalization of the
affine transformation in prior CBN approaches. It could accelerate the fusion of visual
and linguistic information, and thus the convergence of overall model. Experiment result-
s show that our model significantly outperforms previous CBN methods (e.g. FiLM) in
compositional reasoning, counting as well as the convergence speed on CLEVR dataset.

1 Introduction
Visual question answering (VQA)[4] is a challenging multi-modal task that requires respond-
ing to natural language questions about images. The long-standing goal of VQA task is to de-
sign systems that can reason about the visual world like humans[16], which is central to gen-
erally intelligent behavior. However, the first generation of successful VQA models[6, 7, 12]
only acquire a superficial cognition of images and questions but achieve high accuracy owing
to the biased datasets. For example, a statistical learner may correctly answer the question
"What’s the weather like in the picture?" not because it understands the scene but because
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(a) Q: What number of red shiny
cubes are to the right of the thing
that is to the left of the red metal
object that is behind the gray matte
sphere ? A: 1

(b) Q: Are there the same number
of balls in front of the tiny cyan
metallic cylinder and small gray
rubber objects behind the tiny mat-
te block ? A: yes

Figure 1: Two illustrative examples from the CLEVR dataset of visual reasoning.

biased datasets often ask questions about the weather when it is a rainy day[1, 25]. These
statistical learning models have neither a deep understanding of images and questions nor
strong reasoning process that would lead to the correct answer.

To this end, the CLEVR[13] dataset was proposed to enable detailed analysis of vi-
sual reasoning. CLEVR test the visual reasoning ability via complex question answer-
ing, as shown in Figure 1. More importantly, the information in each CLEVR image is
complete and exclusive so that the chance of correctly answering question may not be in-
creased by the external information. On the contrary, the models exploiting dataset biases
may perform worse on CLEVR. Tests on CLEVR show that most traditional deep learning
approaches[6, 7, 12, 13] focused on how to take full advantages of statistical biases in the
data distribution[8], but failed to learn compositional reasoning ability behind complex vi-
sual questions. To solve this problem, efforts have been made to build new architecture with
explicit reasoning or relational associations, such as module networks[10, 14], reasoning-
augmented networks[19, 23, 24] and conditional batch normalization methods[5, 18]. Some
of these[18, 23] have shown promising reasoning ability and even outperform humans.

In this paper, we propose a novel conditional batch normalization (CBN) method, termed
as Conditional Kronecker Batch Normalization (CKBN). In contrast to prior CBN approach-
es [5, 18], CKBN layers take the question information as conditioned input and correspond-
ingly modulate the image features via the Kronecker transformation[17], which allows robust
counting in images and retains richer information than affine transformation. Thus, CKBN
model achieves a higher accuracy on CLEVR dataset than FiLM[18]—a CBN approach.
Our main contributions are as follows:

(1) We propose a differentiable neural network layer CKBN that further develops the
Conditional Batch Normalization techniques, and we show how CKBN layers increase the
robustness of a general model as well as help it achieve stronger reasoning ability.

(2) We demonstrate the Kronecker transformation in CKBN layer is a generalization of
standard affine transformation. It could accelerate the fusion of visual and linguistic infor-
mation, and thus the convergence of overall model.

(3) CKBN layers take the given question as conditioned input and extract various joint
features1 from a single image feature. This process helps the overall model explicitly learn
compositional reasoning and counting skills, with each joint feature capturing separate at-
tribute or object of an image.

1Joint feature refers to the feature that contains information of both image and question.
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2 Related Work

Neural Module Networks Neural module network (NMN)[2, 3] can be viewed as a general
class of recursive neural networks[20]. It provides a framework for constructing deep neural
networks with dynamic computational structure. Generally, an NMN model is composed of
a semantic parser, a layout and a collection of pre-defined modules. The semantic parser
maps the given question into an action plan. Based on the action plan, the layout provides a
template for assembling an instance-specific network from those pre-defined modules. These
modules could either be jointly trained, or be optimized independently as each module has
its own set of learned parameters. Each module in the NMN model is trained for learning an
elementary reasoning operation, and thus the network assembled from these modules could
master the compositional reasoning ability. The recently proposed NMN approaches[10, 14]
have achieved competitive VQA performance, which proves NMN a promising method.

Reasoning-Augmented Networks Conventional deep networks learn a mapping directly
from inputs to outputs. Although some of these are capable of sophisticated reasoning skill-
s, the monolithic network structures make their behavior difficult to understand, explain or
optimize. To this end, a series of reasoning-augmented models[19, 22, 23] were proposed
for facilitating explicit and expressive reasoning. These methods usually add components
to neural networks that aid them in handling relational associations and compositional rea-
soning. For example, the Relational Network[19] carries out pairwise comparisons over any
two pixel-wise position of extracted image features, and thus enhance the relational rea-
soning ability of the network. Memory networks[21, 22] and stacked-augmented recurrent
networks[15] design explicit memory components for neural networks, which enable the
overall model to imitate the human’s reasoning process in an iterative manner.

Conditional Batch Normalization Methods Batch Normalization (BN)[11] has proved
successful in improving neural network training. It accelerates training and improves gen-
eralization by reducing the covariate shift throughout the network. Inspired by BN, Vries et
al. introduce the Conditional Batch Normalization (CBN) method for language-vision tasks
in [5, 18]. These approaches first generate a variance and bias pair for each convolutional
feature from a single linguistic input, and then apply an affine transformation to each feature
using the generated coefficients, aiming to modulate the covariate shift like BN. However, as
these CBN approaches attempt to locate all question-referenced regions via a simple affine
transformation, they have struggled on compositional reasoning and object counting.

In contrast, our proposed CKBN layer could be regarded as a generalization of CBN
layer. We generate multiple variance and bias pairs for each convolutional feature from a
question input and apply the Kronecker transformation on each feature. Besides, CKBN
layer facilitates the explicit and expressive learning of compositional reasoning and robust
counting in images, which has been proved to be effective in our experiments.

3 Methodology

3.1 Conditional Kronecker Batch Normalization

The internal structure of the CKBN layer is shown in Figure 2, and we introduce the motiva-
tion and purpose on the design of CKBN layer in the following four steps.
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Image
Features

Question 
Features 

BN

WT,b

PT,b σ

CKBN Layer

Refined
Features

Fi,c fi,c

q q'

cfi,c cf 'i,c Fi,cnew 

Figure 2: Overview of CKBN layer. The CKBN layer takes the features of images and ques-
tions as inputs and outputs joint refined features. Blue refers to different tensor operations.

Feature Processing Before fusing the question feature into image features, we first process
both of them for better overall performance. We normalize the image features to accelerate
the convergence of overall model, and we apply a linear layer on question features to generate
multiple variance and bias pairs that would be used in next Kronecker transformation step.

fff i,c,h,w = BN(FFF i,c,h,w) =
FFF i,c,h,w−E[FFF ·,c,·,·]√

Var[FFF ·,c,·,·]+ ε
(1)

qqq′′′ =
[

γγγ

βββ

]
=W T

q qqq+bq (2)

Here, we define B = {FFF i,·,·,·}I
i=1 as a mini-batch of I samples, and FFF corresponds to feature

maps whose subscripts c,h,w refers to the cth feture map at the spatial location (h,w).
fff refers to the corresponding normalized feature maps of FFF , and ε is a constant damping
factor for numerical stability. Wq ∈RM×N and bq ∈RN stands for the weight matrix and bias
for the output qqq′′′, respectively. The function of γγγ and βββ will be explained below.

Kronecker Transformation The Kronecker transformation facilitates the learning of com-
positional reasoning and robust counting in images. It enables CKBN layer to extract var-
ious joint features from a single image feature, with each joint feature capturing separate
attributes or objects of an image. Also, It significantly increases the model’s robustness, as it
uses multiple joint features to locate all question-referenced regions instead of a single one.

ccc fff i,c = γγγc⊗ fff i,c +βββ c (3)

where ccc fff i,c is termed as controlled feature, ⊗ denotes the Kronecker product[17].
In Equation 2, qqq′′′ ∈RN is sliced into two column vectors γγγ and βββ . Let N = (K+1)C, γγγ ∈RKC

is composed of C different γγγc ∈ RK , and βββ ∈ RC is composed of C different βββ c ∈ R, where
C is the number of feature maps, K is an arbitrary postive integer. For example, when K = 1
(γγγc ∈ R), Equation 3 degenerates into the standard affine transformation.
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Are there the same number of balls in
front of  the tiny cyan metallic  cylinder
and small gray  rubber objects behind
the tiny matte block ?
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Figure 3: The linguistic feature generator (bottom), and the CKBN network (top).

Non-Linear Activation Apply a non-linear activation function may help to increase the
representative capacity of the overall model. The first candidate is to apply the non-linear
activation function right after the Kronecker transformation.

ccc fff ′′′i,c = σ(γγγc⊗ fff i,c +βββ c) (4)

where σ denotes an arbitrary non-linear activation function, e.g. ReLU or Sigmoid.

Linear Projection It is sensible to reduce the rank of the feature matrices using linear
projection, as it would lead to the reduction of parameters for regularization. What’s more,
the Kronecker product of two matrices would scale up the matrix elements. For example,
the Kronecker product Am×n⊗Bp×q is the mp×nq block matrix. Linear projection could be
used to prevent this parameter explosion and still retain important information.

FFFnew
i,c = PT

σ(γγγc⊗ fff i,c +βββ c)+b (5)

where P ∈ RL×d and b ∈ Rd stands for the projection matrix and bias for the jointly refined
feature FFFnew

i,c , respectively. Note that d is a hyperparameter to decide the output dimension of
the CKBN layer. For example, d could be set equal to the input dimension of CKBN layer,
enabling CKBN to operate like the normal CBN layer but contain richer information.

3.2 Model
The overview of network architecture is shown in Figure 3. It consists of a linguistic pipeline
and a visual pipeline. The linguistic pipeline extracts question features with a Gated Recur-
rent Unit (GRU) which has 4096 hidden units and 200-dimensional word embeddings.

The visual pipeline extracts the image features using the conv4 layer of a ResNet-101
pre-trained on ImageNet with a learnable 3 x 3 convolutional layer, to match prior works on
CLEVR[13]. The extracted image features are processed by several CKBN residual blocks
(ResBlocks) [9] and a classifier. Similar to FiLM[18], Each CKBN ResBlock consists of
a 3x3 convolutional layer that outputs 128 feature maps, a conditional batch normalization
layer (CKBN in this work), and a ReLU activation. The final classifier is composed of a 1x1
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convolutional layer that outputs 512 feature maps, a global max-pooling layer, and a two-
layer MLP with 1024 hidden units. The second layer of MLP outputs the softmax distribution
over answers. Besides, inspired by prior works on CLEVR[10, 19], we concatenate two
coordinate feature maps representing relative x and y spatial position with the convolutional
features, each ResBlock’s input and the classifier’s input to facilitate spatial reasoning.

CKBN model is trained end-to-end from scratch without data augmentation and extra
supervision information. We use Adam optimizer with learning rate 3e−4, weight decay
1e−5, and set batch size 64 to match prior work on CLEVR. For our best model, we set
N = 4 (4 ResBlocks), K = 2 (In Equation 3, γc ∈ R2), and train a maximum of 90 epochs.

4 Experiments
In this section, we test our CKBN model on CLEVR and its associated dataset. First, we eval-
uate our model on the standard CLEVR dataset and analyze what CKBN layer learns. Then,
we explore the compositional reasoning capacity of CKBN model on the CLEVR Com-
positional Generalization Test (CLEVR-CoGenT). Finally, we examine the performance of
CKBN model on more challenging CLEVR-Humans dataset, which consists of the human-
sourced natural language questions on the given image.

4.1 Standard CLEVR Task
CLEVR is a synthetic dataset of 700K tuples with 3D-rendered images and automatically
generated questions, as shown in Figure 1. The images feature different shapes, materials,
colors and sizes. The questions measure various aspects of visual reasoning skills including
attribute identification, counting, comparison, spatial relationships, and logical operations.
In addition, each question has an associated machine-readable program, specifying the rea-
soning process that leads to the correct answer, among 28 possibilities.

We perform experiments on the original 700K CLEVR dataset[13] and achieve a competi-
tive accuracy, as shown in Table 1. Notably, our model outperforms the FiLM model (a CBN
approach) trained from pre-trained features in overall accuracy as well as in each category,
which demonstrates the generalization and robustness of CKBN layer.

Counting and Numerical Comparison As shown in Table 1, CKBN model outperform-
s most other competing methods on questions about counting and numerical comparison,
which is comparable to CAN [24]. These results demonstrate the CKBN layer’s capacity on
processing counting and aggregation. We stress that our model relies solely on the Kroneck-
er transformation based on conditioned linguistic information to adaptively alter the CKBN
network’s behavior to answer questions. That means, a standard CNN-based approach with-
out data augmentation, strong supervision or additional mechanisms like attention could also
perform well on those intractable VQA problems, thanks to CKBN layers.

Computational Efficiency We compare the computational efficiency of our model with
other competing methods (RN, FiLM), as they are all CNN-based leading approaches sim-
ilar to ours. Santoro et al. report in [19] that the Relational Network model was trained
approximately 1.4 million iterations to achieve 95.5% accuracy, which are equivalent to 125
epochs approximately, while our model achieves a higher accuracy after 15 epochs, leading
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Model Overall Count Exist
Compare
Numbers

Query
Attribute

Compare
Attribute

Human [13] 92.6 86.7 96.6 86.5 95.0 96.0
Q-type baseline[13] 41.8 34.6 50.2 51.0 36.0 51.3
LSTM [13] 46.8 41.7 61.1 69.8 36.8 51.8
CNN+LSTM [13] 52.3 43.7 65.2 67.1 49.3 53.0
CNN+LSTM+SA [23] 76.6 64.4 82.7 77.4 82.6 75.4
N2NMN* [10] 83.7 68.5 85.7 84.9 90.0 88.7
PG+EE (9K prog.)* [14] 88.6 79.7 89.7 79.1 92.6 96.0
PG+EE (700K prog.)* [14] 96.9 92.7 97.1 98.7 98.1 98.9
CNN+LSTM+RN†‡ [19] 95.5 90.1 97.8 93.6 97.9 97.1
CNN+GRU+FiLM [18] 97.7 94.3 99.1 96.8 99.1 99.1
CNN+GRU+FiLM‡ [18] 97.6 94.3 99.3 93.4 99.3 99.3
CNN+GRU+CKBN 98.4 96.1 99.4 97.8 99.3 99.3

Table 1: CLEVR accuracy by baseline methods, competing methods, and our method (CKB-
N). (*) denotes use of extra supervisory information through program labels. (†) denotes use
of data augmentation. (‡) denotes training from raw pixels.

CLEVR Image

Q: How many cyan things are right of
the gray cube or left of the small cube ?

FiLM Model

P: 3

Kronecker Transformation

Linear Projection

P: 4

CKBN Model

Figure 4: Comparison with FiLM (left). Features extracted from the final ResBlock of our
model (right). P refers to the predicted answer. Image and question matches FiLM [18].

to approximately 8.5x reduction in training time. Perez et al. report in [18] that they train
80 epochs for their best model, achieving 97.7% accuracy. In contrast, our CKBN model
achieves a comparable accuracy in 50 epochs, yielding 1.6x reduction in training time.

4.2 Why CKBN Layer Helps?

To have a deep insight of how CKBN layers work in the overall model, we visualize parts of
the feature activations used to answer related CLEVR questions. Note that this visualization
is based on the CKBN model with 4 ResBlocks and γc ∈R2, aiming to have a fair comparison
with best FiLM model, which could be viewed as the model with 4 ResBlocks and γc ∈ R.

We ask the same question to both FiLM and CKBN model, as shown in Figure 4. FiLM
model only captures parts of answer-related objects while our model locates all cyan things
both "right of the gray cube" and "left of the small cube" via the Kronecker transformation.

In practical training, it is difficult or even impossible to find a global optimal solution to
locate all question-related regions in a single feature activation, but it is much easier to find
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(a) Q: How many tiny metal ob-
jects have the same shape as the
tiny matte thing ? A: 2

(b) Q: Is there any other thing that
is the same material as the gray ob-
ject ? A: yes

Figure 5: Two illustrative instances sampled from CLEVR-CoGenT in Condition A.

a local optimal solution to capture parts of question-interested regions. Thus, we apply the
Kronecker transformation to a single image feature, which enables the CKBN layer to extract
various joint features from it. That is to say, we could find many local optimal solutions,
with each joint feature only responsible for parts of question-related regions. Then, a linear
projection is applied to map various local optimal solutions to the global one. This approach
makes the overall model easier to be trained and converge more quickly. Also, it greatly
increases the generalization and robustness of the model.

4.3 Compositional Generalization Test
To investigate the VQA model’s capacity on compositional generalization, Johnson et al.
introduced CLEVR-CoGenT[13], as shown in Figure 5. The dataset contains two different
conditions: in Condition A, all cubes are gray, blue, brown, or yellow and all cylinders are
red, green, purple, or cyan; in Condition B, cubes and cylinders swap color palettes. Thus,
models demand the ability to learn separate representations for color and shape, rather than
rote memory on all possible color/shape combinations, to achieve better performance.

Model
Train A Finetune B

A B A B
LSTM 55.2 50.9 51.5 54.9
CNN+LSTM 63.7 57.0 58.3 61.1
CNN+LSTM+SA+MLP 80.3 68.7 75.7 75.8
PG+EE (18K prog.) 96.6 73.7 76.1 92.7
CNN+GRU+FiLM 98.3 75.6 80.8 96.9
CNN+GRU+CKBN 98.4 76.7 81.1 97.5

Table 2: Accuracy on the CLEVR-CoGenT dataset. First, we train CKBN model on Con-
dition A, and test them on both Condition A and Condition B (left). Then, we finetune the
model on Condition B using 30K samples, and again test on both Conditions (right).

Results We perform experiments with our best CLEVR-trained model architecture on
CLEVR-CoGenT, as shown in Table 2. Notably, our resulting model outperforms all prior
methods both before and after finetuning on 30K ValB. This is because the design of CKBN
layer allows the overall model to explicitly learn separate attribute of an image. CKBN
layer takes the question as conditioned input and extracts various joint features from a single
image feature based on different K (γc ∈ RK). For example, it could take one joint feature
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(a) Q: How many of these things
could be stacked on top of each
other ? A: 8

(b) Q: If the largest item was re-
moved what color would be most
seen in this set ? A: red

Figure 6: Examples of questions from CLEVR-Humans dataset, which introduces new word-
s and concepts. Words that do not appear in CLEVR questions are underlined.

to learn color and another to learn shape. Then, a final linear projection is applied to obtain
the compositional attributes of an object. Experiment results also demonstrate our model’s
robustness on learning general concepts and separate representation.

4.4 CLEVR-Humans

CLEVR-Human dataset is composed of 18K human-posed natural language questions on
CLEVR images, as shown in Figure 6. The questions were collected by Amazon Mechan-
ical Turk workers who were asked to write questions about CLEVR images that would be
hard for a small robot to answer. As the questions were proposed from different workers,
the dataset has diverse vocabulary and linguistic variety. Thus, the model needs to have more
varied reasoning skills to perform well on the dataset.

Model
Train

CLEVR
Train CLEVR,
finetune human

LSTM 27.5 36.5
CNN+LSTM 37.7 43.2
CNN+LSTM+SA+MLP 50.4 57.6
PG+EE (18K prog.) 54.0 66.6
CNN+GRU+FiLM 56.6 75.9
CNN+GRU+CKBN 58.2 76.4

Table 3: Accuracy on the CLEVR-Humans dataset after training on just the CLEVR dataset
(left) and after finetuning on the CLEVR-Humans dataset (right).

Results We first train our model on CLEVR, and then finetune the model on CLEVR-
Humans to make it adaptive to additional vocabulary and linguistic variety. During finetun-
ing, our model learns to use more complex questions to freely modulate the existing feature
maps. This fine-grained operation makes the model reason in a more flexible way, leading to
the correct answer. Quantitatively, the results in Table 3 also demonstrate our CKBN mod-
el’s robustness against linguistic variations and noise, as well as its ability to handle more
diverse vocabulary and complex questions.
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5 Conclusion
In this paper, we introduce a novel CKBN layer that further develops the Conditional Batch
Normalization techniques, and we show how CKBN layers increase the generalization and
robustness of a general model as well as accelerate its convergence. Also, we analyze the
reasons behind the competitive performance of the CKBN model. In further work, we would
further explore the Condtional Normalization (CN) techniques in following two directions.
First, as our design of CKBN was based on the concept of compositionality in visual question
answering (VQA), we wish to generalize this work to the non-conditional version called
Kronecker Batch Normalization to accelerate neural network’s training. Second, we would
extend the series of Conditional Normalization Techniques (both prior works [5, 18] and
ours) to different tasks and domains, including real-world VQA, speech recognition and
machine comprehension.
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