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Abstract

3D reconstruction from single view images is an ill-posed problem. Inferring the hid-
den regions from self-occluded images is both challenging and ambiguous. We propose
a two-pronged approach to address these issues. To better incorporate the data prior and
generate meaningful reconstructions, we propose 3D-LMNet, a latent embedding match-
ing approach for 3D reconstruction. We first train a 3D point cloud auto-encoder and then
learn a mapping from the 2D image to the corresponding learnt embedding. To tackle
the issue of uncertainty in the reconstruction, we predict multiple reconstructions that are
consistent with the input view. This is achieved by learning a probablistic latent space
with a novel view-specific ‘diversity loss’. Thorough quantitative and qualitative analy-
sis is performed to highlight the significance of the proposed approach. We outperform
state-of-the-art approaches on the task of single-view 3D reconstruction on both real and
synthetic datasets while generating multiple plausible reconstructions, demonstrating the
generalizability and utility of our approach.

1 Introduction
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Figure 1: Single-view reconstructions for unambiguous and ambiguous input views.
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Humans can infer the structure of a scene and the shapes of objects within it from limited
information. Even for regions that are highly occluded, we are able to guess a number of
plausible shapes that could complete the object. Our ability to directly perceive the 3D
structure from limited 2D information arises from a strong prior about shapes and geometries
that we are familiar with. This ability is central to our perception of the world and the
manipulation of objects within it.

Extending the above idea to machines, the ability to infer the 3D structures from single-
view images has far-reaching applications in the field of robotics and perception, in tasks
such as robot grasping, object manipulation, etc. However, the task is particularly challeng-
ing due to the inherent ambiguity that exists in the reconstructions of occluded images. While
the existing data-driven approaches capture the semantic information present in the image to
accurately reconstruct corresponding 3D models, it is unreasonable to expect them to predict
a single deterministic output for an ambiguous input. An ideal machine would produce mul-
tiple solutions when there is uncertainty in the input, while obtaining a deterministic output
for images with adequate information (Fig. 1).

With the recent advances of deep learning, the problem of 3D reconstruction has largely
been tackled with the help of 3D-CNNs that generate a voxelized 3D occupancy grid. How-
ever, this representation suffers from sparsity of information, since most of the informa-
tion needed to perceive the 3D structure is provided by the surface voxels. 3D CNNs are
also compute heavy and add considerable overhead during training and inference. To over-
come the drawbacks of the voxel representation, recent works have focused on designing
neural network architectures and loss formulations to process and predict 3D point clouds
[8, 15, 16], which consist of points being sampled uniformly on the object’s surface. The
information-rich encoding and compute-friendly architectures makes it an ideal candidate
for 3D shape generation and reconstruction tasks. Hence, we consider point clouds as our
3D representations.

In this work, we seek to answer two important questions in the task of single-view re-
construction (1) Given a two-dimensional image of an object, what is an effective way of
inferring an accurate 3D point cloud representation of it? (2) When the input image is highly
occluded, how do we equip the network to generate a set of plausible 3D shapes that are con-
sistent with the input image? We achieve the former by first learning a strong prior over all
possible 3D shapes with the help of a 3D point cloud auto-encoder. We then train an image
encoder to map the input image to this learnt latent space. To address the latter issue, we
propose a mechanism to learn a probabilistic distribution in the latent space that is capable
of generating multiple plausible outputs from possibly ambiguous input views.

In summary, our contributions in this work are as follows:

• We propose a latent-embedding matching setup called 3D-LMNet, to demonstrate the
importance of learning a good prior over 3D point clouds for effectively transferring
knowledge from the 3D to 2D domain for the task of single-view reconstruction. We
thoroughly evaluate various ways of mapping to a learnt 3D latent space.

• We present a technique to generate multiple plausible 3D shapes from a single input
image to tackle the issue of ambiguous ground truths, and empirically evaluate the
effectiveness of this strategy in generating diverse predictions for ambiguous views.

• We evaluate 3D-LMNet on real data and demonstrate the generalizability of our ap-
proach, which significantly outperforms the state-of-art reconstruction methods for the
task of single-view reconstruction.
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2 Related Work
3D Reconstruction

With the advent of deep neural network architectures in 2D image generation tasks, the
power of convolutional neural nets have been directly transferred to the 3D domain using 3D
CNNs. A number of works have revolved around generating voxelized output representa-
tions [4, 9, 23, 24]. Giridhar et al. [9] learnt a joint embedding of 3D voxel shapes and their
corresponding 2D images. While the focus of [9] was to learn a vector representation that is
generative and predictable at the same time, our aim is to address the problem of transferring
the knowledge learnt in 3D to the 2D domain specifically for the task of single-view recon-
struction. Additionally, we tackle the rather under-addressed problem of generating multiple
plausible outputs that satisfy the given input image. Wu et al. [23] used adversarial training
in a variational setup for learning more realistic generations. Choy et al. [4] trained a recur-
rent neural network to encode information from more than one input views. Works such as
[22, 25] explore ways to reconstruct 3D shapes from 2D projections such as silhouettes and
depth maps. Apart from reconstructing shapes from scratch, other reconstruction tasks such
as shape completion [5, 19] and shape deformation [27] have also been studied in the voxel
domain. But the compute overhead and sparsity of information in voxel formats inspired
lines of work that abstracted volumetric information into smaller number of units with the
help of the octree data structure [10, 18, 21].

More recently, Fan et al. [8], introduced frameworks and loss formulations tailored for
generating unordered point clouds, and achieved single-view 3D reconstruction results out-
performing the volumetric state-of-art approaches [4]. While [8] directly predicts the 3D
point cloud from 2D images, our approach stresses the importance of first learning a good
3D latent space of point clouds before mapping the 2D images to it. Lin et al. [14] gener-
ated point clouds by fusing depth images and refined them using a projection module. Apart
from single-view reconstruction, there is active research in other areas of point cloud analysis
including processing [6, 12], upsampling [26], deformation [13], and generation [1].

Generating multiple plausible outputs
While mutliple correct reconstructions can exist for a single input image, most prior

works predict deterministic outputs regardless of the information that is available. Rezende
et al. [17] and Fan et al. [8] tackle the problem by training a conditional variational auto-
encoder [7, 11] on 3D shapes conditioned on the input image. In [8], an alternative approach
of inducing randomness into the model at the input stage is considered. In 3D-LMNet,
we introduce a training regime comprising of sampling a probabilistic latent variable, and
optimizing a novel view-specific loss function. Our reconstructions exhibit greater semantic
diversity and effectively model the view-specific uncertainty present in the data distribution.

3 Approach
Our training pipeline consists of two stages as outlined in Fig. 2. In the first stage, we learn
a latent space Z ⊆ Rk of 3D point clouds by training a point cloud auto-encoder (EP , DP ).
In the second stage, we train an image encoder EI to map the 2D image to this learnt latent
space Z . A variant of stage two consists of mapping to Z in a probabilistic manner so as
to infer multiple possible predictions for a single input image during test time. Each of the
components is described below in detail.
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Figure 2: Overview of 3D-LMNet. The training pipeline consists of two stages. In Stage
I, we learn a latent space Z for 3D point clouds by training a point cloud auto-encoder (EP ,
DP ). In Stage II, we train an image encoder EI to map the 2D images to this learnt Z . In a
variant of Stage II, we map to Z in a probabilistic manner so as to infer multiple plausible
predictions for a single input image during inference.

3.1 3D Point Cloud Auto-Encoder

Our goal is to learn a strong prior over the 3D point clouds in the dataset. For this pur-
pose, we train an encoder-decoder network (EP , DP) that takes in a ground truth point cloud
XP ∈ RN×3 and outputs a reconstructed point cloud X̂P ∈ RN×3, where N is the number of
points in the point cloud (Fig. 2a). Since a point cloud is an unordered form of representa-
tion, we need a network architecture that is invariant to the relative ordering of input points.
To enforce this, we choose the architecture of EP based on PointNet [15], consisting of 1D
convolutional layers acting independently on every point in the point cloud XP . To achieve
order-invariance of point features in the latent space, we apply the maxpool symmetry func-
tion to obtain a bottleneck Z of dimension k. The decoder consists of fully-connected layers
operating on Z to produce the reconstructed point cloud X̂P . Since the loss function for opti-
mization also needs to be order-invariant, Chamfer distance between XP and X̂P is chosen as
the reconstruction loss. The loss function is defined as:

Lrec = dCham f er(XP , X̂P) = ∑
x∈XP

min
x̂∈X̂P

||x− x̂||22 + ∑
x̂∈X̂P

min
x∈XP

||x− x̂||22 (1)

Once the auto-encoder is trained, the next stage consists of training an image encoder to
map to this learnt embedding space.
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3.2 Latent Matching
In this stage, we aim to effectively transfer the knowledge learnt in the 3D point cloud domain
to the 2D image domain. We train an image encoder EI that takes in an input image I and
outputs a latent image vector zI of dimension k (Variant I, Fig. 2b). There are two ways of
achieving the 3D-to-2D knowledge transfer:

(1) Matching the reconstructions: We pass zI through the pre-trained point cloud de-
coder DP to get the predicted point cloud X̂I . The parameters of DP are not updated
during this step. Chamfer distance between X̂I and XP is used as the loss function
for optimization. We refer to this variant as "3D-LMNet-Chamfer" in the evaluation
section (Sec. 4).

(2) Matching vectors in the latent Z space: The latent representations of the image and
corresponding ground truth point cloud are matched. The error is computed between
the predicted zI and the ground truth zP , obtained via passing XP through the pre-trained
point cloud encoder EP (Fig. 2b). The parameters of EP are not updated during this
step. For the latent loss Llm, we experiment with the squared euclidean error (L2(zI −
zP) = ||zI − zP ||22) and the least absolute error (L1(zI − zP) = |zI − zP |) for matching the
latent vectors. We refer to these two variants as "3D-LMNet-L2" and "3DLMNet-L1"
in the evaluation section (Sec. 4). During inference, we obtain the predicted point
cloud by passing the image through EI followed by DP .

In our experiments (detailed in Sec. 4.1), we find that alternative two i.e. matching latent
vectors provides substantial improvement over optimizing for the reconstruction loss.

3.3 Generating Multiple Plausible Outputs
We propose to handle the uncertainty in predictions by learning a probabilistic distribution
in the latent space Z . For every input image I in the dataset, there are multiple settings of the
latent variables z for which the model should predict an output that is consistent with I. To
allow the network to make probabilistic predictions, we formulate the latent representation z1
of a specific input image I1 to be a Gaussian random variable, i.e. z1 ∼N (µ,σ2) (Variant II,
Fig. 2c). Similar to Variational Auto-Encoders (VAE) [11], we use the "reparameterization
trick" to handle stochasticity in the network. The image encoder predicts the mean µ and
standard deviation σ of the distribution, and ε ∼ N (0,1) is sampled to obtain the latent
vector as z1 = µ + εσ (Fig. 2). However, unlike in the case of conventional VAEs, the mean
of the distribution is unconstrained, while the variance is constrained such that meaningful
and diverse reconstructions are obtained for a given input image.

A critical challenge is to obtain a model that can generate diverse but semantically mean-
ingful predictions for an occluded view while retaining the visible semantics. Another chal-
lenge is to make highly confident predictions when the input view is informative. To accom-
modate this, we formulate a fast-decaying loss function that penalizes σ for being too far off
from zero for unambiguous views, while giving it the liberty to explore the latent space for
ambiguous views. We term this as the diversity loss and define it as follows:

Ldiv =
(
σ −ηe−

(φi−φo)2

δ2
)2 (2)

where, φi is the azimuth angle of the input image I, φo is the azimuth angle of maximum
occlusion view, and δ determines the rate of decay. η controls the magnitude of standard
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Metric AE Baseline
3D-LMNet

Chamfer
3D-LMNet
L2

3D-LMNet
L1

Chamfer 4.46 5.78 5.99 5.54 5.40
EMD 6.53 9.20 7.82 7.20 7.00

Table 1: A comparison of the baseline and different variants of 3D-LMNet for the task of 3D
reconstruction on ShapeNet [3]. All metrics are scaled by 100.

Metric
3D-LMNet

Chamfer
3D-LMNet
L2

3D-LMNet
L1

L2 56.7 1.32 1.38
L1 14.02 1.34 1.29

Table 2: A comparison of latent matching errors for different variants of 3D-LMNet on
ShapeNet [3]. All metrics are scaled by 0.01.

deviation σ . The above formulation can easily be extended to cases where multiple highly
occluded views are present by considering a mixture of Gaussians.

The joint optimization loss function is a combination of the latent matching loss Llm and
the diversity loss Ldiv:

L= Llm +λLdiv (3)

where λ is the weighing factor. During inference, the model is capable of generating diverse
predictions when ε is varied. Note that pose information is not used during inference.

3.4 Implementation Details

In the point cloud auto-encoder, the encoder consists of five 1D convolutional layers with
[64,128,128,256] filters, ending with a bottleneck layer of dimension 512. We choose max-
pool function as the symmetry operation. The decoder consists of three fully-connected
layers of size [256,256,N× 3], where N is the number of points predicted by our network.
We set N to be 2048 in all our experiments. We use the ReLU non-linearity and batch-
normalization at all layers of the auto-encoder. The image encoder is a 2D convolutional
neural network that maps the input image to the 512-dimensional latent vector. We use the
Adam optimizer with a learning rate of 0.00005 and a minibatch size of 32. Network archi-
tectures for all components in our proposed framework are provided in the supplementary
material. Codes are available at https://github.com/val-iisc/3d-lmnet.

4 Experiments

Dataset: We train all our networks on synthetic models from the ShapeNet [3] dataset.
We use the same 80%− 20% train/test split provided by [4] consisting of models from 13
different categories, so as to be comparable with the previous works.
Evaluation Methodology: We report both the Chamfer Distance (Eqn. 1) as well as the
Earth Mover’s Distance (or EMD) computed on 1024 randomly sampled points in all our
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Figure 3: Qualitative results on ShapeNet [3]. Compared to PSGN [8] and the baseline, we
are better able to capture the overall shape and finer details present in the input image. While
clusters and outlier points are present in PSGN and baseline reconstructions, we obtain more
uniformly distributed points. The bottom row presents failure cases for our approach. Note
that PSGN predicts 1024 points, while the baseline and 3D-LMNet predict 2048 points.

evaluations. EMD between two point sets XP and X̂P is given by:

dEMD(XP , X̂P) = min
φ :XP→X̂P

∑
x∈XP

||x−φ(x)||2 (4)

where φ : XP → X̂P is a bijection. We use an approximate. For computing the metrics, we
renormalize both the ground truth and predicted point clouds within a bounding box of length
1 unit. Since PSGN [8] outputs are non-canonical, we align their predictions to the canonical
ground truth frame by using pose metadata available in the evaluation datasets. Additionally,
we apply the iterative closest point algorithm (ICP) [2] on the ground truth and predicted
point clouds for finer alignment.

4.1 Empirical Evaluation on ShapeNet
We study the framework presented and evaluate each of the components in the training
pipeline. To show the advantage of our latent matching procedure over direct 2D-3D training,
we train a baseline which consists of an encoder-decoder network that is trained end-to-end,
using reconstruction loss on the generated point cloud. We employ the same network ar-
chitecture as the one used for latent matching experiments. To measure the performance of
the baseline and all variants of our model, we use the validation split provided by [4] for re-
porting the Chamfer and EMD metrics. Table 1 shows the comparison between the baseline
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and three variants of loss formulation in our latent matching setup. We also report the auto-
encoder reconstruction scores, which serve as an upper bound on the performance of latent
matching. We observe that the latent matching variants of 3D-LMNet outperform the base-
line in both Chamfer and EMD. Amongst the variants, we observe that trivially optimizing
for Chamfer loss leads to worse results, whereas training with losses directly operating on the
latent space results in lower reconstruction errors. We also see that the L1 loss formulation
performs better both in terms of Chamfer and EMD metrics. Additionally, we also report the
latent matching errors for different variants of 3D-LMNet in Table 2. We observe that more
accurate latent matching (characterized by lower L1 and L2 errors), results in lower recon-
struction errors as well (Table 1). Category-wise metrics for all the variants are provided in
the supplementary material.

4.2 Comparison with other methods on ShapeNet and Pix3D

We compare our 3D-LMNet-L1 model with PSGN [8] on the synthetic ShapeNet dataset [3]
and the more recent Pix3D dataset [20] to test for generalizability on real world data. Since [8]
establishes that point cloud based approach significantly outperforms the state-of-art voxel
based approaches, we do not show any comparison against them.

ShapeNet Table 3 shows the comparison between PSGN [8], the baseline and our L1 latent
matching variant on the validation split provided by [4]. We outperform PSGN in 8 out of
13 categories in Chamfer and 10 out of 13 categories in the EMD metric, while also having
lower overall mean scores. It is worth noting that we achieve state-of-the-art performance
in both metrics despite the fact that our network has half the number of trainable parameters
in comparison to PSGN, while predicting point clouds with double the resolution. A lower
EMD score also correlates with better visual quality and encourages points to lie closer to
the surface [1, 26]. Qualitative comparison is shown in Fig. 3. Compared to PSGN [8]
and the baseline, we are better able to capture the overall shape and finer details present in
the input image. Note that both the other methods have clustered points and outlier points
while our reconstructions are more uniformly distributed. We also present two failure cases
of our approach in Fig. 3 (bottom row). Interestingly, we observe that in some cases, latent
matching incorrectly maps an image to a similar looking object of different category, leading
to good-looking but incorrect reconstructions. Fig. 3 shows a vessel being mapped to a
car of similar shape. Another common failure case is the absence of finer details in the
reconstructions. However, other approaches also have this drawback.

Pix3D For testing the generalizability of our approach on real-world datasets, we evaluate
the performance of our method on the Pix3D dataset [20]. It consists of a large collection
of real images and their corresponding metadata such as masks, ground truth CAD models
and pose. We evaluate our trained model on categories that co-occur in the synthetic training
set and exclude images having occlusion and truncation from the test set, as is done in the
original paper [20]. We crop the images to center-position the object of interest and mask the
background using the provided information. We report the results of this evaluation in Table
4. Evidently, we outperform PSGN and the baseline by a large margin in both Chamfer as
well as EMD metrics, demonstrating the effectiveness of our approach on real data. Fig. 4
shows sample reconstructions on this dataset. Our proposed method is able to generalize
well to the real dataset while both PSGN and the baseline struggle to generate meaningful
reconstructions.
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Category Chamfer EMD
Baseline PSGN [8] 3D-LMNet Baseline PSGN [8] 3D-LMNet

airplane 3.61 3.74 3.34 7.42 6.38 4.77
bench 4.70 4.63 4.55 5.66 5.88 4.99
cabinet 7.42 6.98 6.09 9.58 6.04 6.35

car 4.67 5.20 4.55 4.74 4.87 4.10
chair 6.51 6.39 6.41 8.99 9.63 8.02
lamp 7.32 6.33 7.10 20.96 16.17 15.80

monitor 6.76 6.15 6.40 9.18 7.59 7.13
rifle 2.99 2.91 2.75 9.30 8.48 6.08
sofa 6.11 6.98 5.85 6.40 7.42 5.65

speaker 9.05 8.75 8.10 11.29 8.70 9.15
table 6.16 6.00 6.05 9.51 8.40 7.82

telephone 5.13 4.56 4.63 8.64 5.07 5.43
vessel 4.70 4.38 4.37 7.88 6.18 5.68
mean 5.78 5.62 5.40 9.20 7.75 7.00

Table 3: Single view reconstruction results on ShapeNet [3]. The metrics are computed on
1024 points after performing ICP alignment with the ground truth point cloud. All metrics
are scaled by 100.

Figure 4: Qualitative results on the real-world Pix3D dataset [20]. The learnt 3D prior en-
ables our method to generate meaningful reconstructions on real data, while both PSGN [8]
and the baseline fail to generalize well to the real data distribution. PSGN predicts 1024
points, while the baseline and 3D-LMNet predict 2048 points.

Category Chamfer EMD
Baseline PSGN [8] 3D-LMNet Baseline PSGN [8] 3D-LMNet

chair 7.52 8.05 7.35 11.17 12.55 9.14
sofa 8.65 8.45 8.18 8.87 9.16 7.22
table 11.23 10.82 11.20 15.71 15.16 12.73
mean 9.13 9.11 8.91 11.92 12.29 9.70

Table 4: Single view reconstruction results on the real world Pix3D dataset [20]. The metrics
are computed on 1024 points after performing ICP alignment with the ground truth point
cloud. All metrics are scaled by 100.
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Input

View 1 View 2 View 1 View 2 View 1 View 2

Figure 5: Qualitative results for probabilistic latent matching. Rows 1 and 2 depict multiple
reconstructions for ambiguous input views, obtained by sampling ε from N (0,1). Row 3
depicts the minimal influence ε has on reconstructions from informative views. Reconstruc-
tion results are shown from two different viewing angles for each ε so as to highlight the
correspondence with the input image.

4.3 Generating multiple plausible outputs

We evaluate the probabilistic training regime (Variant II, Fig. 2c) described in Sec. 3.3 for
the task of generating multiple plausible outputs for a single input image. We train EI on
objects from the chair category, and set φo and δ in Eqn. 2 to 180◦ and 20◦ respectively. For
chairs, φo of 180◦ corresponds to a perfect back-view having maximum occlusion. For com-
parison, we also train a model without the diversity loss (Variant I, Fig. 2b). Quantitatively,
Variant II compares favourably to Variant I in terms of both Chamfer (Variant II - 6.45 vs
Variant I - 6.48) and EMD errors (Variant II - 8.04 vs Variant I - 8.1), while also effectively
handling uncertainty. Qualitative results for Variant II are shown in Fig. 5. We observe that
for different values of the sampling variable ε ∼ N (0,1), we obtain semantically different
reconstructions which are consistent with the input image for ambiguous views. We observe
variations like presence and absence of handles, different leg structures, hollow backs, etc
in the reconstructions. On the other hand, the value of ε has minimal influence over the
reconstructions for unambiguous views.

5 Conclusion

In this paper, we highlighted the importance of learning a rich latent representation of 3D
point clouds for the task of single-view 3D reconstruction. We empirically evaluated var-
ious loss formulations to effectively map to the learned latent space. We also presented a
technique to tackle the inherent ambiguity in 3D shape prediction from a single image by
introducing a probabilistic training scheme in the image encoder, thereby obtaining multiple
plausible 3D generations from a single input image. Quantitative and qualitative evaluation
on the single-image 3D reconstruction task on synthetic and real datasets show that the gen-
erated point clouds are more accurate and realistic in comparison to the current state-of-art
reconstruction methods.
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