
HENDERSON & FERRARI: MESH GENERATION & RECONSTRUCTION 1

Learning to Generate and Reconstruct 3D
Meshes with only 2D Supervision

Paul Henderson
p.m.henderson@ed.ac.uk

School of Informatics
University of Edinburgh
Edinburgh, Scotland

Vittorio Ferrari
vittoferrari@google.com

Google Research
Zürich, Switzerland

Abstract

We present a unified framework tackling two problems: class-specific 3D recon-
struction from a single image, and generation of new 3D shape samples. These tasks
have received considerable attention recently; however, existing approaches rely on 3D
supervision, annotation of 2D images with keypoints or poses, and/or training with mul-
tiple views of each object instance. Our framework is very general: it can be trained in
similar settings to these existing approaches, while also supporting weaker supervision
scenarios. Importantly, it can be trained purely from 2D images, without ground-truth
pose annotations, and with a single view per instance. We employ meshes as an output
representation, instead of voxels used in most prior work. This allows us to exploit shad-
ing information during training, which previous 2D-supervised methods cannot. Thus,
our method can learn to generate and reconstruct concave object classes. We evaluate our
approach on synthetic data in various settings, showing that (i) it learns to disentangle
shape from pose; (ii) using shading in the loss improves performance; (iii) our model is
comparable or superior to state-of-the-art voxel-based approaches on quantitative met-
rics, while producing results that are visually more pleasing; (iv) it still performs well
when given supervision weaker than in prior works.

1 Introduction
Reconstructing 3D objects from 2D images is a long-standing research area in computer
vision. While traditional methods rely on multiple images of the same object instance [2, 6,
8, 10, 21, 23, 28], there has recently been a surge of interest in learning-based methods that
can infer 3D structure from a single image, assuming that it shows an object of a class seen
during training [5, 7, 11, 14, 31, 33, 36, 38]. A related problem to reconstruction is that of
generating new 3D shapes from a given object class a priori, i.e. without conditioning on an
image. Again, there have recently been several works that apply deep learning techniques to
this task [9, 22, 29, 34, 39].

Most learning-based methods for reconstruction and generation rely on strong supervi-
sion. For generation, [22, 26, 29, 34, 39] use large collections of manually constructed 3D
shapes [4, 35]. For reconstruction, [5, 7, 11, 38] require training images paired with aligned
3D meshes; [14] relaxes this slightly by not requiring the images and meshes to be paired.
While other methods do not rely on 3D ground-truth, they still require annotations on the 2D

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 HENDERSON & FERRARI: MESH GENERATION & RECONSTRUCTION

unannotated 
image generative model 3D meshesencoder

new shape samplesnew shape samplesnew shape samples

θ

z

x

latent pose
 & shape

pixels

vobject

vertices
M o Fφ

decoder

image likelihood
loss

differentiable
renderer        o T

single-image
reconstructionreconstruction

Figure 1: Given only unannotated 2D images as training data, our model learns (1) to
reconstruct and predict the pose of 3D meshes from a single test image, and (2) to generate
new 3D mesh samples. It is trained end-to-end (orange dashed arrow) to reconstruct input
images, via a differentiable renderer that produces lit, shaded RGB images, allowing us to
exploit shading cues in the loss.

training images such as keypoints [17, 32] and object poses [31, 33, 36]. Furthermore, some
of them also require multiple views for each object instance [26, 33, 36]. In this paper, we
consider the more challenging setting where we only have access to unannotated 2D images
for training, without ground-truth pose, keypoints, or 3D shape, and with a single view per
object instance; this setting is considered in just one previous work [9].

It is well known that shading provides an important cue for 3D understanding [16].
It allows determination of surface orientations, if the lighting and material characteristics
are known; this has been explored in numerous works on shape-from-shading over the
years [1, 16, 37]. Unlike learning-based approaches, these methods can only reconstruct
non-occluded parts of an object, and achieving good results requires strong priors [1]. Con-
versely, existing learning-based generation and reconstruction methods can reason over oc-
cluded or visually-ambiguous areas, but do not leverage shading information in their loss.
Furthermore, the vast majority use voxel grids as an output representation (except [29, 39]);
while easy to work with, these cannot model surfaces that are not axis-aligned, limiting the
usefulness of shading cues. To exploit shading information in a learning-based approach, we
therefore need to move beyond voxels; a natural choice of representation is then 3D meshes.
Meshes are ubiquitous in computer graphics, and have desirable properties for our task: they
can represent surfaces of arbitrary orientation and dimensions at fixed cost, and are able
to capture fine details. Thus, they avoid the visually displeasing ‘blocky’ reconstructions
that result from voxels. We also go beyond monochromatic light, considering the case of
coloured directional lighting; this provides even stronger shading cues when combined with
arbitrarily-oriented mesh surfaces.

In this paper, we present a unified framework for both reconstruction and generation
of 3D shapes, that is trained with only 2D supervision, and models 3D meshes rather than
voxels (Fig. 1). Our framework is very general, and can be trained in similar settings to
existing models [31, 33, 36], while also supporting weaker supervision scenarios. It allows:

• use of different mesh parameterisations, which lets us incorporate useful modeling
priors such as smoothness or composition from primitives

• exploitation of shading cues due to monochromatic or coloured directional lighting,
letting us discover concave structures that silhouette-based methods [9, 31, 36] cannot
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Figure 2: Lighting: Coloured directional lighting (a) provides strong cues for surface
orientation; white light (b) provides less information; silhouettes (c) provide none at all. Our
model is able to exploit the shading information from coloured or white lighting. Mesh
parameterisations: ortho-block & full-block (assembly from cuboidal primitives, of fixed
or varying orientation) are suited to objects consisting of compact parts (d-e); subdivision
(per-vertex deformation of a subdivided cube) is suited to complex continuous surfaces (f).

• training with varying degrees of supervision: single or multiple views per instance,
with or without ground-truth pose annotations
To achieve this, we design a probabilistic generative model that captures the full image

formation process, whereby the shape and pose of a 3D mesh are first sampled indepen-
dently, then a 2D rendering is produced from these (Sec. 2). We use stochastic gradient
variational Bayes [19, 27] for training (Sec. 3). This involves learning an inference network
that can predict 3D shape and pose from a single image, with the shape placed in a canonical
frame of reference, i.e. disentangled from the pose. Together, the model plus its inference
network resemble a variational autoencoder [19] on pixels. It represents 3D shapes in a com-
pact latent embedding space, and has extra layers in the decoder corresponding to the mesh
representation and renderer. As we do not provide 3D supervision, the encoder and decoder
must bootstrap and guide one another during training. The decoder learns the manifold of
shapes, while at the same time the encoder learns to map images onto this. This learning
process is driven purely by the objective of reconstructing the training images. While this is
an ambiguous task and the model cannot guarantee to reconstruct the true shape of an ob-
ject from a single image, its generative capability means that it always produces a plausible
instance of the relevant class; the encoder ensures that this is consistent with the observed
image. This works because the generative model must learn to produce shapes that reproject
well over all training images, starting from low-dimensional latent representations. This cre-
ates an inductive bias towards regularity, which avoids degenerate solutions with unrealistic
shapes that could, in isolation, explain each individual training image.

We display samples from our model in Sec. 4.1, showing that (i) the use of meshes yields
more natural samples than those from voxel-based methods, and (ii) our samples are diverse
and realistic. In Sec. 4.2, we quantitatively evaluate the performance of our method on single-
view reconstruction and pose estimation, in the various settings described above. We show
that (i) it learns to predict pose, and disentangle it from shape; (ii) exploiting information
from shading improves the results; (iii) it achieves comparable or better performance than
prior works with equivalent supervision; and (iv) it still performs well when given weaker
supervision than supported by prior works.

2 Generative Model
Our goal is to build a probabilistic generative model of 3D meshes for a given object class.
For this to be trainable with 2D supervision, we cast the entire image-formation process
as a directed model (Fig. 1). We assume that the content of an image can be explained
by two independent latent components—the shape of the mesh, and its pose relative to the
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camera. These are modelled by two low-dimensional random variables, z and θ respec-
tively. The joint distribution over these and the resulting pixels x factorises as P(x,z,θ) =
P(θ)P(z)P(x |z,θ).

Following [9, 31, 33, 36], we assume that the pose θ is parameterised by just the azimuth
angle, with θ ∼ Uniform(−π,π). The camera is then placed at fixed distance and elevation
relative to the object. Following recent works on deep latent variable models [12, 19], we
assume that z is drawn from a standard isotropic Gaussian, and then transformed by a de-
terministic decoder network, Fφ , parameterised by weights φ which are to be learnt. This
produces the mesh parameters Π = Fφ (z). Intuitively, the decoder network Fφ transforms
and entangles the dimensions of z such that all values in the latent space map to plausible val-
ues for Π, even if these lie on a highly nonlinear manifold. Note that our approach contrasts
with previous models that directly output pixels [12, 19] or voxels [9, 34] from a decoder
network.

We use Π as inputs to a fixed mesh parameterisation function M(Π), which yields ver-
tices vobject of triangles defining the shape of the object in 3D space, in a canonical pose
(different options for M are described below). The vertices are transformed into camera
space according to the pose θ , by a fixed function T : vcamera = T (vobject, θ). They are then
rendered into an RGB image I0 = G(vcamera) by a rasteriser G with Gouraud shading [13]
and Lambertian directional lighting [20]. We are free to choose the lighting parameters: our
experiments include tri-directional coloured lighting, and white directional lighting with an
ambient component.

The final observed pixel values x are modelled as independent Gaussian random vari-
ables, with means equal to the values in an L-level Gaussian pyramid [3], whose base level
equals I0, and whose Lth level has smallest dimension equal to 1:

Pφ (x |z,θ) = ∏
l

Pφ (xl |z,θ) xl ∼ Normal
(

Il ,
ε

2l

)
(1)

I0 = G(T (M(Fφ (z)), θ)) Il+1 = Il ∗ kG (2)
where kG is a small Gaussian kernel, ε is the noise magnitude at the base scale, and ∗ denotes
convolution with stride two. We use a multi-scale pyramid instead of just the raw pixel values
to ensure that, during training, there will be gradient forces over long distances in the image,
thus avoiding bad local minima where the reconstruction is far from the input.
Mesh parameterisations. After the decoder network has transformed the latent embedding
z into the mesh parameters Π, these are converted to actual 3D vertices using a simple, non-
learnt mesh-parameterisation function M. One possible choice for M is the identity function,
in which case the decoder network directly outputs vertex locations. However, initial exper-
iments showed that this does not work well: it produces very irregular meshes with large
numbers of intersecting triangles. Conversely, using a more sophisticated form for M en-
forces regularity of the mesh. We use three different parameterisations in our experiments.

In our first parameterisation, Π specifies the locations and scales of a fixed number
of axis-aligned cuboidal primitives (Fig. 2d), from which the mesh is assembled [30, 39].
Changing Π can produce configurations with different topologies, depending which blocks
touch or overlap, but all surfaces will necessarily be axis-aligned. In our experiments we call
this ortho-block.

Our second parameterisation is strictly more powerful than the first: we still assemble the
mesh from cuboidal primitives, but now parameterise each with a 3D rotation, in addition to
its location and scale. In our experiments we call this full-block (Fig. 2e).

The above parameterisations are naturally suited to objects composed of compact parts,
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but cannot represent complex continuous surfaces. For these, we define a third parameteri-
sation, subdivision (Fig. 2f). This parameterisation is based on a single unit cube, centred
at the origin; the edges and faces of the cube are subdivided several times along each axis.
Then, Π specifies a list of displacements, one per vertex, which deform the subdivided cube
into the required shape.

3 Variational Training
We wish to learn the parameters of our model from a training set of 2D images of objects
of a single class. More precisely, we assume access to a set of images {x(i)}, each showing
an unknown object instance at unknown pose. Note that we do not require that there are
multiple views of each object (in contrast with [36]), nor that the object poses are given as
supervision (in contrast with [31, 33, 36]).

We seek to maximise the marginal log-likelihood of the training set, which is given by
∑i logPφ (x(i)), with respect to φ . For each image, we have

logPφ (x(i)) = log
∫

z,θ
Pφ (x(i) |z,θ)P(z)P(θ)dzdθ . (3)

Unfortunately this is intractable, due to the integral over the latent space z,θ . Hence, we use
amortised variational inference, in the form of stochastic gradient variational Bayes [19, 27].
This introduces an approximate posterior Qω(z,θ |x), parameterised by some ω that we learn
jointly with the model parameters φ . Intuitively, Q maps an image x directly to a distribution
over likely values of the latent variables z and θ . Instead of the log-likelihood (3), we then
maximise the evidence lower bound (ELBO):

E
z,θ∼Qω (z,θ |x(i))

[
logPφ (x(i) |z,θ)

]
−KL

[
Qω(z,θ |x(i))

∣∣∣∣∣∣P(z)P(θ)]≤ logPφ (x(i)). (4)

This lower-bound on the log-likelihood can be evaluated efficiently, as the necessary inte-
gration is now with respect to Q, for which we are free to choose a tractable form. The
expectation can then be approximated using a single sample.

We let Q be a mean-field approximation, factorised as Qω(z,θ |x) = Qω(z |x)Qω(θ |x).
Qω(z |x) is a multivariate Gaussian with diagonal covariance. The mean and variance of each
latent dimension are given by an encoder network, encω(x), which takes the image x as input.
For this encoder network we use a CNN with architecture similar to [33]. When training with
multiple views per instance, we apply the encoder network to each image separately, then
calculate the final shape embedding z by max-pooling each dimension over all views.

For the pose θ , we could similarly use a Gaussian posterior. However, many objects are
roughly symmetric with respect to rotation, and so the true posterior is typically multi-modal.
We capture this multi-modality by decomposing the rotation into coarse and fine parts [25]:
an integer random variable θcoarse that chooses from R rotation bins, and a small Gaussian
offset θfine relative to this. We apply this transformation in both the generative P(θ) and
variational Qω(θ), giving

θ =−π +θcoarse
2π

R
+θfine (5)

P(θcoarse = r) = 1/R, P(θfine) = Normal(θfine |0,π/R) (6)

Qω

(
θcoarse = r

∣∣∣x(i))= ρr

(
x(i)
)
, Qω(θfine) = Normal

(
θfine

∣∣∣ξ (x(i)),ζ (x(i))) (7)

where the variational parameters ρr,ξ ,ζ for image x(i) are again estimated by the encoder
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Figure 3: (a-c) Samples from [9] (grey background), shown next to stylistically-similar sam-
ples from our model (white background). Both are trained with a single view per instance,
and without ground-truth pose. However, our model outputs meshes, and uses shading in the
loss. (d) For sofa, we only show samples from our model, as [9] cannot handle sofas due to
the concavities. (e) Additional samples from our model, showing their diversity and quality

network encω(x(i)). Provided R is sufficiently small, we can integrate directly with respect
to θcoarse when evaluating (4), i.e. sum over all possible rotations. We found in initial exper-
iments that this significantly improves performance.

Imposing a uniform pose prior. While the above allows our training process to reason
over different poses, it is still prone to predicting the same pose θ for every image; clearly
this does not correspond to the prior on θ given by (6). The model is therefore relying on
the shape embedding z to model all variability, rather than disentangling shape and pose.
The ELBO (4) does include a KL-divergence term that should encourage latent variables to
match their prior. However, it does not have a useful effect for θcoarse: minimising the KL
divergence from a uniform distribution for each sample individually corresponds to indepen-
dently minimising all the probabilities Qω(θcoarse), which does not encourage uniformity of
the full distribution. The effect we desire is to match the aggregated posterior distribution〈

Qω(θ |x(i))
〉

i
to the prior P(θ), where 〈 · 〉i is the empirical mean over the training set. As

θcoarse follows a categorical distribution in both generative and variational models, we can
directly minimise the L1 distance between the aggregated posterior and the prior:

R

∑
r

∣∣∣〈Qω

(
θcoarse = r |x(i)

)〉
i
−P(θcoarse = r)

∣∣∣= R

∑
r

∣∣∣〈ρr(x(i))
〉

i
− 1

R

∣∣∣. (8)

We use this term in place of KL
[
Q(θcoarse |x(i))

∣∣∣∣∣∣P(θcoarse)
]

in our loss, approximating the
empirical mean with a single minibatch.

Loss. Our final loss function for a minibatch B is then given by
R

∑
r

{
−
〈

ρr(x(i)) E
z,θfine∼Qω

[
logPφ

(
x(i)
∣∣∣z,θcoarse = r,θfine

)]〉
i∈B

+α

∣∣∣〈ρr(x(i))
〉

i∈B
− 1

R

∣∣∣}
+β

〈
KL
[
Qω

(
z,θfine

∣∣∣x(i)) ∣∣∣∣∣∣P(z)P(θfine)
]〉

i∈B
(9)

where β increases the relative weight of the KL term as in [15], and α controls the strength
of the pose prior matching. We minimise (9) with respect to φ and ω using ADAM [18],
applying the reparameterisation trick [19, 27] to handle the Gaussian random variables.
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Figure 4: Qualitative examples of reconstructions. Each row of five images shows (i)
ShapeNet ground-truth; (ii) our reconstruction with subdivision parameterisation; (iii) re-
construction aligned to canonical pose; (iv) our reconstruction with blocks; (v) aligned re-
construction. Experimental setting: single-view training, colour lighting, shading loss.

Differentiable rendering. Note that optimising (9) by gradient descent requires differenti-
ating through the rendering operation G used to calculate Pφ (x |z,θ), to find the derivative
of the pixels with respect to the vertex locations and colours. While computing exact deriva-
tives of G is very expensive, [24] describes an efficient approximation. We employ a similar
technique here, and make our TensorFlow implementation publicly available1.

4 Experiments
We follow recent works [7, 9, 31, 36] and evaluate our approach using the ShapeNet dataset [4].
Using synthetic data has two advantages: it allows (i) controlled experiments modifying
lighting and other parameters; (ii) benchmarking the performance of the reconstruction net-
work against ground-truth 3D shapes. Our experiments focus on the four classes aeroplane,
car, chair, and sofa. The first three are used in [9, 31, 36], while the fourth is an example of
a highly concave class that is not easily handled by silhouette-based approaches.

To rigorously evaluate the performance of our model, we vary several factors:
• Mesh parameterisations: We evaluate the three parameterisations described in Sec. 2.
• Lighting: Unlike previous works [9, 31, 33, 36], our method is able to exploit shading in

the images. We test in two settings, illumination by (i) three coloured directional lights
(colour), and (ii) one white directional light plus a white ambient component (white).
• Reconstruction loss: We typically calculate the reconstruction loss (pixel log-likelihood)

over the RGB shaded image (shading), but for comparison with [31, 33, 36] we also ex-
periment with using only the silhouette in the loss (silhouette), disregarding differences
in shading between the input and reconstructed pixels.

• Pose supervision: Previous works that train for 3D reconstruction with 2D supervision
require the ground-truth pose of each training instance [31, 33, 36]. Although our method
does not need this, we evaluate whether it can benefit from it.

• Multiple views: [33, 36] require that multiple views of each instance are presented
together in each training batch, and [31] also focuses on this setting. Our model does

1github.com/pmh47/dirt

github.com/pmh47/dirt
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car chair aeroplane sofa
iou err acc iou|θ iou err acc iou|θ iou err acc iou|θ iou err acc iou|θ

ortho-block 0.71 7.3 0.84 0.74 0.41 9.2 0.69 0.49 0.30 7.9 0.73 0.24 0.59 7.3 0.94 0.69
full-block 0.54 6.5 0.82 0.63 0.46 4.6 0.69 0.51 0.51 4.4 0.89 0.57 0.39 9.1 0.70 0.68

subdivision 0.77 4.7 0.84 0.81 0.39 7.9 0.65 0.51 0.49 6.7 0.64 0.57 0.39 14.7 0.52 0.59

Table 1: Reconstruction performance for four classes, with three different mesh parame-
terisations (Sec. 2). For each class, the first three columns are in the default setting of no
pose supervision and correspond to the metrics in Sec. 4.2; iou|θ is the IOU when trained
with pose supervision. Higher is better for iou and acc; lower is better for err. Experimental
setting: single-view training, colour lighting, shading loss.

not require this, but for comparison we include results with four views per instance at
training time, and either one or four at test time.

During training, we construct each minibatch by randomly sampling 128 meshes from the
relevant ShapeNet class uniformly with replacement. For each selected mesh, we render a
single image, using a pose sampled from Uniform(−π, π). Only these images are used to
train the model, not the meshes themselves. In experiments using multiple views, we instead
sample 32 meshes and four poses per mesh, and correspondingly render four images.

4.1 Generation
Fig. 3 shows examples of meshes sampled from our model, using the same setting as [9] (i.e.
single-view training without pose supervision). That is the only prior work that learns a 3D
generative model with just images as supervision. We manually selected samples from our
model that are stylistically similar to those from [9] to allow side-by-side comparison.

We see that in all cases, generating meshes tends to give cleaner, more visually-pleasing
samples than voxels (as used by [9]). For chair, our model is able to capture the very narrow
legs; for aeroplane, it captures the diagonal edges of the wings; for car, it captures the
smoothly curved edges. We have also successfully learnt a model for the concave class
sofa—which is impossible for [9] as it does not consider shading. Finally, note that our
samples are diverse: the model generates various different styles for each class.

4.2 Reconstruction
We now evaluate the performance of our model on 3D reconstruction from a single image.
We benchmark on a held-out test set, following the protocol of [36], where each object
is presented at 24 different poses, and statistics aggregated across objects and poses. We
evaluate according to the following measures:
• iou: to measure the shape reconstruction error, we calculate the mean intersection-over-

union between the predicted mesh and ground-truth; this follows recent works on recon-
struction [31, 36]. To calculate this, we voxelise both meshes at a resolution of 323

• err: to measure the pose estimation error, we calculate the median error in radians of
predicted rotations

• acc: again to evaluate pose estimation, we measure the fraction of instances whose pre-
dicted rotation is within π/6 of the ground-truth rotation.

Object classes and mesh parameterisations. Table 1 shows the performance of our model
on four different classes, comparing the three mesh parameterisations of Sec. 2. This focuses
on our default setting of colour lighting, shading loss, single-view training without pose su-
pervision (columns iou, err, acc); we also give iou when trained with pose supervision (col-
umn iou|θ ). We see that different parameterisations are better suited to different classes, in
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car chair aeroplane sofa
iou err acc iou|θ iou err acc iou|θ iou err acc iou|θ iou err acc iou|θ

colour 0.77 4.7 0.84 0.81 0.46 4.6 0.69 0.51 0.51 4.4 0.89 0.57 0.59 7.3 0.94 0.69
white 0.58 13.8 0.82 0.81 0.25 33.6 0.49 0.42 0.42 7.7 0.85 0.54 0.51 56.1 0.49 0.71

cl.+sil. 0.46 65.2 0.29 0.64 0.28 51.7 0.35 0.48 0.20 17.8 0.57 0.47 0.27 89.8 0.15 0.57

Table 2: Reconstruction performance with different lighting and loss. colour indicates three
coloured directional lights with shading loss; white indicates a single white directional light
plus white ambient, with shading loss; cl.+sil. indicates coloured lighting with only the sil-
houette used in the loss. Our model can exploit the extra information gained by considering
shading in the loss, and coloured directional lighting helps further. Experimental setting:
single-view training, best mesh parameterisations from Table 1.

car chair
iou err acc iou|θ iou err acc iou|θ

single-view 0.77 4.7 0.84 0.81 0.46 4.6 0.69 0.51
4-view train, 4-view test 0.83 2.6 0.94 0.86 0.51 4.7 0.72 0.55
4-view train, 1-view test 0.81 5.1 0.93 0.83 0.46 2.5 0.78 0.50

Table 3: Reconstruction performance with multiple views at train/test time. Our model is
able to exploit the extra information gained through multiple views, and can benefit even
when testing with a single view. Experimental setting: best mesh parameterisations from
Table 1, colour lighting, shading loss.

line with our expectations. Cars have smoothly curved edges, and are well-approximated by
a single simply-connected surface; hence, subdivision performs well. Chairs vary in topol-
ogy (e.g. the back may be solid or slatted) and sometimes have non-axis-aligned surfaces,
so the flexible full-block parameterisation performs best. Aeroplanes have one dominant
topology and include non-axis-aligned surfaces; both full-block and subdivision perform
well here. Sofas often consist of axis-aligned blocks, so the ortho-block parameterisation
is expressive enough to model them. We hypothesise that it performs better than the other
more flexible parameterisations as it is easier for training to find a good solution in a more
restricted representation space. This is effectively a form of regularisation. Overall, the best
reconstruction performance is achieved for cars, which accords with [7, 31, 36].

The low values of err (and corresponding high values of acc) indicate that the model
has indeed learnt to disentangle pose from shape. This is noteworthy given the model has
seen only unannotated 2D images with arbitrary poses—disentanglement of these factors
presumably arises because it is easier for the model to learn to reconstruct in a canonical
frame, given that it is encouraged by our loss to predict diverse poses. However, providing
the ground-truth poses as input improves reconstruction performance further in almost all
cases (column iou|θ vs. iou).
Benefit of lighting. Table 2 shows how reconstruction performance varies with the differ-
ent choices of lighting, colour and white, using shading loss. Coloured directional lighting
provides more information during training than white lighting, and the results are corre-
spondingly better. We also show performance with silhouette loss for coloured light. This
performs significantly worse than with shading in the loss, in spite of the input images be-
ing identical. Thus, back-propagating information from shading through the renderer does
indeed help with learning—it is not merely that colour images contain more information for
the encoder network. As in the previous experiment, we see that pose supervision helps the
model (column iou|θ vs. iou). In particular, only with pose supervision are silhouettes infor-
mative enough for the model to learn a canonical frame of reference reliably, as evidenced
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lighting loss car chair aeroplane sofa
DRC [31] white silhouette 0.73 0.43 0.50 -
DRC [31] white depth 0.74 0.44 0.49 -
PTN [36] white silhouette 0.71 0.50 0.56 0.62

PTN, our images colour silhouette 0.66 0.22 0.42 0.46
ours white silhouette 0.71 0.25 0.53 0.68
ours white shading 0.79 0.44 0.54 0.69
ours colour shading 0.83 0.51 0.57 0.69

PSG [7] white 3D 0.83 0.54 0.60 0.71

Table 4: Reconstruction performance (iou|θ ) in a setting matching [31, 36] (multi-view
training; best parameterisations from Table 1), but with mesh output instead of voxels. PTN,
our images is running the unmodified public code of [36] with its normal silhouette loss, on
our coloured images. The final row shows performance of a state-of-the-art method [7] with
full 3D supervision—note that our colour results are comparable with this, in spite of using
only unannotated 2D images as supervision

by the high median rotation errors without (column err).

Multi-view training/testing. Table 3 shows results when we provide 4 views of each object
instance to the model. Using 4 views at both training and testing time improves results in all
cases—the model has learnt to exploit the additional information about each instance. There
is also a smaller performance improvement when we train with 4 views, but test with only
one—although the network has not been optimised for the single-view task during training.

Comparison to previous works. Table 4 compares our results with previous works. Here,
we conduct experiments in a setting matching [31, 36]: multiple views at training time,
with ground-truth pose supervision. This shows that our results using meshes are roughly
comparable with these previous works using voxels, even when only silhouette supervision
is used (our results are worse on ‘chair’, but better on ‘sofa’). Furthermore, when we add
shading information to the loss (which these previous works cannot), our results show a
significant improvement; coloured lighting helps even further. We also show results for [36]
using our coloured lighting images as input, but their silhouette loss. This performs worse
than our method on the same images, again showing that shading in the loss is useful—our
colour images are not simply more informative to the encoder network than those of [36].
Interestingly, when trained with shading or colour, our method outperforms [31] even when
the latter is trained with depth information. When trained with colour, our results are even
close to [7], which is a state-of-the-art method trained with full 3D supervision.

5 Conclusion
We have presented a framework for generation and reconstruction of 3D meshes. Our ap-
proach is flexible and supports many different supervision settings, including weaker su-
pervision than any prior works (i.e. a single view per training instance, and without pose
annotations). Unlike prior works, we can exploit shading cues due to directional lighting;
we have shown that this improves performance over silhouettes. Moreover, performance is
higher than that of a method with depth supervision [31], and even close to the state-of-the-
art results using full 3D supervision [7]. Finally, ours is the first method that can learn a
generative model of 3D meshes, trained with only 2D images. We have shown that use of
meshes leads to more visually-pleasing results than prior voxel-based works [9].
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