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Abstract

In order to resonate with the viewers, many video advertisements explore creative
narrative techniques such as “Freytag’s pyramid” where a story begins with exposition,
followed by rising action, then climax, concluding with denouement. In the dramatic
structure of ads in particular, climax depends on changes in sentiment. We dedicate our
study to understand the dynamic structure of video ads automatically. To achieve this, we
first crowdsource climax annotations on 1,149 videos from the Video Ads Dataset, which
already provides sentiment annotations. We then use both unsupervised and supervised
methods to predict the climax. Based on the predicted peak, the low-level visual and
audio cues, and semantically meaningful context features, we build a sentiment predic-
tion model that outperforms the current state-of-the-art model of sentiment prediction in
video ads by 25%. In our ablation study, we show that using our context features, and
modeling dynamics with an LSTM, are both crucial factors for improved performance.

1 Introduction
Video advertisements are powerful tools for affecting the public opinion, by appealing to the
viewers’ emotions [45]. To achieve persuasive power, many ads explore creative narrative
techniques. One classic technique is “Freytag’s pyramid” where a story begins with exposi-
tion (setup), followed by rising action, then climax (action and sentiment peak), concluding
with denouement or resolution (declining action) [12].

In this work, we model the dynamic structure of a video ad. We track the pacing and
intensity of the video, using both the visual and audio domains. We model how emotions
change over the course of the ad. We also model correlations between specific settings (e.g.,
child’s bedroom), objects (e.g., teddy bear) and sentiments (e.g., happy). We propose two
methods to predict climax, “the highest dramatic tension or a major turning point in the
action” [1], of a video. Then we use them along with rich context features to predict the
sentiment that the video provokes in the viewer. Our framework is illustrated in Fig. 1. Our
techniques are based on the following two hypotheses which we verify in our experiments.

First, we hypothesize that the climax of a video correlates with dramatic visual changes
or intense content. Thus, we compute optical flow per frame and detect shot boundaries,
then predict that climax occurs at those moments in the video where peaks in optical flow
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Figure 1: The key idea behind our approach. We want to understand the story being told
in the ad video, and the sentiment it provokes. We hypothesize that the semantic content of
each frame is quite informative and that we need to model the rising action to understand
which temporal parts most contribute to the sentiment. We show the places recognized in the
frames of two videos, as well as soft predictions about whether a certain frame corresponds
to the climax of the video or not. While both videos start with images of children, which
might indicate positive sentiment denoted in green (e.g. “youthful”), this positive trend only
remains in the first video (indicated by places correlated with youthfulness, such as “toy
shop”). In contrast, the second video changes course and shows unpleasant places (denoted
in red) e.g. “basement” and “hospital room”. Because the climax in the second video occurs
near the end, our method understands that it is these later frames that determine the sentiment
(“alarmed”).

vectors or shot boundary changes occur. To measure dynamics in the audio domain, we
extract the amplitude of the sound channel and predict climax when we encounter peaks in
the amplitude. In addition to this unsupervised approach, we also show how to use the cues
we develop as features, to predict climax in a supervised way. Both the unsupervised and
supervised approaches greatly outperform the baseline tested.

Second, we hypothesize that video ads exploit associations that humans make, to create
an emotional effect. We aim to predict the sentiment that an ad provokes in the viewer, and
hypothesize that the setting and objects in the ad are greatly responsible for the sentiment
evoked. We first extract predictions about the type of scene and type of objects in the ad, for
each frame. We also hypothesize that the facial expressions of the subjects of the ad (i.e., the
people in the ad) correlate with the sentiment provoked in the people watching it, so we also
extract per-frame facial expression predictions. We treat sentiment prediction as a recurrent
prediction task based on the scene, object, and emotion features, as well as features related
to climax and standard ResNet [14] visual features.

To train our methods and test our hypotheses, we crowdsource climax annotations on
1,149 videos from the Video Ads Dataset of [16], and use the sentiment annotations provided.
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(a) Emotional pivot (b) Positive transition (c) Emotional build (d) Sustained emotion

Figure 2: The “four archetypes of dramatic structure” in product ads [45] which motivate
our approach. For PSAs, the roles of positive and negative sentiments might be reversed.

2 Related Work
Video dynamics and actions. Optical flow [5, 11, 17, 25, 29, 33] is a basic building block
of video understanding. We use [29] due to its simplicity and reliable accuracy. Higher-
level analysis of video includes human pose estimation [28, 32, 37] and action detection and
recognition [6, 13, 39, 44]. Unlike these, optical flow does not capture semantics (such as
the name of the action performed in a video). This is desirable in our case since a wide
variety of activities can be exciting and climactic, so categorization is less useful. Anomaly
detection [24] is also related, but rather than predicting what does not fit, we wish to predict
how a video builds up and increases its dramatic content to create the climax.

Emotions. Researchers have been interested in predicting facial expressions and emo-
tions for a long time [9, 10, 20]. Large datasets exist [4, 21, 26]. We train a facial expression
model on [26] and apply it on faces detected in the video, as a cue for the viewers’ sentiment.

Movie and story understanding. We attempt to understand the stories told by video ads.
Others have previously developed techniques for understanding various aspects of movies,
such as their plot [27, 35] and the principal characters and their relations [41]. While there
is no prior work on detecting climax in ads, some previous approaches model the tempo
of other videos. For example, [23] use cues like “motion intensity” and “audio pace” to
detect action scenes. [30] use the pacing of a movie to recognize its genre (action movies
are faster-paced than dramas). [8] create video stories out of consumer videos, using story
composition, dynamics and coherency, as cues. However, these works do not take emotions
nor context such as scene and surrounding objects into account. We show semantic context
features improve the performance of the unsupervised cues (e.g. “motion intensity”).

Advertisement and media understanding. There is a recent trend to attempt to under-
stand the visual media with computer vision techniques. [16, 18, 42, 43] analyze the hidden
messages of images, in news articles [18, 42] and advertisements [16]. [19, 40] examine the
visual distinctions between people either running or voting in elections. We use the dataset
of [16] for our study, and show that we greatly outperform their sentiment prediction model.

3 Approach
In The Advertising Research Handbook [45], dramatic structure has four prototypical forms,
shown in Fig. 2 (based on [45] p.212). These structures depend on how positive and negative
sentiment rises or declines. [45] examines product ads, and the changes in positive/negative
sentiment are correlated with appearances of the brand. In public service announcements
(PSAs), the role of positive/negative might be reversed, as PSAs often aim to create negative
sentiment in order to change a viewer’s behavior. However, understanding the story of PSAs
still depends on understanding the climax of (negative) sentiment. Thus, we first collect data
(Sec. 3.1) and develop features (Sec. 3.2) that help us predict when climax occurs. We then
develop features informative for sentiment (Sec. 3.3). We finally describe how we use these
features to predict the type of sentiment and occurrences of climax (Secs. 3.4 and 3.5).
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Figure 3: The audio, shot boundary frequency, and optical flow plots for two videos, along
with frames from the videos corresponding to climactic points. The first video shows an
“explosion” around the 25th second, and the second shows a car crash around the 32nd
second. The circles correspond to the timestamp of the frames shown. In the first video,
climax is detected well in each of the three plots. In the second, shot boundaries and audio
are informative, but optical flow is not.

3.1 Climax and sentiment data
We use the Video Ads Dataset of [16]. It contains 3,477 video advertisements with a vari-
ety of annotations, including the sentiment that the ad aims to provoke in the viewer. We
collected climax annotations on a randomly chosen subset of 1,595 videos from this dataset,
using the Amazon Mechanical Turk platform. We restricted participation on our tasks to
annotators with at least 98% approval rate who submitted at least 1000 approved tasks in
the past. We submitted each video for annotation to four workers. Each was asked to watch
the video and could choose between two options, “the video has no climax” or “the video
has climax.” If the latter, the worker was asked to provide the minute and second at which
climax occurs (most videos are less than 1 min long). To ensure quality, annotators were also
asked to describe what happens at the end of the video. Some of the videos in [16]’s dataset
were not available, so the annotators could also mark this option. We ended up with 1,149
videos that contain climax annotations. We manually inspected a subset of them and found
the timestamps were quite reasonable. The descriptions of what happened at the end were
often quite detailed. We will make this data publicly available upon publication.

3.2 Climax indicators
We first analyze the dynamics of the video, using both visual and audio channels. We plot
time on the x-axis, and measurement of dynamics/activity on the y-axis (Fig. 3). We consider
three indicators of rapid activity: the amplitude of audio signals, the occurrence of shot
boundaries, and the magnitude of optical flow vectors between frames.

In particular, we extract these features and portray them as follows:
• The audio amplitude aaak, which is the max amplitude of audio for the k-th frame. We

first extract the sound channel from the video, take a fixed number of samples from
the sound wave per second, then compute the max across the samples for that frame.

• The shot boundary indicator, which is equal to 0 or 1 depending on whether a shot
boundary occurs in the k-th frame. We use [7] for shot boundary extraction. In order to
obtain more informative cues, we vary the parameters of [7] to get five 0/1 predictions
per frame and use this 5D prediction bbbk as the representation for the k-th frame. To
generate the plot in Fig. 3, we aggregate information over all frames in a given second.
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• The optical flow magnitude oook, which is computed as 1
W∗H ∑

W
i=1 ∑

H
j=1

√
uk

i, j
2 + vk

i, j
2

where uk
i, j and vk

i, j are the horizontal and vertical optical flow components for each
pixel (i, j) in the k-th frame. We use [29] to extract optical flow vectors.

3.3 Sentiment indicators
The Advertising Research Handbook [45] describes the dramatic structure of ads as closely
depending on the emotion of the video. One type of structure (Fig. 2) is the “emotional
pivot” where an ad starts with negative sentiment, which declines over time, to make room
for increasing positive sentiment. The “emotional build” involves a gradual increase and
climax in positive sentiment. Thus, the sentiment is equally crucial to understanding the
story of the ad video as the climax. Since an ad targets an audience and wants to convince
the audience to do something, it is the viewer’s sentiment that matters the most.

[16] contains annotations about what sentiment each ad video provokes in the viewer,
collected from five annotators. These annotations involve 30 sentiments, both positive (e.g.,
cheerful, inspired, educated), negative (e.g., alarmed, angry) and neutral (e.g., empathetic).
[16] also includes a baseline for predicting sentiment, using a multi-class SVM and C3D fea-
tures [38]. The authors extract features from 16-frame video clips, then average the features.
Thus, their model does not capture the dynamics and sequential nature of the video. We hy-
pothesize that if we model how the content of the video changes over time, and consider the
context in which the sentiment in the video is conveyed, we would be able to model sentiment
more accurately. We model sentiment with the following intuitive context features:
• The setting in each frame of the video, i.e. the type of place/scene. Let vp =
{p1, . . . , p365} be the vocabulary of places in the Places365 dataset [46]. We use a
pre-trained prediction model from [46] to obtain a 365D vector ppplllk = [lk

1, . . . , l
k
365],

where lk
i is the probability that the k-th frame exemplifies the i-th place.

• The objects found in the video. Let vo = {c1,c2, . . . ,c80} be the vocabulary of the
COCO object detection dataset [22]. We use the model of [15] trained on COCO
to get the objects in a frame. We then use max-pooling to turn the detection results
into an 80D fixed-length feature vector ooobbbk = [sk

1, . . . ,s
k
80], where sk

i is the maximum
confidence score among multiple instances of the same object class ci, in frame k.

• The facial expressions in the video. We observed that the overall sentiment that
the video provokes in the viewer often depends on the emotions that the subjects of
the video go through. For example, if a child in an ad video is initially “happy” but
later becomes “sad,” the sentiment provoked in the adult viewer might be “alarmed”
because something disturbing must have happened. Thus, we also model emotions
predicted on faces extracted per frame. We first detect the faces using OpenFace [3].
We then extract the expression of each face using an Inception model [34] trained
on the AffectNet dataset [26]. Two types of results are predicted: (1) the probability
distribution among the eight expressions defined in AffectNet, and (2) the valence-
arousal values for the face, saying how pleased and how active the person is (in range
-1 to +1). We average the face expressions (10 values) for all faces detected in the k-th
frame, to get the 10D final representation fff aaak.

• The topic of the ads. [16] defines a vocabulary of 38 topics in the ads domain and
also provides annotations for these topics. We hypothesize the overall sentiment that
the video provokes is related to the topic the ad belongs to. For example, “sports” ads
usually convey “active” and “manly” sentiments, while “domestic violence” ads often
make people feel “sad”. Thus, we designed a multi-task learning framework with two
objectives: one for the topic and the other for the sentiment prediction, hoping the
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Figure 4: Our dynamic context-based approach. The last frame shows an explosion.

topic prediction can help the prediction of sentiments. We first use the video-level
feature (the last hidden state of the LSTM) to predict the 38D topic distribution, then
concatenate this 38D vector with the video-level feature to predict the sentiment. The
idea is described in Fig. 4.

We also use features from the last layer of a ResNet trained on ImageNet [14, 31].

3.4 Unsupervised climax prediction
We can directly predict that climax occurs at times which are peaks in terms of shot boundary
frequency, optical flow magnitude, or audio amplitude. Since the shot boundary frequency
can be the same for many timeslots, we look for the longest sequence of timeslots which
contain at least one shot boundary and predict the center of this “run” as a peak. Optical
flow magnitudes and audio amplitudes are compared on a second-by-second basis. We ex-
tract the top-k maximal responses from each plot, predict these as climax, and evaluate the
performance in Sec. 4.3.

3.5 Supervised prediction
We predict climax using an LSTM (with 64 hidden units) that outputs 0/1 for each frame,
where 1 denotes that the frame is predicted to contain climax. The frame-level features used
are ResNet features (2048D), optical flow magnitude oook (1D), the shot boundary indicator
bbbk (5D), the sound amplitude aaak (1D), the place representation ppplllk (365D), the object repre-
sentation ooobbbk (80D), and the facial expression feature fff aaak (10D).

For the sentiment prediction task, we also use an LSTM with 64 hidden units. We use
the same frame-level features as the climax prediction. Moreover, we also add the predicted
climax (1D) as extra information. Ads topics are used as both an additional loss/constraint
and an extra feature for the sentiment prediction (see Fig. 4).

3.6 Discussion
The advantages of our approach are as follows. First, the distribution of object, place, and
facial expression probability vectors is much lower-dimensional than ResNet features, so
given the limited size of the Video Ads Dataset (3,477), formulating the problem as learning a
mapping from objects/scenes/facial expressions to sentiments/climax is much more feasible.
The optical flow, shot boundary, and sound features are also very low-dimensional, and have
clear correlation with the presence of climax. Further, understanding the sentiment of a
video and its climax are related tasks. Thus, it is intuitive that climax predictions should be
allowed to affect sentiment prediction; this is the idea shown in Fig. 1 where we use climax
to select the part of the video which affects the elicited sentiment the most. We show in
Sec. 4.4 (Table 4) that our semantic/climax features outperform the ResNet features, and the
combination of the two achieves the strongest performance.
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4 Experimental Validation
We first describe our experimental setup and training procedure, then present quantitative
and qualitative results on the climax and sentiment prediction tasks.

4.1 Evaluation metrics
For the climax prediction task, we use the recall of the top-k prediction (k = 1,3) to measure
performance. Since exactly matching the ground-truth climax timestamp is challenging, we
apply an error window saying that the prediction is treated as correct if the ground-truth
climax is close (within 0,1,2 sec). We treat the prediction as correct if it recalls any of the
ground-truth annotations for that video, except rejected work. Table 1 shows the results.

To measure how well the model’s prediction agrees with the sentiment annotations, we
compute mean average precision (mAP) and top-1 accuracy (acc@1) based on three forms of
agreement (agree with k, where k = 1,2,3). “Agree with k” means that we assign a ground-
truth label to a video only if at least k annotators agree on the existence of the sentiment. The
acc@1 is the fraction of correct top-1 predictions across all videos, and the mAP is the mean
of the average precision over evenly spaced recall levels. Tables 2, 3 and 4 show the results.

4.2 Training and implementation details
For training both the climax and sentiment prediction models, we use the TensorFlow [2]
deep learning framework. We split the Video Ads Dataset [16] (3,477 videos) into train/val/test
(60%/20%/20%), resulting in around 2,000 training examples for the sentiment prediction
task and about 700 training examples for the climax prediction task (since only 1,149 of the
3,477 videos have climax annotation). We report our results using five-fold cross-validation.

For the climax prediction task, we use a one-layer LSTM model with 64 hidden units.
At each timestamp, the model predicts a real value ranging from [0,1] (output of the sigmoid
function) denoting whether the corresponding frame contains a climax. We then use the
sigmoid cross entropy loss to constrain the model to mimic the human annotations. Consid-
ering the size of the dataset, we set both the input and output dropout keep probability of the
LSTM cell to 0.5 to avoid over-fitting. We use the RMSprop optimizer with a decay factor
of 0.95, momentum of 1e-8, and learning rate of 0.0002. We train for 20,000 steps using
a batch size of 32, and we use the recall of the top-1 prediction (the error window is set to
“within 2 seconds”) to pick the best model on the validation set.

For the sentiment prediction task, we use the same procedure, but we pick the best model
using mAP using “agreement with 2”. We use the last hidden state of the LSTM to represent
the video feature and add a fully connected layer upon it to get the 38D topic representation.
We then concatenate the 38D topic representation with the last hidden state of the LSTM and
infer a 30D sentiment logits vector from the concatenated feature. The sigmoid cross entropy
loss is also used here. Similar to [36], we found that using soft scores as ground-truth targets
improves the performance and makes the training more stable. To deal with data imbalance
for the rare classes, we sampled at most 5n negative samples if there were n positives.

4.3 Climax prediction
We show the results of unsupervised and supervised climax prediction in Table 1. We mea-
sure whether the predicted climax is within 0, 1, or 2 seconds of the ground-truth climax. We
first show a heuristic-guess baseline which always predicts that climax occurs at 5 seconds
for the top-1 prediction and at 5, 15 and 25 seconds for top-3. We then show the performance
of the three unsupervised climax prediction methods described in Sec. 3.4. Next, we show
the performance of 0/1 climax prediction (Sec. 3.5) using an LSTM with ResNet features
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top-1 prediction top-3 prediction
Method w/in 0 s w/in 1 s w/in 2 s w/in 0 s w/in 1 s w/in 2 s
baseline 0.031 0.083 0.121 0.122 0.299 0.430

shot boundary (unsup) 0.068 0.179 0.265 0.221 0.457 0.588
optical flow (unsup) 0.064 0.152 0.220 0.163 0.380 0.513

audio (unsup) 0.077 0.171 0.255 0.178 0.403 0.534
LSTM, ResNet only 0.071 0.206 0.290 0.190 0.400 0.523

LSTM, all feats (Ours) 0.077 0.209 0.287 0.226 0.439 0.546
Table 1: Climax prediction with best performer per setting in bold and second performer in
italics. Unsupervised prediction performs quite well. Our supervised method achieves the
best or second-best performance for all settings. For the “LSTM, ResNet only” approach,
we guess the reason that it is competitive is that LSTM has the ability to capture the temporal
dynamics to a certain degree.

Agree with 1 Agree with 2 Agree with 3
Method mAP acc@1 mAP acc@1 mAP acc@1

Hussain et al. [16] 0.283 0.664 0.135 0.435 0.075 0.243
Our model 0.313 0.712 0.160 0.449 0.094 0.241
Table 2: Our method outperforms prior art for sentiment prediction.

only, and finally our method using the features we proposed in both Sec. 3.2 and Sec. 3.3
(excluding the video-level topic feature).

We see that the unsupervised methods, and especially shot boundary and audio, greatly
outperform the baseline. Interestingly, audio performs quite well in the hardest setting,
only one shot at prediction and exact alignment between predicted and ground-truth climax.
Shot boundary achieves the best performance in the two weakest settings (top-3 predictions,
agreement within 1-2 seconds). In all settings, our method achieves the best or second-best
performance.

4.4 Sentiment prediction
Table 2 shows our main result for sentiment prediction. We compare to Hussain et al. [16]’s
method which is a multi-class SVM model using the C3D features [38]. This is the only
prior method that attempts to predict sentiment on the Video Ads Dataset. We observe that
our method improves upon [16]’s performance for most metrics. The improvement is more
significant for mAP, which is more reliable because of the imbalance of the dataset. We im-
prove the mAP compared to prior art by up to 25% in terms of agreement with 3 annotators.
For reference, human annotators’ agreement with 1 (at least one other annotator) is 0.723.

Table 3 examines the contribution of the features described in Sec. 3.2 and Sec. 3.3,
and the use of an LSTM to model dynamics of the video. We compare against an LSTM
that uses only ResNet features. We also compare to a bag-of-frames (BOF) method that
rules out the effects of dynamics. It computes the final video-level representation by simply
applying mean pooling among the frame-level features. We observe that our method (using
the proposed features and LSTM) always outperforms the other methods in terms of mAP
scores. Our method achieves significant improvement over the second-best method (10% for
mAP and agreement with 2, and 21% for mAP and agreement with 3). In terms of accuracy,
all methods perform similarly, and the best model (BOF, all features) also uses our proposed
features.
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Agree with 1 Agree with 2 Agree with 3
Method mAP acc@1 mAP acc@1 mAP acc@1

BOF, ResNet only 0.295 0.708 0.141 0.449 0.076 0.242
LSTM, ResNet only 0.302 0.716 0.145 0.451 0.074 0.242

BOF, all features (incl. ours) 0.302 0.719 0.146 0.462 0.078 0.248
LSTM, all features (Our model) 0.313 0.712 0.160 0.449 0.094 0.241
Table 3: In-depth evaluation of the components of our method for sentiment prediction.

average educated alarmed fashionable angry
ResNet only (baseline) 0.074 0.036 0.117 0.047 0.007

objects 0.082 0.032 0.140 0.080 0.004
places 0.082 0.074 0.132 0.160 0.005

facial expressions 0.077 0.044 0.143 0.084 0.003
topic 0.086 0.032 0.143 0.136 0.009

optical flow 0.082 0.045 0.150 0.133 0.005
shot boundaries 0.080 0.037 0.151 0.110 0.003

audio 0.077 0.040 0.113 0.116 0.010
climax 0.079 0.025 0.119 0.082 0.011

all features except ResNet 0.080 0.038 0.104 0.036 0.007
all features (Our model) 0.094 0.026 0.099 0.202 0.005

Table 4: Ablation study evaluating the benefit of each feature for sentiment prediction, using
agreement with 3 mAP. In bold are all methods that outperform the baseline.

Table 4 verifies the benefit of each of our features. We show the LSTM-ResNet-only
baseline from Table 3, then eight methods which add one of our features at a time, on top
of this baseline. Next, we show an LSTM method which uses our features without the base
ResNet feature, and finally, our full method. We use mAP for agreement with 3 in the table.
We show the average result across all sentiment classes, then results for four individual ad
sentiments. In bold are all methods which improve upon the ResNet baseline. We see that
all of our features (the average column) contribute to the performance of our full method.
Using all features except ResNet is stronger than using ResNet features alone. We note
models based on individual features still show benefits on specific sentiment classes, and we
believe the reason is that our fusion method is too simple to aggregate all the information.

We observe some intuitive results for the four chosen individual sentiments. We ranked
sentiments by frequency in the dataset and picked the 6th, 7th, 9th and 13th most frequent.
For “educated,” the places feature is most beneficial, which makes sense because “education”
might occur in particular environments, e.g., classroom. As shown in our example ad in
Fig. 4, the setting (e.g., places) and dramatic content changes (measured by optical flow and
shot boundaries) are quite telling of the “alarmed” sentiment. Most features help greatly
for the “fashionable” sentiment. For “angry”, audio is very helpful (43% improvement over
ResNet), which makes sense since loud speaking might trigger or correlate with anger.

We show qualitative examples in Fig. 5. Our model’s features correctly predict “amazed”
and “fashionable” while the baseline method does not. Our method relies on recognized
places (e.g. laboratory, beauty salon), objects, facial expressions, and climax dynamics.
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Places:	  beauty_salon
Objects:	  person
Facial	  expression:	  neutral

Places:	  chemistry_lab
Objects:	  bottle

Places:	  pharmacy,	  beauty_salon Places:	  pier

New	  dream	  liquid	  mousse	  (https://www.youtube.com/watch?v=MTgeUVOxl8E)

Places:	  parking_garage/indoor
Objects:	  person,	  car

Places:	  physics_laboratory
Objects:	  person,	  laptop

Places:	  elevator
Objects:	  person
Facial	  expression:	  happy

Places:	  elevator_lobby

So	  real	  it’s	  scary	  (https://www.youtube.com/watch?v=NeXMxuNNlE8)

Annotation:	  
amazed
Prediction	  (without
our	  features):	  
alarmed
Prediction	  (ours):	  
amazed

Annotation:	  
feminine,	  amazed,	  
fashionable
Prediction	  (without
our	  features):	  
alert
Prediction	  (ours):	  
fashionable

Figure 5: Qualitative results from our model.

5 Conclusion
We made encouraging progress in understanding the dynamic structure of a video ad. We hy-
pothesized that climax correlates with dramatic visual and audio changes. We crowdsourced
climax annotations on 1,149 videos from the Video Ads Dataset of [16] and used both un-
supervised and supervised methods to predict the climax. By combining visual and audio
cues with semantically meaningful context features, our sequential model (LSTM) outper-
forms the only prior work [16] by a large margin. To better understand the relations between
the semantic visual cues and the sentiment each ad video provokes, we performed detailed
ablations and found all the features we proposed help to understand the evoked sentiment.
In the future, we will investigate other resources relevant to both climax and sentiment in
video ads. We will also improve the interpretability of the model. Finally, our ablation stud-
ies show the limitation of the feature fusion method of our model thus we will investigate
additional fusion strategies to further improve the performance.
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