
LI ET AL.: TINY-DSOD 1

Tiny-DSOD: Lightweight Object Detection for
Resource-Restricted Usages

Yuxi Li1

lyxok1@sjtu.edu.cn

Jiuwei Li2

jiuwei.li@intel.com

Weiyao Lin1

wylin@sjtu.edu.cn

Jianguo Li2

jianguo.li@intel.com

1 Shanghai Jiao Tong University, China
2 Intel Lab China

Abstract

Object detection has made great progress in the past few years along with the devel-
opment of deep learning. However, most current object detection methods are resource
hungry, which hinders their wide deployment to many resource restricted usages such as
usages on always-on devices, battery-powered low-end devices, etc. This paper consid-
ers the resource and accuracy trade-off for resource-restricted usages during designing
the whole object detection framework. Based on the deeply supervised object detection
(DSOD) framework, we propose Tiny-DSOD dedicating to resource-restricted usages.
Tiny-DSOD introduces two innovative and ultra-efficient architecture blocks: depthwise
dense block (DDB) based backbone and depthwise feature-pyramid-network (D-FPN)
based front-end. We conduct extensive experiments on three famous benchmarks (PAS-
CAL VOC 2007, KITTI, and COCO), and compare Tiny-DSOD to the state-of-the-art
ultra-efficient object detection solutions such as Tiny-YOLO, MobileNet-SSD (v1 & v2),
SqueezeDet, Pelee, etc. Results show that Tiny-DSOD outperforms these solutions in all
the three metrics (parameter-size, FLOPs, accuracy) in each comparison. For instance,
Tiny-DSOD achieves 72.1% mAP with only 0.95M parameters and 1.06B FLOPs, which
is by far the state-of-the-arts result with such a low resource requirement.∗

1 Introduction
Object detection is considered as a crucial and challenging task in the field of comput-
er vision, since it involves the combination of object classification and localization with-
in a scene. Accompanied with the development of modern deep learning technique, lots
of convolutional neural network (CNN) based detection frameworks, including Faster R-
CNN [25],YOLO [24], SSD [22] and their variants [4, 6, 12, 20, 23, 33], have been proposed
and greatly promote the accuracy for object detection.

In spite of the state-of-art accuracy these models achieved, most of them are resource
hungry as they have both high computing complexity and large parameter size (or large

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
∗Jianguo Li and Weiyao Lin are the co-correspondence authors

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Dai, Li, He, and Sun} 2016

Citation
Citation
{Fu, Liu, Ranga, Tyagi, and Berg} 2017

Citation
Citation
{He, Gkioxari, Doll{á}r, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Lin, Dollar, Girshick, He, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Redmon and Farhadi} 2016

Citation
Citation
{Xiang, Zhang, Athitsos, and Yu} 2018

2 LI ET AL.: TINY-DSOD

model size). High computing complexity requires computing units with higher peak FLOP-
s, which usually increases the budget for power consumptions. The speed and accuracy
trade-off has been extensively studied in [16]. However, resources are not only comput-
ing resources, but also memory resources. Large model size yields large persistent memory
requirement, which is not only costly, but also power inefficient for low-end embedding ap-
plications due to frequently persistent memory access. Due to these two limitations, majority
of current object detection solutions are not suitable for low-power using scenarios such as
applications on always-on devices or battery-powered low-end devices.

To alleviate such limitations, recently many researches were dedicated to ultra-efficient
object detection network design. For instance, YOLO [24] provides a lite version named
Tiny-YOLO, which compress the parameter size of YOLO to 15M and achieves a detection
speed of more than 200 fps on PASCAL VOC 2007 dataset [5]. SqueezeDet [32] introduces
SqueezeNet [17] based backbone into the YOLO framework for efficient autonomous driving
usages. MobileNet-SSD adopts MobileNet [13] as backbone in the SSD framework, which
yield a model with only 5.5M parameters and 1.14B FLOPs of computing on PASCAL VOC
2007 dataset. Although these small networks reduce the computation resource requirement
to a large extent, there is still a large accuracy gap between small networks and the full-sized
counterparts. For instance, there is 9.2% accuracy drop from SSD (77.2%) to MobileNet-
SSD (68.0%) on PASCAL VOC 2007. In a nutshell, these small detection networks are far
from achieving a good trade-off between resources (FLOPs & memory) and accuracy.

We propose Tiny-DSOD, dedicating for obtaining a good balance between the resources
(FLOPs & memory) and accuracy trade-off. The backbone part of the proposed framework
is inspired by the object detection work DSOD [28] and recent ultra-efficient depthwise
separable convolution network structures from [3, 13, 27]. DSOD [28] introduces several
important principles to train object detection network from scratch, in which deep super-
vision is most critical to help back-propagating supervised information from the loss layer
to shallower layers without the gradient vanishing problem. Implicit deep supervision like
DenseNet structure [14] was adopted in DSOD. Tiny-DSOD combines the ultra-efficient
depthwise separable convolutions from [3, 13, 27] into the DenseNet, and introduces a novel
depthwise dense block (DDB) to replace dense blocks in DenseNet. This design will not on-
ly reduce the computing resource requirements, but also keep the implicit deep supervision
for efficient training. For the front-end part, we try to bring the successful feature-pyramid-
network (FPN) [20] into our framework for fusing semantic information from low-resolution
scale to neighborhood high resolution scale seamlessly. We invent depthwise FPN (D-FPN)
by incorporating the efficient depth-wise convolution into FPN. We verify in our experiment
that the lightweight D-FPN front-end can boost the detection accuracy notably.

We conduct extensive experiments to verify the effectiveness of Tiny-DSOD on different
datasets like PASCAL VOC [5], KITTI [7] and COCO [19]. The results show that our Tiny-
DSOD achieves a much better trade-off between resources (FLOPs & memory) and accura-
cy. For instance, On PASCAL VOC2007, Tiny-DSOD achieves a mean average precision
(mAP) of 72.1% with only 0.95M parameters and 1.06B FLOPs of computing. To the best
of our knowledge, this is the first detection model that can achieve > 70% mAP with param-
eter size less than 1.0M. Actually, Tiny-DSOD outperforms state-of-the-art ultra-efficient
object detectors such as Tiny-YOLO, SqueezeDet, MobileNet-SSD in the three compared
benchmark datasets (VOC 2007, KITTI, COCO) on all the three evaluation metrics (accu-
racy, parameter-size, FLOPs). Compared with the smallest DSOD model [28], Tiny-DSOD
reduces the parameter size to about 1/6 and the computing FLOPs to 1/5 with only 1.5%
accuracy drops. The contributions of this paper are summarized as follows:

Citation
Citation
{Huang, Rathod, Sun, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Everingham, Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Wu, Iandola, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Iandola, Han, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Chollet} 2016

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Huang, Liu, Maaten, and Weinberger} 2017{}

Citation
Citation
{Chollet} 2016

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Lin, Dollar, Girshick, He, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Everingham, Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

LI ET AL.: TINY-DSOD 3

• We propose depthwise dense block (DDB), a novel and efficient network structure to
combine depthwise separable convolution with densely connected networks (DenseNet)
for ultra-efficient computer vision usages.
• We propose D-FPN, a novel and lightweight version of FPN [20], to fuse semantic

information from neighborhood scales for boosting object detection accuracy.
• We design the ultra-efficient object detector Tiny-DSOD for resource-restricted usages

based on the proposed DDB and D-FPN blocks. Tiny-DSOD outperforms state-of-the-
art ultra-efficient object detectors such as Tiny-YOLO, SqueezeDet, MobileNet-SSD,
etc in each of the three compared benchmark datasets (VOC 2007, KITTI, COCO) on
all the three evaluation metrics (accuracy, parameter-size, FLOPs).

2 Related Works

State-of-the-arts Object Detection Networks
A various of CNN based object detection frameworks have been proposed in the past few

years along with the fast development of deep learning. They could be generally divided into
two categories: single-stage based methods and two-stage-based methods.

Typical two-stage methods include R-CNN [9], Fast R-CNN [8], Faster RCNN [25] and
R-FCN [4]. Early methods like R-CNN [9] and Fast R-CNN [8] utilize external region pro-
posal generation algorithms like [31] to produce region proposal candidates and perform
classification on each candidate region. Latter methods introduce region proposal network-
s (RPN) to produce region proposal, and integrate backbone network, RPN and front-end
modules like classification and bounding-box regression module into one framework for
end-to-end training. This kind of methods are accurate but with heavy computing cost, and
thus yield slow processing speed.

On the contrary, typical single-stage methods like SSD [22] and YOLO [24], apply pre-
defined sliding default boxes of different scales/sizes on one or multiple feature maps to
achieve the trade-off between speed and accuracy. This kind of methods are usually faster
than the two-stage counterparts, but less accurate than two-stage-based methods.

Moreover, all these mentioned detection frameworks achieve better detection accuracy
with a better backbone network (like ResNet [11] or VGG-16 [29]) as feature extractor,
which is over-parameterized and consumes much computation resource.

Lightweight Object Detection Networks
The speed and accuracy trade-off has been extensively studied in [16]. However, re-

sources are not only computing cost for speed, but also memory resources. Recently, many
efforts are dedicated to design efficient and small-size networks for object detection for
resource-restricted usages. SqueezeNet [17] (a simple version of inception [30] structure
named Fire module) based backbone is recently introduced into the modern single-stage
frameworks for efficient detection [32], which achieves comparable results on PASCAL
VOC 2007 and KITTI [7]. For instance, SqueezeNet based SSD achieves 64.3% mAP with
only 5.5M parameters and 1.18B FLOPs of computing on PASCAL VOC 2007.

Meanwhile, depthwise separable convolution [3, 13, 27] has shown great parameter and
computing efficiency in generic image classification tasks. It was also introduced into the
SSD framework for object detection purpose as a backbone and named as MobileNet-SSD
[13]. MobileNet-SSD achieves 68.0% mAP with only 5.5M parameters and 1.14B FLOPs

Citation
Citation
{Lin, Dollar, Girshick, He, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Girshick} 2015

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Dai, Li, He, and Sun} 2016

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Girshick} 2015

Citation
Citation
{Uijlings, Van Deprotect unhbox voidb@x penalty @M {}Sande, Gevers, and Smeulders} 2013

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Huang, Rathod, Sun, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Iandola, Han, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Wu, Iandola, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Chollet} 2016

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

4 LI ET AL.: TINY-DSOD

of computing on PASCAL VOC 2007.
Pelee [26] utilizes a two-way densely connected structure to reduce computation con-

sumption while keeping detection accuracy for mobile applications.
Nevertheless, there is still a large accuracy gap between efficient yet tiny networks and

those of full-sized counterparts. For instance, tiny YOLO can achieve 57.1% mAP on
PASCAL VOC 2007, while YOLOv2 [23] can reach 78.6% mAP under the same setting.
SqueezeNet-SSD and MobileNet-SSD achieve 64.3% and 68.0% mAP on PASCAL VOC
2007 respectively, while full SSD reaches 77.2% mAP under the same setting. This observa-
tion inspires us that there is still a large space to achieve a better trade-off between resources
(FLOPs & memory) and accuracy for designing object detection networks.

3 Method
Our goal is to design an ultra-efficient object detection networks towards resource-restricted
usages. Our detector is based on the single-shot detector (SSD) [22] framework and the
deeply-supervised object detection (DSOD) framework [28], which consists of the backbone
part and the front-end part. We will elaborate these two parts below separately.

3.1 Depthwise Dense Blocks Based Backbone
Inspired by DSOD [28], we also construct a DenseNet-like [14] backbone since it is easier
to be trained from scratch with relatively fewer training set. Taking the restricted resource
into consideration, we introduce the ultra-efficient depth-wise separable convolution into the
typical dense block, and refer to this new structure unit as depth-wise dense block (DDB).

We propose two types of DDB units, DDB-a and DDB-b, as shown in Figure 1. The
DDB-a unit in Figure 1(a) is inspired by the novel inverted residual blocks proposed in
MobileNet-v2 [27]. It first expands the input channels w times to w×n, where n is the block
input channel number, and w is an integer hyper-parameter to control the model capacity. It
then applies the depth-wise convolution, and further projects feature maps to g channels (g
is the growth rate of DDB-a) with a point-wise convolution (i.e., 1×1 convolution). Finally,
we use concatenation to merge the input and output feature maps together, instead of the
residual addition operation in MobileNet-v2 [27]. DDB-a has two hyper-parameters w and
g, so we denote it as DDB-a(w,g).

There are two main defects of DDB-a. First, suppose L DDB-a blocks are stacked, the
complexity of the stacked structure is O(L3g2). This means the resource consumption grows
rapidly with respect to L, so that we have to control growth-rate g to a small value even if just
stacking several DDB-a together. However, small growth rate g will hurt the discriminate
power of the whole model. Second, DDB-a concatenates the condensed (aka 1×1 convo-
lution projected) feature maps, so that there are continuous 1×1 convolutions within two
adjacent DDB-a units. This kind of processing will introduce potential redundancy among
model parameters.

With this consideration, we design the other type of depth-wise dense block named DDB-
b as shown in Figure 1(b). DDB-b first compresses the input channel to the size of growth
rate g, and then perform depth-wise convolution. The output of depthwise convolution is
directly concatenate to the input without extra 1× 1 projection. The overall complexity of
L stacked DDB-b blocks is O(L2g2), which is smaller than that of DDB-a. We will further
verify by experiments in section 4.2 that DDB-b is not only more efficient but also more

Citation
Citation
{Robertprotect unhbox voidb@x penalty @M {}Wang and Ling} 2018

Citation
Citation
{Redmon and Farhadi} 2016

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Huang, Liu, Maaten, and Weinberger} 2017{}

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

LI ET AL.: TINY-DSOD 5

Module name Output size Component

Stem

Convolution 64×150×150 3×3 conv, stride 2
Convolution 64×150×150 1×1 conv, stride 1

Depth-wise convolution 64×150×150 3×3 dwconv, stride 1
Convolution 128×150×150 1×1 conv, stride 1

Depth-wise convolution 128×150×150 3×3 dwconv, stride 1
Pooling 128×75×75 2×2 max pool, stride 2

Extractor

Dense stage 0 256×75×75 DDB-b(32) * 4

Transition layer 0 128×38×38 1×1 conv, stride 1
2×2 max pool, stride 2

Dense stage 1 416×38×38 DDB-b(48) * 6

Transition layer 1 128×19×19 1×1 conv, stride 1
2×2 max pool, stride 2

Dense stage 2 512×19×19 DDB-b(64) * 6
Transition layer 2 256×19×19 1×1 conv, stride 1

Dense stage 3 736×19×19 DDB-b(80) * 6
Transition layer 3 64×19×19 1×1 conv, stride 1

Table 1: Tiny-DSOD backbone architecture (input size 3× 300× 300). In the "Component" column, the symbol
"*" after block names indicates that block repeats number times given after the symbol.

C
o

nv
1

x1
S=

1
, C

=w
xn

D
W

 C
o

nv
3

x3
S=

1
, C

=w
xn

CC C

DDB-a(w, g)n n + g n + 2g

…

C
o

nv
1

x1
S=

1
, C

=g

C
o

nv
1

x1
S=

1
, C

=w
x(

n
+g

)

D
W

 C
o

nv
3

x3
S=

1
, C

=w
x(

n
+g

)

C
o

nv
1

x1
S=

1
, C

=g

(a) stacked DDB-a(w, g)

C
o

nv
 1

x1
S=

1
, C

=g

D
W

 C
o

nv
3

x3
S=

1
, C

=g
CC

C
o

nv
 1

x1
S=

1
, C

=g

D
W

 C
o

nv
3

x3
S=

1
, C

=g

C

DDB-b(g)n n + g n + 2g

…

(b) stacked DDB-b(g)
Figure 1: Illustrations of the depth-wise dense blocks (DDB). Two types of DDB are shown in the figure. In the
rectangle, "S" means the stride of convolution, and "C" means the number of output channels. Numbers under the
concatenating node (green C with circle) means the number of output channels after concatenation. (a) is stacked
DDB-a parameterized by growth rate g and expand ratio w. (b) is stacked DDB-b parameterized by growth rate g.

accurate than DDB-a under similar resource constraint. Therefore we choose DDB-b as the
basic unit to construct our final structure of backbone subnetwork.

Table 1 shows the detailed structure of our backbone network. Each convolution layer is
followed by a batch normalization and a ReLU layer. There are four DDB stages in the Ex-
tractor part, where each DDB stage contains several DDB blocks, followed by one transition
layer to fuse channel-wise information from the last stage and compress the channel number
for computing and parameter efficiency. We also adopt the variational growth rate strategy
in [15], by assigning a smaller g to shallower stages with large spatial size, and increasing g
linearly when the stage goes deeper. This will help saving computing cost since large spatial
size at shallower stages usually consumes more computation.

3.2 Depthwise FPN based Front-end

The plain structured front-end in SSD and DSOD has limitation that shallow prediction lay-
ers lack of semantic information of objects. To overcome this problem, we borrow the feature
pyramid idea from [6] and [20], and design a lightweight FPN named depthwise FPN (D-
FPN) in our predictor to re-direct the information flow from deeper and smaller feature maps
to shallower ones. Figure 2 illustrates the structure of our front-end predictor, which consists
of a downsampling path and a reverse upsampling path. The reverse-path has been demon-
strated being very helpful for small object detection in many works [6, 20, 33]. However,
most of these works implement the reverse-path via deconvolution operations, which greatly

Citation
Citation
{Huang, Liu, Laurens, and Weinberger} 2018

Citation
Citation
{Fu, Liu, Ranga, Tyagi, and Berg} 2017

Citation
Citation
{Lin, Dollar, Girshick, He, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Fu, Liu, Ranga, Tyagi, and Berg} 2017

Citation
Citation
{Lin, Dollar, Girshick, He, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Xiang, Zhang, Athitsos, and Yu} 2018

6 LI ET AL.: TINY-DSOD

Tr
an

si
ti

o
n

 L
ay

er
 1

Tr
an

si
ti

o
n

 L
ay

er
 3

C +↑↓ ↓ ↓ ↓ ↑ + ↑ + ↑ + ↑ +

↓

Prediction

↓

C

↑

+

Concate

Downsampe x2

Upsample x2

Elementwise Sum

Max Pool
2x2 S=2

Conv 1x1
S=1, C=64

DW Conv 3x3
S=2, C=64

Conv 1x1
S=1, C=64

C

↓

Bilinear
Upsample x2

DW Conv 3x3
S=1, C=128

↑

Figure 2: Illustrations of the D-FPN structure. The left part is the over structure of D-FPN, while the right part
further depicts the details of the up-sampling (top-right) and down-sampling (bottom right) modules in D-FPN.
Note both sampling are by factor 2, "S" is the stride of convolution, and "C" is the number of output channels.

increases the model complexity. To avoid this problem, we propose a cost-efficient solu-
tion for the reverse path. As shown in top-right of Figure 2, we up-sample the top feature
maps with a simple bilinear interpolation layer followed by a depth-wise convolution, this
operation could be formulated as Equation 1.

Fc(x,y) =Wc ∗ ∑
(m,n)∈Ω

Uc(m,n)τ(m,sx)τ(n,sy) (1)

Where Fc is the c-th channel of output feature map and Uc is the corresponding channel of
input. Wc is the c-th kernel of depth-wise convolution and ∗ denotes the spatial convolution.
Ω is the co-ordinate set of input features and s is the resampling coefficient in this layer.
τ(a,b) = max(0,1−|a−b|) is the differentiable bilinear operator.

The resulted feature maps are merged with the same-sized feature map in the bottom
layer via element-wise addition. Our experiment in section 4.2 will show that D-FPN can
achieve a considerable detection accuracy boost, with slight increasing of computation cost.

4 Experiments

4.1 Implementation Details
We implement our work on the Caffe framework [18]. Our model is trained from scratch
with SGD solver on a server with PASCAL TitanX GPU. Most of our training strategies
follow DSOD [28], including data augmentation, scale, L2 normalization [21] for prediction
layers, aspect ratios for default boxes, loss function (Smooth L1 loss for localization and
cross entropy loss for classification) and the online hard example mining strategy.

4.2 Ablation study on PASCAL VOC2007
Design Space Exploration

We first investigate the design settings in our DDB based backbone. We conduct exper-
iments to study two types of DDB units along with different settings of growth rate among
different dense stages. For fair comparison, we follow the common training-set settings,
which we train our model on the PASCAL VOC 07+12 trainval set, and test on the
VOC2007 test set. Table 2 summarizes the studying results. It shows that under similar

Citation
Citation
{Jia, Shelhamer, Donahue, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Liu, Rabinovich, and Berg} 2015

LI ET AL.: TINY-DSOD 7

Row DDB-a DDB-b D-FPN Configuration #Params FLOPs mAP(%)
(1) X G/8-8-8-24, w=2 0.90M 1.68B 63.1
(2) X G/8-8-16-16, w=2 0.97M 1.73B 64.6
(3) X G/32-40-56-80 0.82M 0.92B 69.3
(4) X G/48-48-64-64 0.89M 1.25B 70.3
(5) X G/56-56-56-56 0.90M 1.35B 70.5
(6) X G/32-48-64-80 0.90M 1.03B 70.2
(7) X X G/32-48-64-80 0.95M 1.06B 72.1

Table 2: Ablation Study on PASCAL VOC2007 test set. The number-series G/g0-g1-g2-g3 is used to describe the
network settings, where gi is the growth rate of DDB in the i-th stage, and w is the expand ratio of DDB-a. A tick
"X" means certain configuration is adopted in the evaluated network (row-wise), otherwise no.

resource usages, DDB-b based backbone performs much better than that of DDB-a. For
instance, when the parameter size is fixed to 0.90M, DDB-b based network achieves 7.1%
higher mAP than that of DDB-a (70.2% vs 63.1%) and further saves 0.65B FLOPs (1.03B
vs 1.68B) of computing. Hence, DDB-b is our recommended choice and used as standard
setting in the following benchmark studies.

It is also obvious that the detection accuracy improves when increasing the overall growth
rate in backbone. Meanwhile, we observe a trade-off between resources (parameter-size
& FLOPs) and accuracy (mAP). From row-(4) to row-(6) in Table 2, we find when the
parameter sizes are similar, models with relative uniform growth rate will have slightly better
accuracy. However, as discussed in section 3.1, large growth rate in shallow stages yields
high computation cost. Therefore, we take the configuration G/32-48-64-80 (row-7) as our
baseline, since it can achieve comparable accuracy with least FLOPs under the same model
size constraint.

Effectiveness of D-FPN
We further investigate the effectiveness of our light-weighted D-FPN front-end. Com-

paring last two rows in Table 2, we find D-FPN can bring 1.9% performance gain with just
0.03B FLOPs increasing and 0.05M parameter-size increasing. Such increasing in computa-
tion resources is tolerable and worthy due to noticeable accuracy gain.

Runtime Analysis
We compare the detection speed of Tiny-DSOD to state-of-the-art lightweight object de-

tectors on the PASCAL VOC 2007 dataset. The speed is measured by frame-per-second
(fps) on Nvidia TitanX GPU. To accelerate the inference, we merge the parameters of batch
normalization layers into the convolution operations ahead. The results are reported in the
"FPS" column of Table 3. With 300×300 input, Tiny-DSOD can process images at a speed of
9.5ms (105 fps) with a batch size of 8, which is 4.2× faster than real-time requirement (25f-
ps) and is faster than other ultra-efficient detectors except Tiny-YOLO. Our Tiny-DSOD is
6.0× faster than full-sized DSOD [28], 2.3× faster than full-sized SSD [22] and 1.5× faster
than YOLOv2. Tiny-DSOD is still slower than Tiny-YOLO, however, our model shows
fewer theoretic FLOPs (see the column "FLOPs") comparing to other detectors. The reasons
are two folds. First, Tiny-YOLO is based on plain convolution structures (without residual
and concatenation), and the author made tailored GPU implementation optimization. Sec-
ond, our Tiny-DSOD directly uses Caffe without any additional optimization, where Caffe
has less efficient implementation for the depthwise convolution. We argue that when the
depth-wise convolution is well implemented, our Tiny-DSOD should run at a faster speed.
Besides, we should emphasize that our Tiny-DSOD has significant fewer parameters than all
the compared full-sized and lightweight detectors. Please refer to the "#Params" column of

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

8 LI ET AL.: TINY-DSOD

Method Input size Backbone FPS #Params FLOPs mAP(%)
Faster-RCNN[25] 600×1000 VGGNet 7 134.70M 181.12B 73.2

R-FCN[4] 600×1000 ResNet-50 11 31.90M - 77.4
SSD[22]† 300×300 VGGNet 46 26.30M 31.75B 77.2
YOLO[24] 448×448 - 45 188.25M 40.19B 63.4

YOLOv2[23] 416×416 Darknet-19 67 48.20M 34.90B 76.8
DSOD[28] 300×300 DS/64-192-48-1 17.4 14.80M 15.07B 77.7

Tiny-YOLO 416×416 - 207 15.12M 6.97B 57.1
SqueezeNet-SSD*∗ 300×300 SqueezeNet 44.7 5.50M 1.18B 64.3
MobileNet-SSD*† 300×300 MobileNet 59.3 5.50M 1.14B 68.0
DSOD small[28] 300×300 DS/64-64-16-1 27.8 5.90M 5.29B 73.6

Pelee[26] 300×300 PeleeNet - 5.98M 1.21B 70.9
Tiny-DSOD (ours) 300×300 G/32-48-64-80 105 0.95M 1.06B 72.1

Table 3: PASCAL VOC2007 test detection results. "†" means the results are obtained via series of data augmentation
after paper published. "*" means that we test those open-source models ourselves due to no speed report originally.

Table 3 for more details.

4.3 Benchmark Results on PASCAL VOC2007
Our model is trained from scratch on the union of VOC2007 trainval and VOC2012
trainval dataset. We use a mini batch size of 128 (accumulated over several iterations).
The initial learning rate is set to 0.1, and divided by a factor of 10 every 20k iterations. The
total number of training iterations is 100k. We utilize a SGD solver with momentum 0.1 to
optimize our objective function. Similar to [28], we use a weight decay of 0.0005 to avoid
overfitting. All our conv-layers and dwconv-layers are initialized with "xavier" method [10].

We report the detection results on VOC2007 test set in Table 3, in which upper part
results are from state-of-the-art full-sized detection models, while the lower part results are
from lightweight detection models. Our Tiny-DSOD achieves 72.1% mAP, which is signif-
icantly better than most lightweight detectors, except DSOD-smallest [28]. However, our
Tiny-DSOD has only 1/6 parameters and 1/5 FLOPs to DSOD-smallest. When comparing
our model with the state-of-the-art full-sized models, there is still marginal accuracy drop-
s. However, Tiny-DSOD requires much smaller persistent memory for model storage and
much less computing cost. For instance, Faster-RCNN [25] is just 1.1% higher in accuracy
than Tiny-DSOD, while with more than 140× larger model-size and 180× more theoretic
computing cost (practically, 10× slower in fps). These comparisons show that Tiny-DSOD
achieves much better trade-off between resources (model size & FLOPs) and detection ac-
curacy, which is extremely useful for resource-restricted usages.

4.4 Benchmark Results on KITTI
Next we evaluate our detector on the autonomous driving usages for the KITTI 2D object
detection task [7]. Different from PASCAL VOC, KITTI dataset is composed of extremely
wide images of size 1242×375. To avoid the vanishing of small objects, we resize the input
image size to 1200×300 instead of 300×300. This resolution will increase the FLOPs for
our detector but will maintain good detection accuracy. Following the configuration in [32],
we randomly split the 7381 images half into training set and half into validation set. The
average precision is tested on the validation set. The batch size of training is set to 64. We

∗Models from https://github.com/chuanqi305/MobileNet-SSD
†Models from https://github.com/chuanqi305/SqueezeNet-SSD

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Dai, Li, He, and Sun} 2016

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Redmon and Farhadi} 2016

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Robertprotect unhbox voidb@x penalty @M {}Wang and Ling} 2018

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Glorot and Bengio} 2010

Citation
Citation
{Shen, Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Wu, Iandola, etprotect unhbox voidb@x penalty @M {}al.} 2017

 https://github.com/chuanqi305/MobileNet-SSD
 https://github.com/chuanqi305/SqueezeNet-SSD

LI ET AL.: TINY-DSOD 9

Method Input size #Params FLOPs Car Cyclist Person mAP(%) FPS
SubCNN[34] - - - 86.4 71.1 73.7 77.0 0.2
MS-CNN[2] 1242×375 80M - 85.0 75.2 75.3 78.5 2.5

FRCN[1] 2000×604 121.2M - 86.0 - - - 1.7
ConvDet[32] 1242×375 8.78M 61.3B 86.7 80.0 61.5 76.1 16.6

SqueezeDet[32] 1242×375 1.98M 9.7B 82.9 76.8 70.4 76.7 57.2
Tiny-DSOD (ours) 1200×300 0.85M 4.1B 88.3 73.6 69.1 77.0 64.9

Table 4: KITTI 2D detection results. Numbers under each category (car, cyclist, person) are the corresponding aver-
age precision (AP in %). The column "mAP" is the mean AP over three categories.Note the parameter-size (0.85M)
of Tiny-DSOD here is slightly different to the VOC case (0.95M) due to different number of object categories.

Figure 3: Examples on kitti val set of road detection from the output of Tiny-DSOD. Each output bounding box is
colored encoded into correponding category and filtered by a confidence threshold of 0.3 for visualization

start our training process with a learning rate of 0.01, because loss oscillation is observed
with large learning rate during training from scratch. We divide the learning rate by 2 every
10k iterations. Our training stops at 60k iterations as the amount of training images is small.
Other settings are identical to the experiments on PASCAL VOC2007 in section 4.3.

The results on validation set are reported in Table 4. Our Tiny-DSOD achieves a compet-
itive result of 77.0% mAP, which is slightly better than SqueezeDet [32] (77.0% vs 76.7%),
while our model reduces more than 50% of the model parameters and FLOPs of computing
and runs at a faster run-time speed of 15ms per image (64.9 fps), indicating that Tiny-DSOD
is much more efficient under this scenario. Besides, it should be noted that Tiny-DSOD
achieves the highest accuracy on the "cars" category, which is the main objects in KITTI
dataset. Figure 3 further illustrates some detection examples on KITTI dataset.

4.5 Benchmark Results on COCO
Finally, we evaluate the performance of our method on the COCO dataset. Following the
common settings [25], we train our model on trainval 35k dataset, which is obtained
by excluding 5k images from val set and merge the rest data into the 80k train set, and
further evaluate our detector on the test-dev 2015 set. The batch size is set to 128. The
initial learning rate is set to 0.1 for the first 80k iterations, then divided by 10 after every 60k
iterations. The total number of training iterations is 320k. The other training configurations
are identical to the experiments on COCO in SSD [22].

The test results are summarized in Table 5. Tiny-DSOD achieves 23.2% mAP on the
test-dev set in the metric of AP@IOU[0.5 : 0.95], which outperforms the lightweight
counterparts MobileNet-SSD (v1 & v2) [27] and PeleeNet [26], and even outperforms the
full-sized detector YOLOv2 [23]. Besides, Tiny-DSOD has significant small model compar-

Citation
Citation
{Xiang, Choi, Lin and Savarese} 2016

Citation
Citation
{Cai, Fan, Feris, and Vasconcelos} 2016

Citation
Citation
{Ashraf, Wu, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Wu, Iandola, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Wu, Iandola, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Wu, Iandola, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Robertprotect unhbox voidb@x penalty @M {}Wang and Ling} 2018

Citation
Citation
{Redmon and Farhadi} 2016

10 LI ET AL.: TINY-DSOD

Method Input size FLOPs #Params AP (%), IOU
0.5:0.95 0.5 0.75

SSD[22] 300×300 34.36B 34.30M 25.1 43.1 25.8
YOLOv2[23] 416×416 17.50B 67.43M 21.6 44.0 19.2

MobileNet-SSDLite[27] 300×300 1.30B 5.10M 22.2 - -
MobileNetv2-SSDLite[27] 300×300 0.80B 4.30M 22.1 - -

Pelee[26] 304×304 1.29B 5.98M 22.4 38.3 22.9
Tiny-DSOD (ours) 300×300 1.12B 1.15M 23.2 40.4 22.8

Table 5: COCO test-dev 2015 detection results. Note the parameter-size (1.15M) of Tiny-DSOD here is slightly
different to the VOC case (0.95M) due to different number of object categories.

ing to all the listed methods in the table. For instance, the state-of-the-art full-sized YOLOv2
has 58× larger model and 15.6× more FLOPs than Tiny-DSOD. These comparisons verify
that Tiny-DSOD is efficient yet accurate for resource-restricted object detection usages.

5 Conclusion

This paper proposes a lightweight object detection method, namely Tiny-DSOD, intended for
resource-restricted usages. We realize a better trade-off between resources (FLOPs & mem-
ory) and accuracy with two innovative blocks: depthwise dense blocks (DDB) and depthwise
feature pyramid networks (D-FPN). We verify the effectiveness of the invented blocks and
detectors through extensive ablation studies. We compare Tiny-DSOD to state-of-the-art
lightweight detectors such as MobileNet-SSD (v1 & v2), SqueezeDet, Pelee on three object
detection benchmarks (PASCAL VOC 2007, KITTI, COCO). It shows that Tiny-DSOD out-
perform those methods in each benchmark on all the three metrics (accuracy, speed in term
of FLOPs, and parameter-size). Especially, Tiny-DSOD achieves 72.1% mAP on PASCAL
VOC 2007 with just 0.95M parameters and 1.14B FLOPs of computing. This is by far the
state-of-the-art result with such a low resource requirement.

Acknowledgement

Yuxi Li and Weiyao Lin are supported by NSFC (61471235) and Shanghai "The Belt and
Road" Young Scholar Exchange Grant(17510740100).

References
[1] Khalid Ashraf, Bichen Wu, et al. Shallow networks for high-accuracy road object-

detection. arXiv preprint arXiv:1606.01561, 2016.

[2] Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vasconcelos. A unified multi-
scale deep convolutional neural network for fast object detection. In ECCV, 2016.

[3] Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In
CVPR, 2016.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. In NIPS, 2016.

Citation
Citation
{Liu, Anguelov, Erhan, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Redmon and Farhadi} 2016

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Sandler, Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2018

Citation
Citation
{Robertprotect unhbox voidb@x penalty @M {}Wang and Ling} 2018

LI ET AL.: TINY-DSOD 11

[5] Mark Everingham, Luc Van Gool, Christopher Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303–338, 2010.

[6] Cheng Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alex Berg. Dssd :
Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659, 2017.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In CVPR, 2012.

[8] Ross Girshick. Fast r-cnn. In ICCV, 2015.

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In CVPR, 2014.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. JMLR, 9:249–256, 2010.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CVPR, 2016.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, et al. Mask r-cnn. In ICCV, 2017.

[13] Andrew Howard, Menglong Zhu, et al. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[14] Gao Huang, Zhuang Liu, Laurens Van De Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In CVPR, 2017.

[15] Gao Huang, Shichen Liu, Van Der Maaten Laurens, and Kilian Q Weinberger. Con-
densenet: An efficient densenet using learned group convolutions. In CVPR, 2018.

[16] Jonathan Huang, Vivek Rathod, Chen Sun, et al. Speed/accuracy trade-offs for modern
convolutional object detectors. In CVPR, 2017.

[17] Forrest N Iandola, Song Han, et al. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5 mb model size. In ICLR, 2016.

[18] Yangqing Jia, Evan Shelhamer, Jeff Donahue, et al. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[19] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, et al. Microsoft coco: Common objects in context. In ECCV, 2014.

[20] Tsung Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, et al. Feature pyramid net-
works for object detection. In CVPR, pages 936–944, 2017.

[21] Wei Liu, Andrew Rabinovich, and Alexander C Berg. Parsenet: Looking wider to see
better. arXiv preprint arXiv:1506.04579, 2015.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, et al. Ssd: Single shot multibox detector.
In ECCV, pages 21–37, 2016.

[23] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In CVPR, 2016.

12 LI ET AL.: TINY-DSOD

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In CVPR, pages 779–788, 2016.

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-
time object detection with region proposal networks. In NIPS, pages 91–99, 2015.

[26] Xiang Li Robert Wang, Shuang Ao and Charles X. Ling. Pelee: A real-time object
detection system on mobile devices. In ICLR Workshop, 2018.

[27] Mark Sandler, Andrew Howard, Menglong Zhu, et al. Inverted residuals and linear
bottlenecks: Mobile networks for classification, detection and segmentation. arXiv
preprint arXiv:1801.04381, 2018.

[28] Zhiqiang Shen, Zhuang Liu, Jianguo Li, et al. Dsod: Learning deeply supervised object
detectors from scratch. In ICCV, pages 1937–1945, 2017.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2014.

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, et al. Going deeper with
convolutions. In CVPR, 2015.

[31] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders.
Selective search for object recognition. IJCV, 2013.

[32] Bichen Wu, Forrest Iandola, et al. Squeezedet: Unified, small, low power fully con-
volutional neural networks for real-time object detection for autonomous driving. In
CVPR Workshops, 2017.

[33] Wei Xiang, Dong Qing Zhang, Vassilis Athitsos, and Heather Yu. Context-aware
single-shot detector. In WACV, 2018.

[34] Xiang, Yu and Choi, Wongun and Lin, Yuanqing and Savarese, Silvio. Subcategory-
Aware Convolutional Neural Networks for Object Proposals and Detection arXiv
preprint arXiv:1604.04693, 2016.

