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Abstract

There is an increasing interest on accelerating neural networks for real-time applica-
tions. We study the student-teacher strategy, in which a small and fast student network is
trained with the auxiliary information learned from a large and accurate teacher network.
We propose to use conditional adversarial networks to learn the loss function to trans-
fer knowledge from teacher to student. The proposed method is particularly effective
for relatively small student networks. Moreover, experimental results show the effect of
network size when the modern networks are used as student. We empirically study the
trade-off between inference time and classification accuracy, and provide suggestions on
choosing a proper student network.

1 Introduction
Deep neural networks (DNNs) achieve massive success in artificial intelligence by substan-
tially improving the state-of-the-art performance in various applications. The accuracy of
DNNs for large-scale image classification has become comparable to humans on several
benchmark datasets [28]. The recent progress towards such impressive accomplishment is
largely driven by exploring deeper and wider network architectures [10, 41]. However, it is
difficult to deploy the trained modern networks on embedded systems for real-time applica-
tions because of the heavy computation and memory cost. In the meantime, the demand for
low cost networks is increasing for applications on mobile devices and autonomous cars.

Do DNNs really need to be deep and wide? Early theoretical studies suggest that shal-
low networks are powerful and can approximate arbitrary functions [7, 12]. More recent
theoretical results show depth is indeed beneficial for the expressive capacity of networks
[8, 22, 29, 34]. Moreover, the overparameterized and redundant networks, which can easily
memorize and overfit the training data, surprisingly generalize well in practice [43]. Various
explanations have been investigated, but the secret of deep and wide networks remains an
open problem.

Empirical studies suggest that the performance of shallow networks can be improved
by learning from large networks following the student-teacher strategy [2, 35]. In these
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approaches, the student networks are forced to mimic the output probability distribution of
the teacher networks to transfer the knowledge embedded in the soft targets. The intuition is
that the dark knowledge [11], which contains the relative probabilities of “incorrect” answers
, is informative and representative. For example, we want to classify an image over the
label set (dog, cat, car). Given an image of a dog, a good teacher network may mistakenly
recognize it as cat with small probability, but should seldom recognize it as car; the soft target
of output distribution over categories for this image, (0.7,0.3,0), contains more information
such as categorical correlation than the hard target of one-hot vector, (1,0,0). The student is
trained by minimizing a predetermined loss which measures similarity between student and
teacher output, such as Kullback-Leibler (KL) divergence.

In previous studies, knowledge transfer has been used to train shallow but wide student
networks, which potentially have more parameters than the teacher networks [2, 35]; en-
semble of networks are used as teacher, and a student network with similar architecture and
capacity can be trained [11]; particularly, a small deep and thin network is trained to re-
place a shallow and wide network for acceleration [27], given the best teacher at that time
is the shallow and wide VGGNet [31]. Since then, the design of network architecture has
advanced. ResNet [10] has significantly deepened the networks by introducing residual con-
nections, and wide residual networks (WRNs) [41] suggest widening the networks leads to
better performance. It is unclear whether the dark knowledge from the state-of-the-art net-
works based on residual connections, which are both deep and wide, can help train a shallow
and/or thin network (also with residual connections) for acceleration.

In this paper, we focus on improving the performance of a shallow and thin modern net-
work (student) by learning from the dark knowledge of a deep and wide network (teacher).
Both the student and teacher networks are convolutional neural networks (CNNs) with resid-
ual connections, and the student network is shallow and thin so that it can run much faster
than the teacher network during inference. Instead of adopting the classic student-teacher
strategy of forcing the output of a student network to exactly mimic the soft targets produced
by a teacher network, we introduce conditional adversarial networks to transfer knowledge
from teacher to student. We empirically show that the loss learned by the adversarial train-
ing has the advantage over the predetermined loss in the student-teacher strategy, especially
when the student network has relatively small capacity.

Our learning loss approach is inspired by the recent success of conditional adversarial
networks for various image-to-image translation applications [16]. We show that adversarial
nets can benefit a task that is very different from image generation. In the student-teacher
strategy, forcing a student network to exactly mimic one of the soft targets (or the aver-
age/ensemble of several teacher networks) is not only unnecessary (because of the multi-
modality 1), but also difficult (because the student has smaller capacity). Our approach
preserves the multi-modality by introducing an auxiliary network for learning the loss to
transfer the knowledge.

1.1 Related work

Network acceleration techniques can be roughly divided into three categories: low preci-
sion, sparse parameter pruning, and knowledge distillation. Low precision methods use lim-
ited number of bits to store and operate the network weights [20, 26], which often achieve

1For the previous example, the output distribution for a dog image can also be (0.8, 0.2, 0). In fact, there are
infinite number of soft targets that can correctly predict the label.
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(a) Residual blocks for convolutional neural net-
works [41] (left) and multi-layer perceptron (right).
Blocks are equipped with batch normalization (BN),
activation ReLU, and dropout. al is the output of the
lth block.
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(b) Proposed adversarial training. The deep and
wide teacher is pre-trained offline. The student net-
work and discriminator are updated alternatively.
Additional supervised loss is added for both student
and discriminator.

Figure 1: Network architectures.

conceptual acceleration because mainstream GPUs have limited support for low precision
computation. Networks can be directly modified by pruning and factorizing the redundant
weights [13], which aim to construct networks of similar architecture with reduced number
of weights by assuming sparsity. Moreover, network pruning papers mostly report indirect
speedup measured in the number of basic operations, rather than by inference time.

Knowledge distillation is a principled approach to train small neural networks for ac-
celeration. We slightly generalize the term knowledge distillation to represent all methods
that train student networks by transferring knowledge from teacher networks. Bucilua et al.
[4] pioneered this approach for model compression. Ba and Caruana [2] and Urban et al.
[35] trained shallow but wide student by learning from a deep teacher, which were not pri-
marily designed for acceleration. Hinton et al. [11] generalized the previous methods by
introducing a new metric between the output distribution of teacher and student, as well
as a tuning parameter. Variants of knowledge distillation has also been applied to tasks in
other domains [5, 23, 30, 33] A recent preprint [17] presented promising preliminary results
on CIFAR-10 by learning a small ResNet from a large ResNet. Another line of research
focuses on transferring intermediate features instead of soft targets from teacher to student
[14, 27, 36, 39, 40, 42]. Our approach is complementary to those methods by using adver-
sarial networks to learn a new metric between the output distribution of teacher and student.

Generative adversarial networks (GAN) has been extensively studied over recent years
since [9]. GAN trains two neural networks, the generator and the discriminator, in an ad-
versarial learning process that alternatively updates the two networks. We use adversarial
networks conditioned on input images [16, 25, 37]. Unlike previous works that focused
on image generation, we aim at learning a loss function for knowledge distillation, which
requires quite different architectural choices for our generator and discriminator. A recent
preprint [3] appears a few months later than ours has a similar approach for network com-
pression. We are the first to apply adversarial training for knowledge distillation. Moreover,
we provide systematical study on choosing the student.
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2 Learning loss for knowledge distillation
In this section, we introduce the learning loss approach based on conditional adversarial
networks. We start from a recap of modern network architectures (section 2.1), and then
describe the dark knowledge that can be transferred from teacher to student networks (section
2.2). Our approach with adversarial networks for learning loss is detailed in section 2.3.

2.1 Neural networks with residual connection
Residual blocks are shown to be effective for training deep CNNs to achieve state-of-the-
art performance [10, 21, 41]. We build both student and teacher networks by stacking the
residual convolutional blocks shown in Figure 1a (left). The first layer contains 16 filters
of 3× 3 convolution, followed by a stack of 6n layers, which is 3 groups of n residual
blocks, and each block contains two convolution layers equipped with batch normalization
[15], ReLU [19] and dropout [32]. The output feature map is subsampled twice, and the
number of filters are doubled when subsampling . After the last residual block is the global
average pooling, and then fully-connected layer and softmax. In the following sections,
the architecture of wide residual networks (WRNs) is denoted as WRN-d-m following [41],
where the total depth is d = 6n+ 4, and m is the widen factor that increases the number of
filters by m times in each residual block. Our teacher network is deep and wide WRN with
large d and m, while student network is shallow and thin WRN with small d and m.

2.2 Knowledge distillation
The output of neural networks for image classification is a probability distribution over cat-
egories, which is generated by applying a softmax function over the output of the last fully
connected layer (known as logits). Rich information is embedded in the output of a teacher
network, and we can use logits to transfer the knowledge to student network [2, 4, 11, 35].
We review [11] that generalized previous methods, which provides a metric between student
and teacher logits for knowledge distillation (KD).

The logits vector generated by pre-trained teacher network for an input image xi, i =
1, . . . ,N is represented by ti, where the dimension of vector ti = (t1

i , . . . , t
C
i ) is the number of

categories C. We now consider training a student network F to generate student logits F(xi).
By introducing a parameter called temperature T , the generalized softmax layer can convert
logits vector ti to probability distribution qi,

MT (ti) = qi, where q j
i = exp(t j

i /T )/∑k exp(tk
i /T ). (1)

where higher temperature T produces softer probability over categories. The regular softmax
for classification is a special case of the generalized softmax with T = 1.

Hinton et al. [11] proposed to minimize the KL divergence between teacher and student,

LKD(F,T ) = 1/N
N

∑
i=1

KL(MT (ti)‖MT (F(xi))), (2)

and show that when T is very large, LKD becomes the Euclidean distance between teacher
and student logits. Given the image-label pairs {xi, li}, the cross-entropy loss for supervised
training of a neural network is

LS(F) = 1/N
N

∑
i=1

H(li, M1(F(xi))), (3)

which is widely used for standard supervised learning. Finally, Hinton et al. [11] proposed
to minimize the weighted sum of LKD and LS to train a student network,

L1(F,T ) = 1/2LS(F)+T 2LKD(F,T ). (4)
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2.3 Learning loss with adversarial networks
Overview. The main idea of learning the loss for transferring knowledge from teacher to
student is depicted in Figure 1b. Instead of forcing the student to exactly mimic the teacher
by minimizing KL-divergence inL1(F,T ) of Equation (4), the knowledge is transferred from
teacher to student through a discriminator in our approach. This discriminator is trained to
distinguish whether the output logits is from teacher or student network, while the student is
adversarially trained to fool the discriminator, i.e., output logits that are indistinguishable to
the teacher logits.

There are several benefits of the proposed method. First, the learned loss is often ef-
fective, as has already been demonstrated for several image to image translation tasks [16].
Moreover, our approach relieves the pain for hand-engineering the loss. Though the parame-
ter tuning and hand-engineering of the loss is replaced by hand-engineering the discriminator
networks in some sense, our empirical study shows that the performance is less sensitive to
the discriminator architecture than the temperature parameter in knowledge distillation. The
second benefit is closely related to the multi-modality of network output. As discussed be-
fore, it is unnecessary and difficult to exactly mimic the output of teacher networks. The
trained discriminator can capture the relative similarities between the categories from the
multi-modal logits of teacher, and directs the student to produce correct but not necessarily
same outputs as the teacher.

Discriminator update. We now describe the proposed method in a more rigorous way. The
student and discriminator in Figure 1b are alternatively updated in the proposed approach.
Let us first look at the update of the discriminator, which is trained to distinguish teacher and
student logits. We use multi-layer perceptron (MLP) as discriminator. Its building block —
residual block is shown in Figure 1a (right). The number of nodes in each layer is the same
as the dimension of logits, i.e., the number of categories C. We denote the discriminator that
predicts binary value “Real/Fake” as D(·). To train D, we fix the student network F(·) and
seek to maximize the log-likelihood, which is known as binary cross-entropy loss,

LA(D,F) = 1/N
N

∑
i=1

(
logP(Real|D(ti))+ logP(Fake|D(F(xi)))

)
. (5)

The plain adversarial loss LA for knowledge distillation, which follows the original GAN
[9], faces two major challenges. First, the adversarial training process is difficult [38]. Even
if we replace the log-likelihood with advanced techniques such as Wasserstein GAN [1] or
Least Squares GAN [24], the training is still slow and unstable in our experiments. Second,
the discriminator captures the high-level statistics of teacher and student outputs, but the low-
level alignment is missing. The student outputs F(xi) for xi can be aligned to a completely
unrelated teacher sample t j by optimizingLA, which means a dog image can generate a logits
vector that predicts cat. One extreme example is that the student always mispredicts dog as
cat and cat as dog, but the overall output distribution may still be close to the teacher’s.

To tackle these problems, we modify the discriminator objective to also predict the class
labels, where the output of discriminator D(·) is a C + 1 dimensional vector with C Label
predictions and a Real/Fake prediction. We now maximize

LDiscriminator(D,F) = 1/2(LA(D,F)+LDS(D,F)), (6)

where LA is the previously defined adversarial loss over Real/Fake, LDS is the supervised
log-likelihood of discriminator over Labels, written as

LDS(D,F) = 1/N
N

∑
i=1

(
logP(li|D(ti))+ logP(li|D(F(xi)))

)
. (7)
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We assume Label and Real/Fake are conditionally independent in Equation (6). To avoid
using this assumption, we can maximize the log-likelihood of discriminator to predict the
tuple { Label, Real/Fake }, which requires D(·) to predict a 2C dimensional vector. In our
experiments, optimizing the proposed method with or without the independent assumption
achieves almost identical results. Hence we will always use the independent assumption for
a more compact discriminator. Note that equation (6) has the same form as the auxiliary
classifier GANs [25, 37].

The adversarial training becomes much more stable when the proposed discriminator
also predicts category Labels besides Real/Fake. Moreover, the discriminator can provide
category-level alignment between outputs of student and teacher. The student outputs of a
dog image are more likely to learn from the teacher outputs that predict dogs. However,
the proposed method still lacks instance-level knowledge. To further boost the performance,
we start with investigating conditional discriminators, in which the input of discriminators
are logits concatenated with a conditional vector. We tried the following conditional vec-
tors: image with convolutional embedding; label one-hot vector with embedding; and the
extracted teacher logits. However, it turns out the conditional vectors are easily ignored dur-
ing the training of the discriminator and does not help in practice. We will introduce a direct
instance-level knowledge for training student network later.
Student update. We update the student network after updating the discriminator in each
iteration. When updating the student network F(·), we aim to fool the discriminator by fixing
discriminator D(·) and minimizing the adversarial loss LA. In the meantime, the student
network is also trained to satisfy the auxiliary classifier of discriminator LDS. Besides the
category-level knowledge inLDS, we introduce instance-level knowledge by aligning outputs
of teacher and student,

LL1(F) = 1/N
N

∑
i=1
‖F(xi)− ti‖1. (8)

The L1 norm has been found helpful in the GAN-based image to image translation [16].
Finally, we combine the learned loss with the supervised loss LS in (3), and minimize

the following objective for the student network F(·),
LStudent(D,F) = LS(F)+LL1 (F)+LGAN(D,F),where LGAN(D,F) =

1
2
(LA(D,F)−LDS(D,F)). (9)

The sign of LDS is flipped in (6) and (9) because both the discriminator and student are
trained to preserve the category-level knowledge.

Our final loss LStudent(D,F) in (9) is a combination of the learned loss for knowledge
distillation and the supervised loss for neural network, and may look complicated at the
first glance. However, each component of the loss is relatively simple. Moreover, since
both student F and discriminator D are learned, there is no explicit parameters to be tuned
in the loss function. Our experiments suggest the performance of the proposed method is
reasonably insensitive to the discriminator architecture and the learned loss can outperform
the hand-engineered loss for knowledge distillation.

3 Experiments

After presenting experimental settings, we show the benefits of our proposed method in
section 3.1 and perform ablation study in section 3.2. We present the effect of depth and
width of the student network in section 3.3, followed by the discussion of trade-off between
classification accuracy and inference time in section 3.4.
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We consider three image classification datasets: ImageNet32 [6], CIFAR-10 and CIFAR-
100 [18], and use wide residual networks (WRNs) [41] for both student and teacher net-
works. The teacher network is a fixed WRN-40-10, while the student network has varying
depth and width in different experiments. We use multi-layer preceptron (MLP) as the dis-
criminator in our approach. 3-layer MLP is used for most of the experiments except for
section 3.2, in which we study the effect of discriminator depth. To speed up the experi-
ments, the logits of teacher network are generated offline and stored in memory. We use
stochastic gradient descent (SGD) as optimizer and follow standard training scheduler, and
set dropout ratio to 0.3 for both discriminator and student networks. The results below are
the median of five random runs.

CIFAR-10 CIFAR-100 ImageNet32
Student 7.46 28.52 48.2
Teacher 4.19 20.62 38.41

KD (T=1) 7.27 28.62 49.37
KD (T=2) 7.3 28.33 49.48
KD (T=5) 7.02 27.06 49.63

KD (T=10) 6.94 27.07 51.12
Ours 6.09 25.75 47.39

Table 1: Error rate achieved on benchmark datasets.

3.1 Benefits of learning loss
We first show the proposed method is effective for transferring knowledge from teacher to
student. Table 1 shows the error rate of classification on the three benchmark datasets. The
teacher is the deep and wide WRN-40-10. The student is much shallower and thinner, WRN-
10-4 for CIFARs, and WRN-22-4 for ImageNet32. We choose a larger student network for
ImageNet32 because it contains more samples and categories. We will have more discus-
sion on wisely choosing the student architecture in sections 3.3 and 3.4 . The first two rows
of Table 1 show the performance of standard supervised learning for student and teacher
networks, without knowledge transfer. We then compare our approach with knowledge dis-
tillation (KD) in [11]. We choose the temperature parameter T ∈ {1,2,5,10} following the
original work. No parameter is tuned for our method.

In Table 1, the deep and wide teacher performs much better than the shallow and thin
student with standard supervised learning, and lower bounds the error rate of the small net-
work trained with student-teacher strategy. Baseline method KD helps the training of small
networks for the two CIFARs, but does not help for ImageNet32. We conjecture the reason to
be that the capacity of the student is too small to learn from knowledge distillation for larger
dataset such as ImageNet32. The temperature parameter T introduced in KD is useful. For
CIFARs, KD performs better when T is large, and T = 5 and T = 10 performs similarly.
The proposed method improves the performance of small network for all three datasets, and
outperforms KD by a margin.

3.2 Analysis of the proposed method
We discuss the proposed method in more details. Figure 2a presents the training curve of
the small student network, WRN-10-4, on CIFAR-100 dataset. The loss of the discriminator
(blue solid line) is gradually decreasing, which suggests the adversarial training steadily
makes progress. The error rates of the proposed method for both training and testing data are
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Figure 2: Analysis of the proposed method.

Loss composition CIFAR-10 CIFAR-100
LS 7.46 28.52
LGAN 14.82 47.04

LS +LGAN 6.56 27.27
LS +LL1 6.44 26.66

LS +LL1 +LGAN 6.09 25.75
Table 2: The effect of different components of the loss in the proposed method.

decreasing. The testing error rate of the proposed method is consistently better than the pure
supervised training of the student model, and looks more stable between epoch 50-100. The
training error rate of the proposed method is slightly worse than pure supervised learning,
which suggests knowledge transfer can benefit generalization.

Next, we performing ablation study on components of the proposed approach, as shown
in Table 2. By combining the adversarial loss and the category-level knowledge transfer
(Equation (6)), the learned loss LGAN performs reasonably well. However, the indirect
knowledge provided by LGAN alone is not as good as standard supervised learning LS. Both
category-level knowledge transferred by LGAN and instance-level knowledge transferred by
LL1 can improve the performance of training student network. Our final approach combines
these components and performs the best without parameter tuning.

We present the effect of the depth of MLP as discriminator in Table 3. The error rate
is relatively insensitive to the depth of discriminator. The error rate slightly decreases as
the depth increases when the discriminator is generally shallow. When the discriminator
becomes deeper, the error rate increases as the adversarial training becomes unstable. De-
creasing the learning rate of discriminator sometimes helps, but it may introduce parameter
tuning. The 3-layer MLP works reasonably well and is used for all our experiments to keep
the proposed method simple.

Finally, we present qualitative visualization for the proposed approach. Figure 2b shows
the scaled histogram for the prediction of category 85 in CIFAR-100. The histogram is calcu-
lated on the 10K testing samples, in which 100 samples are from category 85 and labeled as
positive (green in figure), and the other 9.9K are labeled as negative (blue in the figure). The
histogram is normalized to sum up to one for positives and negatives, respectively. The three
plots represent the distribution predicted by student network trained by standard supervised
learning, the student network trained by the proposed approach, and the teacher network.
The histogram in the middle is similar to the histogram on the right, which suggests the
proposed approach effectively transfers knowledge from teacher to student.
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Depth 1 2 3 4
Error rate 26.13 25.88 25.75 27.42

Table 3: The effect of discriminator depth on CIFAR-100.
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(a) Inference time versus error rate.
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(b) Network size versus error rate.

Figure 3: Trade-off of error rate to inference time and parameter size. The figure is generated from
Table 4. Networks WRN-10-m are labeled as circles, and WRN-d-4 are labeled as crosses for the
proposed approach. The largest student is 7x smaller and 5x faster than the teacher WRN-40-10.

3.3 Does WRN need to be deep and wide?

Urban et al. [35] asked the question for convolutional neural networks and claimed the net-
work should at least has a few layers of convolutions. In this section, we study the modern
architecture WRN of residual blocks, and show that even for the modern architecture WRN,
the network has to be deep and wide to some extent. Table 4 presents the results of standard
supervised learning, knowledge distillation [11] and the proposed approach for different stu-
dent networks trained on CIFAR-100. We first fix the depth of WRN as 10, and change the
widen factor from 2 to 10. We then fix the width as 4, and increase depth from 10 to 34. The
parameter size is in millions, and the inference time is measured in seconds per minibatch of
100 samples on CPU.

When the student is very small, such as WRN-10-2, it is difficult to transfer knowledge
from teacher to student because the student is limited by its capacity. When the student is
large, such as WRN-34-4, both KD and the proposed approach can improve the performance
to approximate the teacher. The advantage of the proposed method is observed at all depths
and widths but is most pronounced for relatively small students such as WRN-10-4. Increas-
ing depth is more effective than width. For example, WRN-34-4 has less parameter than
WRN-10-10, but achieves lower error rate.

WRN Size (M) Time (s) Student KD (T=5) Ours
10-2 0.32 0.14 33.22 32.74 32.1
10-4 1.22 0.32 28.52 27.16 25.75
10-6 2.72 0.60 27.27 25.39 24.39
10-8 4.81 0.82 26.23 24.31 23.38

10-10 7.49 1.17 26.04 23.49 23.02
16-4 2.77 0.71 24.73 22.9 22.73
22-4 4.32 1.07 23.61 22.02 21.66
28-4 5.87 1.44 23.2 21.61 21.00
34-4 7.42 1.73 23.22 21.2 20.73

40-10 55.9 8.73 20.62 - -
Table 4: The effect of depth and width in student network; the parameter size, inference time and error
rate on CIFAR-100.
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3.4 Training student for acceleration
The shallow and thin network is much easier to deploy in practice. We present the trade-off
between error rate, inference time and parameter size in Figure 3. The figure is generated
by changing the architecture of the student network. Larger student network is more accu-
rate but also slower. For network with similar size, such as WRN-10-10 and WRN-34-4,
deeper network achieves lower error rate, while wider network runs slightly faster. When
the student network is relatively large, such as WRN-34-4, the student network trained by
the proposed approach can achieve competitive error rate as the teacher WRN-40-10, while
being 7x smaller and 5x faster. The proposed approach also decreases the absolute error rate
by 2.5% compared to the standard training without knowledge transfer.

4 Conclusion and discussion
We study the student-teacher strategy for network acceleration in this paper. We propose to
use adversarial networks to learn the loss for transferring knowledge from teacher to student.
We show that the proposed approach can improve the training of student network, especially
when the student network is shallow and thin. Moreover, we empirically study the effect
of network capacity when adopting modern network as student and provide guidelines for
wisely choosing a student to balance error rate and inference time. We can train a student
that is 7x smaller and 5x faster than teacher without loss of accuracy.

The proposed approach is stable and easy to implement after applying several advanced
techniques in the GAN literature. The current implementation uses the stored logtis from
teacher network to save GPU memory and computation. Generating teacher logits on the fly
can be more reliable for the adversarial training. Moreover, the proposed approach can be
naturally extended to use ensemble of networks as teacher. The logits of multiple teacher
networks can be fed into the discriminator for better performance. We will investigate these
ideas for future work.
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