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Abstract

Saliency detection has been increasingly gaining research interest in recent years
since many computer vision applications need to derive object attentions from images in
the first steps. Multi-scale awareness of the saliency detector becomes essential to find
thin and small attention regions as well as keeping high-level semantics. In this paper,
we propose a novel holistic and deep feature pyramid neural network architecture that
can leverage multi-scale semantics in feature encoding stage and saliency region pre-
diction (decoding) stage. In the encoding stage, we exploit multi-scale and pyramidal
hierarchy of feature maps via the densely connected network with variable-size dilated
convolutions as well as a pyramid pooling. In the decoding stage, we fuse multi-level
feature maps via up-sampling and convolution. In addition, we utilize the multi-level
deep supervision via plugging in loss functions at every feature fusion level. Multi-loss
supervision regularizes weights searching space among different tasks minimizing over-
fitting and enhances gradient signal during backpropagation, and thus enables us training
the network from scratch. This architecture builds an inherent multi-level semantic pyra-
midal feature maps at different scales and enhances model’s capability in the saliency
detection task. We validated our approach on six benchmark datasets and compared with
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eleven state-of-the-art methods. The results demonstrated that the design effectiveness
and our approach outperformed the compared methods.

1 Introduction
Salient region detection in visual scenes aims to seek attention of human visual system,
which is essential in cognitive psychology and neurobiology that how humans perceive and
process the stimuli from sights [19, 27]. Visual Saliency is a fundamental step for many com-
puter vision tasks, such as image understanding and cognition, explainable computer vision
(like static or dynamic scene captioning), and visual question and answer [3, 4, 8, 20, 33].
Recently, the saliency detection approaches based on convolutional neural network (CNN)
outperformed those based on hand-engineered features [5, 23]. In the development of CNN-
based approaches, the bottom-up pathway (feedforward encoding computation) computes a
feature hierarchy consisting of feature maps at multiple scales using either max or average
down-sample pooling. The top-down pathway (prediction decoding computation) predicts
salient regions consisting of convolution and up-sampling operations hierarchically from
feature maps generated by the bottom-up pathway. Predictions are made at the last level or
made independently at different levels. Independent predictions are not aware of multi-scale
semantics. The drawback of only using the high-level feature maps is not able to extract thin
or small salient regions [6], as well as lead to heavily blurred region boundaries. Only con-
sidering the low-level feature maps leads to the algorithm losing larger contextual semantics.
To bring in multi-scale awareness in the network, one popular approach is to jointly make
prediction across different level feature maps. However, high-level feature maps do not have
low-level information and vice versa. In contrast, the feature pyramid considers a large range
of scale changes in feature space at the same time and thus the saliency detector is strongly
invariant to object’s scale changes.

In this work, we distill above insights of the feature pyramid and propose a novel holistic
feature pyramid architecture implemented in both bottom-up and top-down pathways. We
coin our network as a holistic and deep feature pyramid network for saliency detection.
Figure 1 illustrates the overview of our approach. In the bottom-up pathways, we propose
a multi-level and pyramidal hierarchical convolution architecture for feature abstraction for
appropriately utilizing the low-level and high-level semantic information. In each level,
we use a densely connected networks with dilated convolution to extract the information
at the corresponding semantic degree. Varied dilated rates in different levels can provide a
pyramidal hierarchy to increase the scale of feature extraction with enlarging the receptive
fields. This can help to search the salient components within feature maps in the multi-scale
space. Besides, we apply the pyramid pooling module (PPM) to further represent the highest-
level feature maps, for extracting the global contextual information in the largest receptive
field. Then we fuse multi-level feature maps via up-sampling and concatenation in the top-
down pathway to assure that the predicted saliency map in every level contains the semantic
information from all higher-level features. This leads to our final saliency prediction being
aware of high-level semantic information and low-level fine-grained information.

Densely connected convolution blocks are able to forward the signal in the forward pass
and the gradient signal in the backward pass during training (as discussed in [7]). However,
the other part of network experiences gradient vanishing problem due to deep layer structure.
To enhance gradient signal in the backpropagation procedure, we utilize multi-level deep
supervision via plugging in loss functions at every feature fusion level. Another advantage
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Figure 1: The architecture of our holistic and deep feature pyramid neural network for saliency detec-
tion. Our network contains five blocks with dilated densely-connected convolutional network (referred
as to dilated dense block, DDB) and a pyramid pooling module (PPM [32]). We place a convolutional
layer in the middle of each adjacent DDBs to compress the channels of DDB’s output. The compress
rate is 0.5. We just place a 2× 2 pooling layer behind the first two DDBs. Each DDB includes 12
dilated convolution layers. Each dilated convolution layer is a combination of ‘BN+ReLu+Dilated
Conv’. The output of each dilated convolution layer has same 12 channels (termed as growth rate in
DenseNet [7]). "d" denotes the dilated rate. The dilated rate of dilated convolution in five blocks are
1,1,2,4 and 8 separately. m1 ∼ m5 are the feature maps extracted from the outputs of five DDBs. Each
has 16 channels. m6 is the output of PPM. It has 4 channels. m1 ∼ m6 are hierarchically concacted
from m6 to m1. These five concatenation feature maps are adopted to generate five final feature maps
S
′

1 ∼ S
′

5. All the final feature maps are upsample to the same resolution as input image 256×256. The
upsample method we used is bilinear interpolation. After that, these five final feature maps are feed to
sigmoid to produce five saliency maps S1 ∼ S5. The final saliency map S0 is aggregated from five final
feature maps.

of deep supervision is that multi-tasks (multi-level prediction) compete each other and thus
regularize each other to minimize over-fitting problem. The deep supervision facilitates to
achieve a good decision hypothesis (good generalization), and enables us to train the network
from scratch.

The contributions of our approach is summarized as follows:

1. We developed a deep bi-directional pyramid neural network to build a holistic repre-
sentation of different scale salient features. Because the size or shape of salient region
might change sharply over different images, it is difficult to capture different salient
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GTImage Amulet DCL+ DRFIDHSNet MSRNet MST UCFNLDF RFCN SRM WSS Our

Figure 2: Examples of saliency detection results produced by our approach and the compared state-
of-the-art methods. "GT" represents ground truth. Note that our approach is able to draw attention
to thin and small structure (e.g. the flag pole). The results show that our approach is superior to the
state-of-the-art method.

regions using few receptive field. In our deep pyramid neural network, we use five lev-
els of holistic features that have different receptive fields to detect multi-scale salient
regions from images. Meanwhile, the multi-level deep pyramid hierarchical archi-
tecture in our network can effectively extract and fuse the saliency information from
every abstraction level, i.e. high-level features can locate salient region and low-level
features can keep more spatial detailed information. Concatenating different levels
feature will produce more precisely saliency map (see Figure 1).

2. The well-designed architecture of our network is able to perceive the accurate loca-
tions of salient objects, without the need to extract image features in the very high-
level scale. It can overcome the side effect commonly existing in the previous studies.
The side effect comes from that previously very deep networks always applied to ex-
tract the contextual information to localize salient objects. The very deep networks
will largely decrease the resolution of feature maps at high level (commonly due to
pooling), and further lead to missing of detailed information within these high-level
features. The missing of detailed information will also introduce noises in the subse-
quent upsampling of the high-level feature maps. Thus, we design a holistic and pyra-
mid network with multiple dense blocks with dilated convolution for simultaneously
preserving the detailed information and capturing sufficient semantic information.

3. We propose an effective training scheme (i.e. deep supervision using multiple losses
in every level) in our deep pyramid architecture, which can overcome the gradient van-
ishing and over-fitting problem by construct the direct feedback to every convolution
layer from the ground truth. Every dilated convolution layer applied in our network
can directly feed the information to the output of the corresponding dense block, which
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further feed the output to the top-down pathway. Owing to the multiple losses in every
level, every dilated convolution layer can directly receive the gradient feedback from
the loss function. This can ensure that the gradient values at every dilated convolu-
tion level in the training process will not be vanished and thus handle the over-fitting
problem. This is another important reason that our network can obtain the state-of-art
performance of salient object detection, without the need of pretraining on the large
dataset (such as ImageNet) like the previous studies.

4. We validated the proposed network architecture on a large range of data sets (six
benchmarks). The results demonstrated the effectiveness of this architecture and the
superiority to eleven state-of-the-art approaches in the saliency detection task.

2 Methodology
Our architecture can be divided into two parts: bottom-up pathway and top-down pathway.
The network architecture is illustrated in Figure 1. The bottom-up pathway aims to extract
the low-level and high-level saliency features via the multi-level and pyramid hierarchical
structure (see Section 2.1). The top-down pathway intends to recover the high-resolution
saliency maps at different semantic degrees by the feature fusion (see Section 2.2). The re-
sulting network thus contains multiple bottom-up and top-down pathway pairs for low-level
and high-level feature extraction and fusion. Then we propose a loss function considering
three aspects, pixel-level similarity, spatial Euclidean distance and overlapping degree, for
comparing the various-level saliency maps with the ground truth. Section 2.3 presents the
formulation of the loss function and the network details in the training and implementation.

2.1 Bottom-Up Pathway
We propose a cascade structure with five abstraction levels in the bottom-up pathway. The
main component of every level is a block with dilated densely-connected convolutional net-
work (referred as to dilated dense block, DDB), inspired by DenseNet [7]. In contrast to
DenseNet, our DDB can enlarge the empirical receptive field, which is the much smaller
than the theoretical one in both low-level and high-level layers of DenseNet [32]. It also
preserves the resolution of the feature maps, and thus feasible to transfer the feature maps to
downstream applications that require spatial detailed information. The input feature maps of
all levels except Level 2 and 3 is propagated to the DDB after a convolution layer. In Level 2
and 3, a pooling operator is between the convolution layer and DDB. The channel numbers
of output feature maps for all levels are 160, 224, 256, 272, 280, respectively. Besides be
the input of the next level, the output feature map of the ith level is convolved by a layer
network for producing the highly abstract feature map with 16 channels (denoted by mi) in
the corresponding semantic degree. In the last level, we apply the pyramid pooling module
(PPM) [32] to extract the hierarchical global contextual information from m5, for collecting
global context information of the salient object in the largest receptive field of our network.
Totally four scales in the pyramid structure are used in the PPM (1× 1, 2× 2, 3× 3 and
6×6). The output of PPM is a feature map with 4 channels (denoted by m6).

A DDB contains K dilated convolutional layers with dense connectivity. The forward
model of the the kth layer in the DDB can be formulated as

xk = H(y1, ...,yk−1), yk = D(xk) (1)
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where xk and yk are the input and ouput of the kth layer, respectively. The function H(·) is
the concatenation of the inputs of the preceding k−1 layers. The function D(·) is the dilated
convolution:

yk(i, j) = ∑
u

∑
v

xk(d×u,d× v) ·g(i−u, j− v) (2)

where yk(i, j) is the value of the feature map yk at (i, j), g is the dilated convolutional kernel.
u and v are the coordinate offsets in g. For Level 1 to Level 5, the values of the dilated rate
d are 1, 1, 2, 4 and 8, respectively.

2.2 Top-Down Pathway
The top-down pathway aims to perceive the saliency maps from the feature maps in different
abstraction levels. From the high level to low level, each of the feature maps (from m6 to
m1) is concatenated with that in the down level successively. The concatenation in the first
and second levels additionally requires the upsampling operator. All concatenated feature
maps are then separately upsampled after a convolution layer to produce the saliency maps
(denoted by S′1 ∼ S′5) with the size 256× 256. The value at each pixel within the saliency
maps shows the probability that this pixel belongs to the salient object. Then, S′1 ∼ S′5 are
concatenated and convolved with a kernel to obtain an extra saliency map integrating the
saliency information on all abstraction levels (denoted by S′0). For S′0 ∼ S′5, we apply the
softmax classifier to produce the corresponding salient object images (denoted by S0 ∼ S5)
in each level, where every pixel in S′0 ∼ S′5 are determined whether belonging to the salient
object. S0 ∼ S5 are compared with the ground truth in training process by the loss func-
tion (see Section 2.3). In the testing process,S0 shows the final result of the salient object
detection.

2.3 Training and Implementation Details
As discussed in the introduction part, we utilized multiple loss functions to supervise saliency
detector’s training procedure. Specifically, we add loss functions at all abstraction levels to
independently minimizing difference between Si and the ground truth, where i∈ {0, ...,5}.
The supervision loss functions introduce new computed gradients at every level. It is able to
propagate the feedback back to every convolution layer in all DDBs for minimizing gradient
vanishing problem. At the same time, the introduced multiple predictions compete each other
and thus they regularize each other to minimize over-fitting problem. This makes training
task becomes easier than without supervisions.

The proposed loss function L(S) for the salient object image S is defined by L(S) =
L1(S)+L2(S)+L3(S). L1 is the pixel-wise weighted cross-entropy [21]:

L1 =−
∑

W
i=1 ∑

H
j=1[λwGi, j log(Si, j)+(1−Gi, j) log(1−Si, j)]

W ×H
(3)

where G is ground truth. S and G have the same image size W ×H, Si, j and Gi, j are the
pixel value at (i, j) in S and G, respectively. w is a weight to give a balance between saliency
region and non-saliency region, defined by w = (WH−∑

W
i=1 ∑

H
j=1 Si, j)/(∑

W
i=1 ∑

H
j=1 Si, j). λ

is a parameter to control the influence of w. L2 is the modified mean absolute errors:

L2 =
W

∑
i=1

H

∑
j=1

ln
(

1+ e|Gi, j−Si, j |
)

(4)
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Amulet DCL+ DHSNet DRFI MSRNet MST NLDF RFCN SRM UCF WSS Our

DUT-TE
w-F 0.6533 0.6294 0.6991 0.3802 0.6911 0.4596 0.7007 0.5826 0.7146 0.5872 0.5503 0.7349

max F 0.7783 0.7856 0.8114 0.6497 0.7692 0.5936 0.8123 0.7840 0.8262 0.7710 0.7373 0.8277
MAE 0.0852 0.0819 0.0655 0.1549 0.0586 0.1630 0.0653 0.0900 0.0588 0.1174 0.1000 0.0610

ECSSD
w-F 0.8413 0.7863 0.8386 0.5191 0.8422 0.6034 0.8393 0.6988 0.8529 0.7885 0.7091 0.8642

max F 0.9146 0.9003 0.9066 0.7817 0.8889 0.7227 0.9050 0.8904 0.9172 0.9105 0.8556 0.9169
MAE 0.0592 0.0679 0.0588 0.1704 0.0546 0.1567 0.0626 0.1069 0.0544 0.0778 0.1036 0.0494

HKU-IS
w-F 0.8128 0.7687 0.8140 0.5063 0.8468 0.5865 0.8384 0.6803 0.8353 0.7504 0.7079 0.8496

max F 0.8954 0.8928 0.8905 0.7771 0.8917 0.7042 0.9020 0.8926 0.9058 0.8858 0.8587 0.9071
MAE 0.0521 0.0635 0.0524 0.1446 0.0400 0.1389 0.0477 0.0889 0.0459 0.0740 0.0792 0.0420

PASCALS
w-F 0.7547 0.7038 0.7105 0.4560 0.7521 0.5540 0.7268 0.6461 0.7445 0.7125 0.6132 0.7486

max F 0.8390 0.8166 0.8309 0.6936 0.8404 0.6610 0.8319 0.8350 0.8482 0.8276 0.7807 0.8377
MAE 0.0993 0.1160 0.0960 0.2112 0.0778 0.1944 0.1007 0.1337 0.0868 0.1274 0.1416 0.0933

SED1
w-F 0.8599 0.7768 0.8696 0.6421 0.8430 0.7359 0.7803 0.7163 0.8139 0.8363 0.7649 0.9027

max F 0.9219 0.9025 0.9223 0.8699 0.8892 0.8424 0.8885 0.8922 0.9048 0.9216 0.8960 0.9404
MAE 0.0602 0.0877 0.0528 0.1481 0.0618 0.1238 0.0909 0.1167 0.0753 0.0711 0.1002 0.0404

SED2
w-F 0.8308 0.6462 0.7583 0.6230 0.6549 0.6933 0.6829 0.6417 0.7022 0.7905 0.6830 0.8484

max F 0.9018 0.8755 0.8800 0.8354 0.7414 0.8001 0.8544 0.8362 0.8616 0.8838 0.8668 0.8985
MAE 0.0623 0.0925 0.0783 0.1346 0.0972 0.1228 0.1031 0.1132 0.0916 0.0750 0.0982 0.0569

SOD
w-F 0.6767 0.6625 0.6778 0.4294 0.6564 0.5003 0.7040 0.5756 0.6665 0.6382 0.5925 0.7117

max F 0.7970 0.8255 0.8219 0.6949 0.7793 0.6456 0.8364 0.7899 0.8376 0.7965 0.7740 0.8268
MAE 0.1414 0.1326 0.1272 0.2231 0.1225 0.2216 0.1244 0.1697 0.1255 0.1640 0.1683 0.1164

Table 1: Comparison between our results and results from 11 state-of-the-art methods on six bench-
mark data sets in terms of indices: w-F, max F and MAE. The best three scores are shown in red, green,
and blue colors, respectively. It is note that "SED1" and "SED2" are two subsets of a dataset "SED".
The results show that our approach is at the state of the art.

where the softplus function make this loss function easy to optimize. L3 is the generalized
Dice index [15]:

L3 =1−2
[(

w1

W

∑
i=1

H

∑
j=1

Si, jGi, j +w2

W

∑
i=1

H

∑
j=1

(1−Si, j)(1−Gi, j)
)

/(
w1

W

∑
i=1

H

∑
j=1

(Si, j +Gi, j)+w2

W

∑
i=1

H

∑
j=1

(2−Si, j−Gi, j)
)] (5)

where

w1 = (
W

∑
i=1

H

∑
j=1

Gi, j)
−1, w2 = (

W

∑
i=1

H

∑
j=1

(1−Gi, j))
−1 (6)

Because the difference of S0∼S5 with the ground truth are all considered in the network
training, the final loss function L for network training is defined by L= ∑

5
i=0 L(Si).

We implement the proposed approach by TensorFlow. In the network training, we use
stochastic gradient descent with the momentum 0.9 as the optimization algorithm. The
weight decay is 0.0001. The parameter λ is 0.1. The training procedures finished 40 epochs.
The learning rate is 0.002 at the initial time, 0.0002 after 25 epochs, and 0.00002 after 30
epochs. All input images are resized to 256×256 for training and testing.

3 Experiments and Results

3.1 Experiment Setup

Datasets. To validate the effectiveness of the proposed network architecture, we carry out
comprehensive experiments on six popular benchmark datasets: ECSSD (1000 images) [28],

Citation
Citation
{Liu, Yuan, Sun, Wang, Zheng, Tang, and Shum} 2011

Citation
Citation
{Yan, Xu, Shi, and Jia} 2013



8 29TH BRITISH MACHINE VISION CONFERENCE: BMVC2018

AMULET

DCL+

DHS

DRFI

MSRNet

MST

NLDF

RFCN

SRM

WSS

Our

UCF

DUT-TE ECSSD HKU-IS PASCAL-S

SED1 SED2 SOD

Figure 3: Comparison of precision-recall curves between our approach and the eleven state-of-the-art
methods. The x-axis and y-axis correspond to the precision and recall, respectively. The results show
that our approach is at the state of the art.

HKU-IS (4447 images) [10], PASCAL-S (850 images) [13], SOD (300 images) [18], DUT-
TE (5019 images) [24], SED [1]. SED has two subsets SED1 and SED2. SED1 has 100
images, and each image in SED1 has only one salient object. SED2 has 100 images, each
image in SED2 has two salient object. In addition, three public datasets are used for net-
work training, including DUT-TR (10553 images) [24], DUT-OMRON (5168 images) [29],
MSRA10K [2] (10000 images).
Evaluation Indices. We evaluated different approaches via comparing ground truth (G) to
the results (S). We utilized five evaluation indices: precision, recall, maximum F-measure,
weighted F-measure, and mean absolute error in our experiments.

The precision and recall are is defined by

Precision =
|S∩G|
|S|

, Recall =
|S∩G|
|G|

(7)

where the operator |A| is to calculate the pixel number within the image region A.
Based on the precision and recall, we formulated the F-measure (Fβ ) as

Fβ =
(1+β 2)×Precision×Recall

β 2×Precision+Recall
(8)

the parameter β gives a balance between the precision and recall, and set
√

0.3 as [26].
The maximum F-measure (max-F) is the maximum value of F-measure, and the weighted
F-measure (w-F) is proposed by [17] for handling the existing flaws of F-measure.

The mean absolute error (MAE) is defined by

MAE =
1

W ×H

W

∑
i=1

H

∑
j=1
|Si, j−Gi, j| (9)

where W and H are the width and height of the detected salient object image S.

3.2 Comparison with the State-of-the-art Methods
Our approach is compared with eleven state-of-the-art methods, including nine deep learning
based methods (Amulet [30], DCL+ [11], DHSNet [14], MSRNet [12], NLDF [16], RFCN
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Figure 4: Ablation analysis for comparing the variants of network architecture on the public databases
with our approach (red). The black dashed line shows the performance of our approach. "Without
dilated convolution" (gray) is to use the convolution kernel with dilated rate of 1 in the DDB, and add
two pooling layer after the convolution layer in Level 4 and Level 5, respectively. "Without PPM"
(dark orange) is to remove the PPM. "Four levels" to "One level" (gold, purple, magenta and maroon)
are to preserve the bottom-up and top-down pathways in different levels (from four levels to one level),
and remove the higher-level network structure. "With only one loss" (blue) is remove the loss functions
of S0 to S4, i.e. only reserve the loss function of S5. "Loss with only L1", "Loss with only L2", "Loss
with only L3" (dark green, green, turquoise) are to reserve the one of L1, L2 and L3 in the loss function
L(S), respectively, each of which remove other two components of the loss function. The results show
the effectiveness of the network architecture in our approach.

[25], SRM [26], UCF [31], and WSS [24]), and two conventional methods (DRFI [9] and
MST [22]) without using deep learning technology. For a fair comparison, we either re-
implemented these algorithms with recommended parameter settings or utilized the online
source codes provided by the authors.

Table 1 shows the comparison results on the six benchmark data sets. On these data sets,
95.2% indices placed our method on the top three (66.7% first, 9.5% second, 19.0% third).
Note that in terms of max-F, our approach ranks at third place except on the PASCAL-S. In
terms of MAE, our approach ranks at first place except DUT-TE and PASCAL-S. Overall,
our method performs well in these benchmark datasets.

Figure 2 illustrated eight examples of detection results generated from different methods.
The results show our approach is able to handle a large range of object’s scale changes.
Our method is able to draw attention to thin and small regions. This is essential for image
understanding and cognitive tasks to perceive small objects. In addition, it is note that our
saliency map stick clearly out from background. This may help image understanding tasks
make less biased decision from background disturbances.

Figure 3 shows comparison among different methods in terms of precision-recall curves.
It indicates that our approach is among the top contenders.
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3.3 Ablation Analysis
The ablation analysis aims to investigate the effectiveness of our network architecture. Figure
4 illustrate the comparison of different variants with our approach (red bars). The compari-
son with the gray bars shows the effectiveness of the dilated convolution by comparing the
original DenseNet structure, i.e. set the the dilated rate as 1 and add two pooling layers after
the convolution layers in Level 4 and Level 5, respectively. To analyze the relative contribu-
tions of different levels and the PPM of our approach, a comprehensive comparison of their
performance are evaluated on the state-of-the-art methods (see the dark orange, gold, purple,
magenta and maroon bars). Then we apply only one loss function to evaluate the difference
between S5 and the ground truth in the training process, i.e. to neglect the all lower-level
pathways and only keep Level 5. The results show that plugging in multiple loss functions at
the different levels can facilitate the performance improvement (see the blue bars). Finally,
we show that the combination of the three components in our loss function is effective be-
cause the performance will decrease when using one of the three components alone (see the
dark green, green and turquoise bars).

4 Discussion
The main superiority of our network is to design a backbone network for SOD task. The
backbone network has a special architecture to preserve the spatial detail information and
capture sufficient global semantic information. Most previous SOD methods are based on
the existing classification networks like VGG and ResNet. Their architectures suit for the
classification task but not suit for the SOD task, because the classification task only needs
that the network has enough effective receptive field to extract sufficient global semantic
information. In constrast, the SOD task requires that the network can preserve the spatial
detail information besides the effective receptive field to predict accurate the salient object
boundaries. In order to preserve the spatial detail information, our network includes two
schemes. First, we just use two pooling layers to decrease the resolution of feature maps
for storing more channels of feature maps in the limited GPU memory. In the other scheme,
we use the holistic deep feature maps from low to high level to infer the final saliency map.
For acquiring enough effective receptive field, we apply the dilated convolution with varied
dilated rate to obtain bigger receive field than traditional convolution, and employ PPM to
efficient capture the global semantic information. In addition, multiple arbitrary losses are
introduced to optimize our network in order to train from scratch.

5 Conclusion
In this paper, we develop a novel end-to-end holistic and deep pyramid neural network ap-
proach for saliency detection. The proposed multi-level pyramidal hierarchical architecture
facilitates to effectively extracting and fusing the high-level semantic information and low-
level fine-grain information to produce high-resolution saliency maps. Deep supervision
introduced extra gradients to void gradient vanishing problem. Multiple prediction tasks reg-
ularize each other to minimize over-fitting problem. This architecture allows us to train the
network from scratch. Extensive experimental results demonstrate the performance improve-
ment of our approach in the saliency detection task on six benchmark datasets comparing to
eleven state-of-the-art methods.
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