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Abstract

The Light Transport Matrix (LTM) is a model of the light ray propagation between a
projector and a camera. In case of LTM measurement, sparse estimations are often used.
They assume the linearity between the projector and camera intensities. Sparse estima-
tion requires multiple projector pixels to be irradiated together. Since multiple projector
pixels are irradiated, the camera captures both the direct and global illumination. When
the intensity of the illumination received by a camera pixel is higher than the threshold,
camera intensity is clipped to the threshold. The camera intensities can be saturated,
even if the LTM elements are not saturated, because of the global illumination. This sat-
uration breaks the assumption of sparse estimation and causes the estimated result to be
inaccurate. We propose a new sparse estimation algorithm “Saturation ADMM,” which
estimates the LTM under conditions in which camera images are saturated because of
global illumination. We used numerical simulation and real scene measurement experi-
ments to prove the ability of the proposed method to accurately estimate the LTM under
saturated conditions.

1 Introduction
Light transport refers to the behavior of light rays after they are emitted by the light sources
until they arrive at the optical sensors. In an active vision system, a projector acts as the light
source, and a camera acts as the optical sensor. A system consisting of a projector and a
camera is known as a Projector-Camera System and it can be considered as a fundamental
component of the active vision system. When the irradiation intensity of the projector and the
camera are linear, the light transport between the projector and the camera are described by
the Light Transport Matrix (LTM) [11, 15, 19, 20]. The LTM, which can describe all light re-
flection information, including inter-reflections and subsurface-scatterings for the projector-
camera system, is utilized for scene relighting [7, 8, 11, 15, 20], light path understanding
(direct/global illumination separation) [1, 9, 12, 13, 14], and 3D measurement [3, 5, 13, 14].

In general, the LTM is a huge matrix because the number of elements is given by the
number of combinations between the camera pixels and the projector pixels. Sen et al. [20]
proposed an efficient method for the acquisition of the LTM; however, the method cannot
measure the LTM efficiently in complex light transport scenes, for example, a scene in which
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Figure 1: Examples of the projection patterns and camera images. The LTM of the measure-
ment scene includes global illumination, which can saturate the camera pixel intensity for
these projection patterns, even if the LTM elements are not actually saturated. This saturation
nullifies the LTM assumption that the projector and the camera intensities are linear.

plastic bottles are randomly piled. Thus, various researchers have proposed exploiting the
sparseness of LTM by applying sparse sensing techniques to acquire the matrix [3, 8, 16, 17].
Because LTM is sparse in both the spatial domain and the wavelet domain [17], in some
studies sparse sensing was applied in the spatial domain [3, 8], whereas in others it was
applied in the wavelet domain [16, 17]. Thus, sparse estimation can be utilized to estimate
the LTM.

When the sparse sensing method is applied to estimate the LTM, we use some projection
patterns as a sensing matrix in the sparse sensing context. Then, the projector irradiates
these projection patterns to the measurement scene, and the camera captures reflected lights
from the scene as camera images. The camera images act as observed vectors in the sparse
sensing context. Finally, sparse sensing methods are used to estimate the LTM as a sparse
signal from the sensing matrix and the observed vectors. The sparse sensing method often
assumes the observation is given by a linear function; however, because of saturation (blown
out highlights) of the camera pixel intensity, the intensity relationship between the projector
and the camera can sometimes be nonlinear. This nonlinearity causes the sparse estimation
of the LTM to be inaccurate.

We show an example of a saturated condition in Fig. 1. The LTM element is actually
non-saturated; however, the camera image pixel intensity is saturated because of global illu-
mination. Global illumination originates from other projector pixels; thus, the more projector
pixels are irradiated, the more the possibility of saturation increases[18]. On the other hand,
sparse estimation requires us to irradiate some pixels together. These saturated camera im-
ages cannot satisfy the LTM assumption of linear intensities; therefore, sparse estimation
sometimes fails.

2 LTM Sparse Estimation Problem

This section first describes the projector-camera system in LTM. Because LTM is a very large
and sparse matrix, sparse sensing algorithms are applied to measure LTM [3, 8, 16, 17]. We
then introduce a formulation for LTM sparse sensing.
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2.1 Light Transport Matrix (LTM)

The LTM describes the light transport from the projector pixels to the camera pixels[11, 15,
19, 20]. A projection pattern and a camera image are considered to be vectors, respectively.
We define the projection pattern vector and camera image vector as lll and ccc, respectively. We
denote LTM as L. Here, the light transport is expressed as ccc = T lll . When we take some
camera image vectors ccck, which correspond to projection pattern vectors lllk, it can be written
as

C = T L. (1)

with a camera image matrix C =
[
ccc1 ccc2 · · · cccK

]
and a projection pattern matrix L =[

lll1 lll2 · · · lllK
]
, where K is the number of projection patterns and captured images. Once

we obtain LTM, we can generate a camera image that corresponds to any of the projection
patterns by performing easy matrix-vector multiplication. This usage of LTM is known as
scene relighting [11, 15, 20].

2.2 Estimation of LTM by Using Sparsity

The naïve way to obtain the LTM is to use 1-pixel projection [3, 5] (described in a study [6]
as the impulse response function). However, 1-pixel projection requires as many projection
patterns and captured images as the number of projector pixels. Therefore, previous stud-
ies [3, 8, 16, 17] proposed sparse estimation of the LTM. The fact that LTM has sparsity in
the spatial domain [3, 8] or the wavelet domain [16, 17] means that sparse estimation can
be utilized to estimate LTM. In this study we focused on the saturation of the camera pixel
intensities in the spatial domain; therefore, sparse estimation formulation in the following
discussion is considered to take place in the spatial domain.

Sparse estimation can be used to obtain a sparse vector as an underdetermined problem,
which allows the use of fewer observations than the number of dimensions of the estimation
vector. The `1 minimization (LASSO), which is widely used to solve the sparse estimation
problem in practice, is defined as

min
xxx

{
‖xxx‖1 +

1
2λ
‖yyy−Axxx‖2

2

}
, (2)

where λ > 0 is the weight of the `1 regularizer.
We denote the i-th row vector of C and T as ci and t i, respectively. Then, Equation (1)

can be separated into ci = t iL, and finally, it is written as

c>i = L>t>i (3)

by taking the transpose of both sides. The `1 minimization can be applied to this form with
xxx = t>i , yyy = c>i , and AAA = L>; therefore, we can estimate the LTM by solving

min
t i

{∥∥∥l
>
i

∥∥∥
1
+

1
2λ

∥∥∥c>i −L>t>i
∥∥∥2

2

}
(4)

for all rows.
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Figure 2: Formulation of the sparse estimation under saturated conditions (Equation (6)).
The saturated pixels in the camera image matrix C are shown in red. Then, the Clipping
Function is applied for observation as a saturated observation model. This function can be
embedded in Equation (4). The saturated pixels differentiate between the linear (C = T L)
and saturated observation models (C =CY (T L))

2.3 Saturated Condition Problem
In practice, saturation of the intensity of a camera image pixel depends on the measurement
scene and projection patterns (see Fig. 2). The saturation nullifies the linear relationship
between projector intensities and camera intensities. When the intensity of a camera pixel is
saturated, the intensity is clipped to the highest intensity. We define the Clipping Function
CY (y) as

CY (y) =

{
y (y≤ Y )

Y (y > Y )
, (5)

and we also define CY (·) as an application of the Clipping Function to each element of a
vector or a matrix. Here, the camera image vector is written as c>i =CY

(
L>t>i

)
instead of

Equation (3), where Y is the clipping intensity. Therefore, Equation (4) should become

min
t i

{∥∥∥t>i
∥∥∥

1
+

1
2λ

∥∥∥c>i −CY

(
L>t>i

)∥∥∥2

2

}
(6)

under saturated conditions.

3 Saturation ADMM
In this section, we propose a new sparse estimation method “Saturation ADMM,” which can
solve Equation (6). The Proposed method is based on an application of ADMM (Alternating
Direction Method of Multipliers) for `1 minimization [2]. ADMM can be utilized as an
approximate method to solve the `1 minimization problem. ADMM and Saturation ADMM
methods are outlined in Fig. 3.
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min
𝒙𝒙,𝒛𝒛

𝒛𝒛 1 +
1
2𝜆𝜆

𝒚𝒚 − 𝐴𝐴𝒙𝒙 2 s. t. 𝒙𝒙 − 𝒛𝒛 = 𝟎𝟎 min
𝒖𝒖,𝒙𝒙,𝒛𝒛

𝒛𝒛 1 +
1
2𝜆𝜆

𝒚𝒚 − 𝐶𝐶𝑌𝑌 𝒖𝒖 2 s. t. � 𝒙𝒙 − 𝒛𝒛 = 𝟎𝟎
𝐴𝐴𝒙𝒙 − 𝒖𝒖 = 𝟎𝟎

𝒛𝒛 = 𝒙𝒙

min
𝒙𝒙

𝒙𝒙 1 +
1
2𝜆𝜆

𝒚𝒚 − 𝐴𝐴𝒙𝒙 2 min
𝒙𝒙
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Saturation ADMM Objective Function

→Solved by iterative method →Solved by iterative method

Introduce a constraint Introduce constraints

𝐶𝐶𝑌𝑌: Clipping Function

⋅ 1,𝐶𝐶𝑦𝑦

Figure 3: Outline of Saturation ADMM. LASSO (Equation (2)) includes a non-
differentiable function ‖xxx‖1. Under saturated conditions, the sparse estimation problem
includes two non-differentiable functions ‖xxx‖1 and CY (Axxx). We provide an updating rule
for the iterative solution of this problem

3.1 Brief Introduction of ADMM
We first briefly introduce an ADMM application for the `1 minimization problem. The key
idea of ADMM is to introduce a new variable zzz with a constraint xxx−zzz = 000, then Equation (2)
is written as

min
xxx,zzz

{
‖zzz‖1 +

1
2λ
‖yyy−Axxx‖2

2

}
s.t. xxx− zzz = 000. (7)

ADMM utilizes an augmented Lagrangian algorithm for Equation (7). This algorithm intro-
duces a Lagrange multiplier hhh and a penalty coefficient µ > 0. Here, the objective function
is given by

L(xxx,zzz;hhh) = ‖zzz‖1 +
1

2λ
‖yyy−Axxx‖2

2 +hhh> (xxx− zzz)+
µ

2
‖xxx− zzz‖2

2 . (8)

In this function, ADMM updates hhh, xxx, and zzz, alternately.
The Lagrange multiplier hhh is updated by

hhh← hhh+µ (xxx− zzz) . (9)

Updating rule of xxx is given in the quadratic form, which is solved as

xxx←
(

1
λ

A>A+µI
)†( 1

λ
A>yyy+µzzz−hhh

)
, (10)

where † is the pseudo-inverse, and I is the identity matrix. Updating rule of zzz is given by

argmin
zzz

{
‖zzz‖1 +

µ

2

∥∥∥∥xxx− zzz+
1
µ

hhh
∥∥∥∥2

2

}
= ∑

i
argmin

zi

{
|zi|+

µ

2

(
xi− zi +

1
µ

hi

)2
}
, (11)

where zi denotes the i-th element of zzz. By this deformation, Equation (11) can be solved
element-wise with condition analysis. We denote the i-th element of xxx and hhh as xi and hi,
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respectively. Here, the Soft Thresholding Function Sλ (y) is defined by

Sλ (q) =


q−λ (λ ≤ x)

0 (−λ ≤ q < λ )

q+λ (q≤−λ )

, (12)

and Sλ (qqq) is also defined as applying the Soft Thresholding Function for each element of qqq.
Then, zzz is given by

zzz← S 1
µ

(
xxx+

1
µ

hhh
)
. (13)

3.2 Saturation ADMM Algorithm

When estimating the LTM, we need to solve Equation (6) instead of Equation (2) because
the camera pixel intensities are saturated in practice. We assume the observed value of yi is
smaller than Y (yi ≤ Y ), where yi denotes the i-th element of yyy. We introduce a new variable
uuu and a new constraint Axxx−uuu = 000; then the objective function is expressed as

min
uuu,xxx,zzz

{
‖zzz‖1 +

1
2λ
‖yyy−CY (uuu)‖2

2

}
s.t.

{
xxx− zzz = 000
AAAxxx−uuu = 000

. (14)

We define a new Lagrange multiplier ggg and penalty coefficient ν > 0. Combining the new
constraint, Lagrange multiplier, and penalty coefficient with Equation (8), the new objective
function is

L(uuu,xxx,zzz;hhh,ggg) (15)

=‖zzz‖1 +
1

2λ
‖yyy−CY (uuu)‖2

2 +hhh> (xxx− zzz)+
µ

2
‖xxx− zzz‖2

2 +ggg> (Axxx−uuu)+
ν

2
‖Axxx−uuu‖2

2 . (16)

We update hhh, ggg, uuu, xxx, and zzz, alternately.
According to ADMM, the respective Lagrange multipliers hhh, ggg are updated by hhh ←

hhh+ µ (xxx− zzz) , ggg← ggg+ ν (Axxx−uuu) , respectively. When xxx, zzz, or uuu is updated, the other
variables are considered to remain constant.

In the step in which xxx is updated, xxx is still in the quadratic form; thus, it can be solved as

xxx←
(

νA>A+µI
)†(

A> (νuuu−ggg)+µzzz−hhh
)
. (17)

In the step in which zzz is updated, zzz is updated by the same equation used in ADMM; thus,
the updating rule is given by Equation (13).

In the step in which uuu is updated, we define a vector vvv as vvv = Axxx+ 1
ν

ggg ; then, the rule to
update uuu is written as

argmin
uuu

{
‖yyy−CY (uuu)‖2

2 +λν ‖vvv−uuu‖2
2

}
= ∑

i

{
argmin

ui
(yi−CY (ui))

2 +λν (vi−ui)
2
}
,

(18)



CHIBA, HASHIMOTO: SPARSE ESTIMATION OF LTM UNDER SATURATED CONDITION 7

10 20 30 40 50 60 70 80 90 100

The Number of Observations

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

R
M

S
E

ROMP

ADMM

Saturation ADMM

(a) Non-saturated condition

10 20 30 40 50 60 70 80 90 100

The number of Observations

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
M

S
E

ROMP

ADMM

Saturation ADMM
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Figure 4: Root Mean Square Error (RMSE) of sparse estimation in numerical simulation.
Results of (a) non-saturated and (b) saturated condition. The problem includes random val-
ues; thus, the simulation was iterated 100 times. The figure shows the mean and standard
deviation values of the RMSE.

where ui and vi are the i-th element of uuu and the i-th element of vvv, respectively. According
to Equation (18), ui is calculated element-wise with condition analysis as

argmin
ui

{
(yi−CY (ui))

2 +λν (vi−ui)
2
}
=


yi +λνvi

1+λν

(
vi ≤ yi +

√
1+

1
λν

(Y − yi)

)

vi

(
vi > yi +

√
1+

1
λν

(Y − yi)

)
(19)

Here, we define a function D(x;θ ,ξ ) as

D(x;θ ,ξ ) =

{
ξ (x≤ θ)

x (x > θ)
, (20)

and we consider the same extension of D(xi;θi,ξi) as the Soft Thresholding Function and
the Clipping Function for a vector, then Equation (19) is given by

uuu←D

(
vvv;yyy+

√
1+

1
λν

(Y 111− yyy) ,
1

1+λν
yyy+

λν

1+λν
vvv

)
, (21)

where 111 is a vector of which all elements are 1.

4 Experiment
In this experiment section, we prove that the proposed method can be applied to the sparse
estimation of LTM by numerical simulation, comparing estimation errors, and scene relight-
ing.

4.1 Numerical Simulation
We first prove that Saturation ADMM can solve both of the `1 minimization problem and sat-
urated problem by numerical simulations. We set the number of dimensions of the estimation



8 CHIBA, HASHIMOTO: SPARSE ESTIMATION OF LTM UNDER SATURATED CONDITION

(a) L Objects (b) Gripper (c) Metallic Objects

Figure 5: Measurement scenes. (a) L-shaped white objects are randomly located in the
scene. (b) A robot hand gripper is located on a sheet of paper. (c) Metallic industrial objects
are randomly located on a sheet of paper.

(a) L Objects (b) Gripper (c) Metallic Objects

Figure 6: RMSE between 1-pixel projection responses and estimated LTMs. The 1-pixel
projection responses are captured only for the 256 pixels out of a total of 16,384 projector
pixels as uniformly sampled points, because measuring the 1-pixel projection responses for
all projector pixels is excessively time consuming.

sparse vector xxx as 100, and it has 10[%] non-zero elements given by uniform distribution in
[0,1]. We also set the observation matrix A as random values by uniform distribution in [0,1].
Under non-saturation conditions, the observed vector is calculated by yyy = Axxx, and under sat-
urated conditions, we clip the observed vector as yyy = C3(Axxx). The number of observations
(dimension of yyy) is controlled from 10 to 100 within increments of 10. We compared our
results with those obtained with ROMP (Regularized Orthogonal Matching Pursuit) [10],
which is used in studies [7, 8], and ADMM which is used in studies [3].

The results of the numerical simulation are shown in Fig. 4, in which the RMSE between
the estimated xxx and the ground truth. Under non-saturated conditions, ADMM and Saturation
ADMM outperform ROMP. The curves of the RMSE of ADMM and Saturation ADMM are
almost the same. In addition, Saturated ADMM can estimate under saturated conditions. On
the other hand, the RMSE of ADMM does not converge under saturated conditions, because
ADMM assumes yyy = Axxx, but the observation is saturated under this condition.

4.2 Experiments in real scenes
Second, we attempted to measure the LTM on four real scenes, as shown in Fig. 5. Our
projector-camera system is fixed on top, and they are calibrated to be over-wrap their pro-
jection area and capture area by using homography matrices. We set the resolution of both
the projector and the camera as 128×128. The projection patterns are the Bernoulli binary
patterns that are used in a study [17]. We apply ROMP, ADMM, and Saturated ADMM
to estimate the LTM. We also utilize the multi-scale estimation technique [4] to accelerate
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ADMM
(Multi-Scale)

Saturation ADMM
(Multi-Scale)

Ground Truth ROMP ROMP
(Multi-Scale)

Gripper

L Objects

Metallic
Objects

Figure 7: Simulated camera images via scene relighting (BMVC Logo, on L Objects, Grip-
per, and Metallic Objects). Ground Truth is a camera image with the pattern projection, and
the others are scene relighting results by LTMs.

the computation and obtain high-resolution results. The ground truth is measured by us-
ing 1-pixel projection. We sampled 256 points uniformly out of a total of 16,384 projector
pixels.

The results are shown in Fig. 6. ROMP and ROMP with multi-scale converges to a higher
RMSE than the other methods, in the all scenes. With a small number of projections/captures
(< 64), ADMM with Multi-Scale obtains the lowest RMSE; however, ADMM with Multi-
Scale RMSE converges to a higher RMSE in Saturation ADMM with Multi-Scale. There-
fore, for real scene sensing, the proposed method ultimately estimates the LTM with the
lowest RMSE.

4.3 Relighting
We attempted to utilize the estimated LTMs to perform scene relighting [8, 20]. We used the
BMVC Logo image as a projection pattern for scene relighting. The relighting results are
shown in Fig. 7. ADMM with Multi-Scale always displays a grid on the relighted camera
images. These grids occur because nonlinear response (mainly saturation) sometimes occurs
on the grids. Saturation ADMM estimates LTM well under these nonlinear responses.

5 Conclusion
In this paper, we proposed a new LTM estimation method. We focused on the saturation
of camera image pixels, which often occurs in real sensing and affects sparse estimation.
We then formulated the saturation in the `1 minimization problem, and proposed a method
named “Saturation ADMM,” which is based on ADMM. Finally, we applied the proposed
method for LTM estimation. The numerical simulation experiment showed that Saturation
ADMM can converge to a lower RMSE than the other sparse estimation methods under
saturated conditions. In the real scenes, Saturation ADMM performed better than the others.
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