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Abstract

Blind image quality assessment (BIQA), which is the problem of predicting the per-
ceptual quality of an image with unknown distortion information and no access to the
reference image, has been a longstanding task in the low-level computer vision com-
munity. In recent years, various methods have been proposed to leverage the powerful
representation ability of deep neural networks to solve the problem. However, the ex-
treme lack of labeled training samples makes it is still a challenge for deep BIQA models
to make robust predictions.

In this work, we propose a novel method to address the problem by simplifying the
solution space in a self-supervised manner. This idea is achieved by generating multiple
quality hypotheses, and re-filtering subsequently with an auxiliary decision mechanism.
The two-stage work is done through a new convolutional network architecture with two
interacting coupled sub-networks, i.e, a multiple hypotheses network (MH-Net) and an
election network (E-Net). Our approach achieves the state-of-the-art performance on the
well-known benchmarks with real-time and training from scratch properties. Moreover,
we demonstrate the effectiveness and scalability of our method with insightful analyses.

1 Introduction
In this visual-informational explosion era, images have become an important medium of
communication in our daily life. While, the generation processes of images are always in
company with quality degradation1, which greatly affects user visual experience in a neg-
ative aspect. Also, the quality degradation problem would arise numerous difficulties for
image/video processing and computer visual applications, like image super-resolution, im-
age restoration, and person re-identification. Thus, the ability to automatically monitor the
perceptual quality of images in a way that coincides with human judgment is of fundamental
importance in many fields.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1An image could be distorted in any stages in the whole process of its lifecycle from acquisition to storage, and
therefore will suffer quality degradation from diverse distortions, like various blur, compression artifact, transmis-
sion errors, etc.
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Figure 1: An illustration of the difference between our approach and traditional deep network. Sup-
pose that the raw train data can be split into m subsets (we take m = 3 for example) according to
their distribution in high-dimensional space. Traditional deep network treats the train data and its
corresponding solution space holistically, which leads to difficulty of optimization. In contrast, our
approach divides the train data distribution automatically and thus simplify the corresponding solution
space (hypothesis space) by m split branches. In M, parameters are optimized by all train data, while
in B-1 to B-3, parameters are optimized by automatically divided subsets respectively. In addition, a
coupled auxiliary network is proposed to select the final prediction given m candidates. (Best viewed
in color)

In the literature of image quality assessment (IQA), many full-reference (FR) methods,
such as SSIM [20], FSIM [23] and DeepQA [7], have achieved excellent results with the prior
of reference images2 to capture the difference information. However, the impossible process
to obtain ideal reference information in most cases limits the feasibility of FR methods in
practical applications. In contrast, Blind image quality assessment (BIQA), which takes
only the distorted image to be evaluated as input without any additional information, is more
realistic and therefore receives substantial attention in recent years. Nevertheless, BIQA
faces unique challenges.

One of the challenges is that BIQA is highly ill-posed for the absence of reference infor-
mation. In addition, the ground-truth quality values are labeled by human based on visual
perception on distorted images, which are subjective and related to image context and struc-
ture. Thus, the ill-posed definition forces BIQA methods to possess more powerful feature
representation ability to make robust predictions.

A straightforward way to ease the ill-posed nature of BIQA is to utilize the powerful
feature representation ability of deep neural networks (DNNs). However, followed by the
second and the critical challenge, the insufficient training data3 limits the effectiveness of
DNNs. Recent methods, e.g., [5], [1] and [8], attempt to address this problem through
exploiting various multi-task and data augmentation strategies with extra annotated rank-

2The original high-resolution image without any distortion is referred to reference image.
3The subjective scoring of images quality is very expensive and cumbersome. Thus, even the largest subject-

rated IQA database (TID2013) only includes 3000 annotations.
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ing, proxy quality scores, or distortion information sophisticatedly, which are unavailable in
practical BIQA applications, and hence lack of feasibility for modeling unknown distortion
types.

Instead, might there be a way to learn the robust representation with less effort? If the
solution space could be simplified, the existing training samples may become sufficient to
the problem. Intuitively, we can simplify the solution space by dividing the dataset into sub-
datasets and extracting features from several deep networks. However, dividing the dataset
artificially will introduce large bias and therefore may lead the results into sub-optimal val-
ues. Besides, the overfitting problem will be aggravated due to smaller sub-datasets.

Motivated by these observations, we present a novel deep neural network architecture,
named Self-supervised Deep Multiple Choice Learning Network (SDMCL-NET), which
consists of two closely coupled sub-networks, to address above issues. The MH-Net di-
vides the input dataset in an adaptive manner based on their underlying similarity to generate
multiple competitive hypotheses, and addresses the overfitting problem with its main body
weight-sharing and non-interactive branches learning architecture. The E-Net, trained in a
self-supervised manner, functions as a “filter” to determine the final hypothesis with the best
quality estimation, which is generated by one of these MN-Net originated branches. Com-
paring with the existing approaches, the proposed framework has features that require neither
any designed availability of prior information nor extra data for the sufficiency of BIQA hy-
pothesis space description. Figure. 1 illustrates the key idea of the proposed network and its
difference with a traditional deep network.

The main contributions are three folds:

1) We propose a multiple hypotheses network (MH-Net) for BIQA, which exploits inherent
similarity and diversity in training data as a guidance for dividing the dataset into sev-
eral subsets automatically, to simplify the hypothesis space (i.e, solution space) without
overfitting.

2) We introduce a coupled election network (E-Net) to help MH-Net make a final decision
among several candidates. A novel self-supervised manner is proposed to train E-Net
with pseudo-labels obtained from the existing data without any further annotation.

3) A comprehensive evaluation of our methods on four challenging datasets shows the su-
perior performance over most of state-of-the-art methods. Also, The light-weight CNN-
based architecture makes our framework an efficient real-time solution.

2 Related Work
Blind Image Quality Assessment. In recent years, advances in Deep Neural Networks have
motivated researchers to develop models that could, on the one hand, utilize its great feature
representation property, and on the other hand, avoid the obstacle of its optimization caused
by limited training samples, to solve BIQA problem. For instance, Kang et al. propose a
shallow CNN model, trained on patch-wise inputs to perform BIQA [5]. This approach is
refined to the multi-task CNN [6], where the neural network learns both distortion type and
quality scores simultaneously. According to a specific dataset, Ma et al. propose generating
a mass of ranked image pairs to train the deep BIQA model [11]. Kim et al. follow the
FR-IQA behavior using the local quality maps predicted by state-of-the-art FR-method as
intermediate targets for conventional neural networks to help solve the task[8].
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Multiple Outputs Structured Prediction. Existing works on learning multiple outputs
prediction architecture from a single model mainly focus on probabilistic models, e.g., [3]
and [4]. These two works pose the multi-output prediction as a “Multiple Choice Learning”
(MCL) paradigm. MCL explicitly minimizes oracle loss over the outputs of an ensemble,
makes the outputs explain different but relevant parts of the data. Stefan Lee et al. extend
MCL to the deep architecture over an ensemble of deep networks to solve image classifica-
tion task [10]. However, since these three works all select final prediction with respect to
an Oracle, it is hard to directly apply them to BIQA, or any task that required to be self-
contained. Thus, we transfer deep multi-choice learning into BIQA task on a general deep
architecture with developing the architecture into a self-supervised prediction mechanism.
Instead of interacting with Oracle, an auxiliary network (i.e. E-Net) is proposed in this work
to select the final regression result automatically.
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Figure 2: The architecture of our proposed SDMCL-NET. On the training process, MH-Net with
m branches is trained end-to-end. Then, MH-Net is able to give m predictions for each image patch.
These m predictions along with its ground truth label are used to generate the ground truth class label
to facilitate the training of E-Net (white dotted arrow). In other words, the E-Net training is supervised
by the trained MH-Net. On the testing process, each image patch will pass simultaneously through
MH-Net and E-Net, and E-Net will make the final decision from the m candidates given by MH-Net
(black solid arrow). (Best viewed in color)

3 The Proposed Algorithm
In this section, we describe the proposed blind image quality assessment system that learns
from both annotated data with plain supervised strategy and pseudo-labeled information with
self-supervised manner. As illustrate in Figure. 2, the SDMCL-Net architecture comprises
two interacting coupled sub-networks (i.e, MH-Net and E-Net) to interactively and collec-
tively provide a precise quality assessment. We detail the modules and the training proce-
dures as follows.

3.1 Network Architecture
Multiple Hypotheses Network. The multiple hypothesis network (MH-Net) is designed to
learn multiple potential values of the perceptual quality for an input image.

Given an input distorted image x, the ordinary practice for most previous methods is to
forward the x to a feature extraction module to obtain a feature representation that encodes
distortion information of the input image, and then infer the perceptual score s with a re-
gression module. Specifically, under the framework of DNNs, the common process is to use
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a stack of fully-connected (FC) layers over the feature maps from previous convolutional
layers, which could be formulated as:

s =DNN (x;θ) = r( f (x;θ f );θr), (1)

where θ f and θr denotes the parameters of convolutional layers and FC layers respectively.
However, as we discussed in the introduction, the common single regression module will

easily lead to overfitting problem, due to the mismatch of training data and model capacity.
One feasible way to ease this problem is to utilize MCL to partition the hypothesis space.
Many works on other research fields (e.g, [26] [17] and [10]) usually choose model-level
structure (i.e, diversity between member models as a means to improve performance or com-
bine ensemble members under a joint loss) to achieve the effects of MCL. While, this kind
of structure will aggravate the over-fitting problem to deep BIQA due to incorporating large
magnitude of parameters. Thus, we adopt branch-level ensemble strategy to make multiple
predictions, which applies ensemble strategy in FC stage by forking after the feature vector
of last convolutional layer into multiple branches of FC layers, namely branch-k (k ranges
from 1 to m). Such a structure is more effective than normal CNN ensemble, since the pa-
rameters will be decreased thanks to sharing weights of previous feature extraction layers.
Therefore, Eq. 1 can be modified to:

~s = [s1, · · · ,sm]
> = {rk( f (x;θ f );θ

k
r )}m

k=1, (2)

where rk(·) denotes the mapping function of k-th branch,~s is a vector with sk represented
as the predicted score of k-th branch. The proposed MH-Net ensures each branch with
the properties of similarity and diversity, on account of input vector sharing but individual
parameters learning, and no interactive connection.

Election Network. To obtain the final prediction based on m candidates, a selection
mechanism is required to be incorporated into the framework. Simply applying voting meth-
ods like averaging, minimization or maximization could not satisfy the complicated hypoth-
esis space. To this end, a novel auxiliary mechanism is proposed to decide the best solution
among the multiple hypotheses.

Since the MH-Net separates the solution space into several subspaces, the auxiliary
mechanism is expected to determine which subspace is more likely to contain the ground-
truth solution, and select the prediction in that subspace to be the final prediction score, given
a distorted image and its m hypotheses. Thus, E-Net is trained to discriminate the best qual-
ity estimation, given the input image and the hypotheses of it from MH-Net, which could be
represented as:

ŷ = E(x,~s;ω) = E(x,{rk( f (x;θ f );θ
k
r )}m

k=1;ω), (3)

where E denotes the mapping function of E-Net, ω denotes the corresponding param-
eters. The formula indicates the precision of the final prediction is highly related to the
classification accuracy of E-Net. Meanwhile, as we mentioned in the related work, BIQA
should be a self-contained model without extra human intervention and annotation. Thus,
seeking a learning strategy that could satisfy maintaining the performance of E-Net while
only leveraging existing data is crucial to our framework.

To solve this problem, we propose to learn E-Net in a self-supervised manner. For E-Net,
rather than predicting labels extra annotated by humans, it predicts pseudo-labels computed
from the existing data itself. We will discuss the self-supervised manner in detail in Section
3.2.
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3.2 Training Procedure
Learning for MH-Net. The SGD winner-take-all learning scheme could be used to opti-
mize the MH-Net with batch updates in stochastic gradient descent. Given a training set of
distorted image and ground truth quality score pairs B = {(xi,yi)|xi ∈ X ,yi ∈ Y}, our goal is
to learn a functionM : X → Y m which maps each input to m outputs. The loss over a batch
B is

LMN(B) =
n

∑
i=1

min l(yi,M(xi)) =
n

∑
i=1

min
k∈[1,··· ,m]

l(yi,rk( f (xi))), (4)

where n represents the batch size. Thus, the objective function can be written as

argmin
rk, f ,wi,k

n

∑
i=1

m

∑
k=1

wi,kl(yi,rk(( f (xi)))

s.t. ∑
m
k=1 wi,k = 1, wi,k ∈ {0,1} (5)

We adopt L1 loss as the loss function in our implementation. The SGD winner-take-all learn-
ing scheme ensures only one (the prediction of which is closest to the ground truth) of the
branches is optimized each iteration, and the other’s backward gradient are blocked. Conse-
quently, at least one of the branches will produce a precise prediction and larger hypothesis
space will be covered due to the competition among m branches.

During the experiments, we found only utilizing the SGD winner-take-all strategy will
easily lead the optimization process to an extreme situation. Thus, a constraint is added to the
initialization period. A guidance mechanism is further introduced to help increase diversity
among the branches. Thus, MH-Net could divide the hypothesis space in a better way.

The constraint to Eq.5 is formulated as:
argmin
rk, f ,wi,k

n

∑
i=1

m

∑
k=1

wi,kl(yi,rk(( f (xi))) if (lmin− lmin−1)> γ

argmin
rk, f ,wi,k

n

∑
i=1

m

∑
k=1

random[wi,k]l(yi,rk( f (xi))) otherwise.
(6)

where ∑
m
k=1 wi,k = 1. According to Eq.6, the constraints on the parameter initializa-

tion stage are used for preventing extreme local optima. Specifically, when the difference
between the minimum loss and subminimum loss among the branches is greater than the
threshold, the parameter updating of the iteration is considered as "safe", and therefore fol-
lows winner-take-all strategy to update. Otherwise, a random initialization is introduced to
enforce the network only updating parameters in some of the branches randomly.

As for the guidance mechanism, we use the network parameters which perform well
in one dataset to initialize the bad one. The reason behind this operation is that, on the
base of the experimental phenomena, we believe the distortion information and the corre-
lation of different distortion types/levels in high-dimensional space have been learned from
the successful training dataset. Although the definition of distortion information and labels
vary from different IQA datasets, the relative perceptual differences are similar. Therefore,
knowledge of the relative perceptual differences learned from the successful training could
be transferred to the training of other datasets4.

4For datasets with different label definitions, DMOS value could be mapped to the MOS range by a logistic
function, and the introduced bias will be diluted by the network.
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Learning for E-Net In the training phase, the training set of E-Net, denoted as D, con-
sists of the distorted image, corresponding m hypotheses and the best quality estimation
r∗( f ∗(xi)) from MH-Net as triple: D = {((xi,r j( f (xi)),k∗)|xi ∈ X ,r j( f (xi)) ∈M}, where
k∗ is the index of optimal branch. That is, the pseudo label to E-Net is corresponding best
quality estimation produced by MH-Net. We adopt softmax loss to optimize the E-Net:

LE(D) = argmin
ω

n

∑
i=1

m

∑
k=1

m

∑
j=1
−log(p(c j

i |r
k( f (xi));ω)) (7)

where p represents the predicted discrete probability distribution from E-Net, c j
i refers to the

category (0, ...,m−1) given k-th hypothesis of xi.
Since the training data of E-Net comes from MH-Net, it is a network-level interactional

supervision. Therefore, it could better exploit the characteristics of the input image, and
selects a more proper branch of MH-Net for the input image to predict the final result than
normal secondary voting methods. Moreover, no extra annotation is needed in this self-
supervised training manner.

3.3 Implementation Detail

The network structure is illustrated in Figure 2. Our implementation for the main CNN
body is a modified VGG [18] architecture. We use the Caffe framework with SGD and a
mini-batch size of 256. The learning rate starts from 0.1 and is divided by 10 when the
error plateaus. The weight decay is of 0.0001 and a momentum is of 0.9. In testing, for
comparison studies, we adopt 10 random train-test splits according to [21].

As for the number of m in practice, although more branches lead to performance improve-
ment on complex datasets (e.g., TID2013), there will be obvious performance degradation
on simple dataset like LIVE. Therefore, the number of branches is relevant to the complexity
and diversity of one particular dataset. We choose m = 2 on all dataset evaluations for sim-
plification. Note that the performance can be further improved with m increasing as shown
in Table. 1 (a).

m 1 2 3 4 5
LIVE 0.941 0.965 0.940 0.922 0.917

TID2013 0.648 0.731 0.744 0.745 0.750

(a)

FR-IQA BIQA
Method PSNR SSIM [20] LBIQ [19] BRISQUE [12] SDMCL-Net
SRCC 0.525 0.645 0.74 0.61 0.83

(b)

Table 1: (a) The relationship between m and performance (SRCC) in LIVE and TID2013. (b) Perfor-
mance evaluation (SRCC) on the entire TID2008 database.

Databases Number of Number of Number of Judgment Judgment Number of
Reference Images Distorted Images Distortion Types Range Type Judgments

LIVE 29 779 5 [1,100] DMOS 25k
CSIQ 30 866 6 [0,1] DMOS 25k

TID2008 25 1700 17 [0,9] MOS 250k
TID2013 25 3000 24 [0,9] MOS 500k

Table 2: The information of different IQA datasets evaluated in our work.
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Dataset Method PSNR SSIM [20] FSIM [23] BLIIDNS-II [15] BRISQUE [12] CORNIA [22] QAF [2] CNN [5] SOM [25] HOSA [21] BIECON [8] SDMCL-Net

LIVE LCC 0.856 0.906 0.960 0.930 0.942 0.935 0.953 0.953 0.962 0.953 0.962 0.964
SRCC 0.866 0.913 0.964 0.931 0.940 0.942 0.948 0.956 0.964 0.950 0.961 0.965

TID2013 LCC 0.675 0.790 0.877 0.628 0.651 0.613 0.662 - - - 0.765 0.768
SRCC 0.687 0.742 0.851 0.536 0.573 0.549 0.589 - - 0.728 0.721 0.731

Table 3: Performance on the LIVE and TID2013 dataset. We divide approaches into full-reference
(the first three methods on the table) and blind techniques.

4 Experiments

4.1 Experimental Protocol
Datasets We evaluate our method on LIVE [16], TID2008 [13], TID2013 [14] and CSIQ [9]
datasets. A summary of these databases is reported in Table 2.

LIVE dataset is introduced in 2003, which is the first public IQA dataset, and has served
as the de-facto baseline for development and evaluation of FR-IQA/BIQA metrics. TID2008
and TID2013 datasets are currently the most convincing IQA dataset along with several
important dimensions, including the number of distorted images and the diversity of distorted
types and levels.
Evaluation metrics The performances on above datasets are evaluated by two common met-
rics for model evaluation: Pearson linear correlation coefficient (LCC) and Spearman rank
order coefficient (SRCC). LCC is used to measure linear correlation between the ground-
truth and the prediction, which is defined as

LCC =
∑

N
i=1(yi− ȳi)(ŷi− ¯̂yi)√

∑
N
i=1(yi− ȳi)2

√
∑

N
i=1(ŷi− ¯̂yi)2

(8)

where ȳi and ¯̂yi denote the means of the ground truth and predicted score, respectively. SRCC
is an index of monotonicity, which could be formulated as:

SRCC = 1− 6∑
N
i=1 ri

N(N2−1)
(9)

where N represents the number of distorted images, and r is the difference of ranking.

4.2 Results
We compare our SDMCL-Net against with state-of-the-art methods, including BLIINDS-
II [15], CORNIA [22], BRISQUE [12], CNN [5], QAF [2], SOM [25], HOSA [21], and
BIECON [8]. Besides, we also list classic FR-IQA methods, comprising PSNR, SSIM [20],
and FSIM [23], to form better assessment.
Comparison with other BIQA methods. We train our proposed SDMCL-Net on LIVE,
TID2008 and TID2013 respectively, with randomly selecting 80% reference images and
associated distorted images as the training set, 20% testing set for each dataset according to
the state-of-the-arts [5, 12, 22, 25]. Table. 3 and Table. 1 (b) show the comparison results
with different IQA models and our method achieves promising results on all of the three
datasets.

On LIVE dataset, our model outperforms the previous best results (i.e, SOM, BIECON)
by more than 0.2 in regards to both SRCC and LCC, and reaches at least 4% improvements
than other methods. Since LIVE is simpler than other challenging databases, with 5 common
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Figure 3: (a) Performance of training on the TID2013 dataset and testing on the CSIQ dataset. (b)
Performance of different variants of our model on the LIVE dataset.

Method BIQI BRISQUE [12] CORNIA-10K [22] CORNIA-100 [22] HOSA [21] SDMCL-Net
Time Cost (ms) 111.9 76.8 1621.6 2227.1 352.9 7.2

Table 4: Time cost comparison to state-of-the-arts.

distorted types, and there is little difference (less than 2%) among three of the most recently
proposed methods (SOM, HOSA and BIECON), we believe that these experiments on LIVE
also demonstrate LIVE is becoming saturated.

On TID2013 dataset, the results of our model are close to BIECON, with about 1% rel-
ative improvements. BIECON employes state-of-the-art full-reference IQA algorithms to
generate proxy scores and then fine-tunes them on BIQA. The impossibility of obtaining
reference images in practice, limits the feasibility of BIECON. Our SDMCL-Net provides a
flexible alternative while maintaining satisfactory precision. These experiments demonstrate
that simplifying the solution space with self-supervised manner incorporated in is an effec-
tive way to ease the ill-posed definition and insufficient training data problem, and therefore
improves the precision of BIQA. Besides, it is remarkable that, as a BIQA method, the pre-
cision of our SDMCL-Net is very close to those of the state-of-the-art FR-IQA methods.

On TID2008 dataset, our model significantly outperforms LBIQ, which leverages extra
data to extract features. The performance improvement is largely due to the effective multiple
hypotheses network and the self-supervised mechanism to prevent over-fitting problem of
DNNs while maintaining its powerful feature representation ability.
Cross-Dataset evaluations. For evaluating the generalization ability of our approach, we
present the cross-dataset experiment following the setups of [24]. Figure 3 (a) presents
result of training on TID2013, and testing on CSIQ. The proposed SDMCL-Net achieves
promising results on cross-dataset evaluations, which shows our method is generalizable.
Component analysis. For the propose of providing a further insight into our self-supervised
deep multiple choice learning scheme, we evaluate different variants of SDMCL-Net on
LIVE database with SRCC metric: Single Branch Network(SBN) is a normal VGG net-
work. MH-Net(b_1/b_2) refers to a policy that generates assessment from only one of the
branches of MH-Net without re-filtering from other schemes. MH-Net(ave) follows a typi-
cal policy of subsequent processing for generating assessment by averaging hypotheses from
branches of MH-Net. SDMCL-Net is our final model as described in Sec. 3.

As shown in Figure 3 (b), if we only select the result from one of the branches without
any auxiliary mechanism, the performance will reduce significantly, which is worse than a
single VGG network. While leveraging the averaging strategy, the SRCC value increases.
When the E-Net is incorporated in, the SRCC value has a relative 1% improvement than
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averaging strategy. These experiments again demonstrate the effectiveness of our method.
We hope above experiments could not only demonstrate that our framework provides a

flexible alternative to BIQA, but also towards a new perspective to other computer vision
tasks that also suffer from the lacks of training data problem.

4.3 Computational Cost
The computational cost of our model is also evaluated. As shown in Table. 4, when we
perform our experiments on a PC with a single core i5-4300u CPU, the cost time per image
is 7.2ms. The proposed SDMCL-Net is purely feed-forward, and thus can provide a real-
time solution to high-performance BIQA applications. Specifically, our method achieves 10
times faster than the previous fastest BIQA method BRISQUE, and more than 49 times faster
than HOSA, which is the current state-of-the-art method. This experiment demonstrates the
remarkable practicability of our proposed method.

5 Conclusion
In this paper, we present a novel Self-supervised Deep Multiple Choice Learning Network
(SDMCL-Net) for BIQA task. The proposed network consists two sub-networks to generate
multiple hypotheses of image quality assessment (MH-Net) in branch-level and select the
best hypothesis as final prediction (E-Net) to achieve robust estimation. Our result outper-
forms the state-of-the-art BIQA methods and is comparable to the FR-IQA methods. We
show its great potential as an efficient and scalable solution for this task. Future work will
focus on investigating more effective “re-filtering” mechanism for better selection.
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