
H. PARK, Y. YOO AND N. KWAK: MC-GAN 1

MC-GAN: Multi-conditional Generative
Adversarial Network for Image Synthesis

Hyojin Park1

wolfrun@snu.ac.kr

Youngjoon Yoo2

youngjoon.yoo@navercorp.com

Nojun Kwak1

nojunk@snu.ac.kr

1 Department of Transdisciplinary
Studies,
Seoul National University,
Republic of Korea.

2 CLOVA AI Research, Naver Corp.,
Republic of Korea.

Abstract

In this paper, we introduce a new method for generating an object image from text
attributes on a desired location, when the base image is given. One step further to the
existing studies on text-to-image generation mainly focusing on the object’s appearance,
the proposed method aims to generate an object image preserving the given background
information, which is the first attempt in this field. To tackle the problem, we propose
a multi-conditional GAN (MC-GAN) which controls both the object and background
information jointly. As a core component of MC-GAN, we propose a synthesis block
which disentangles the object and background information in the training stage. This
block enables MC-GAN to generate a realistic object image with the desired background
by controlling the amount of the background information from the given base image
using the foreground information from the text attributes. From the experiments with
Caltech-200 bird and Oxford-102 flower datasets, we show that our model is able to
generate photo-realistic images with a resolution of 128×128.

1 Introduction
Recent studies on generative adversarial networks (GAN) [2, 5, 6, 12, 15] have achieved im-
pressive success in generating images. However, since most of the generated images through
GAN do not exactly satisfy the users’ expectation, people use auxiliary information in vari-
ous forms such as base images and texts as main cues for controlling the generated images.
In this line of research, it is actively studied to create images under specific conditions such
as transferring the style of an image [1, 3, 8, 10, 24] or generating an image based on text
description [11, 17, 18, 22, 23].

Among these, text-to-image generation is meaningful in that it can fine-tune the gener-
ated image through the guide of text description. Although GAN can be applied to diverse
text to image generation works, most of the applications are focused on controlling the shape
and texture of the foreground and relatively less attention has been paid to the background.
For example, Reed et al. [19] created images from the text containing information on the ap-
pearance of the object to generate. The method can generate a target image in a given location
or with a specified pose. However, they also cannot control the background. There are some
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Figure 1: Comparison of different multi-modal conditional GAN problems. We try to synthe-
size an image based on a base background image with a specified location for an object and
a text description on the object. The images on the right are from the respective algorithms.

works [4, 10] that have considered the background. Dong et al. [4] considered multi-modal
conditions based both on image and text and can change the base image according to the text
description. However, the method has a restriction that a similar object to the generated one
should be in the base image. Thus, it can be considered as a style transfer problem. Ma et al.
[10] also solved the multi-modal style transfer problem from a reference person image to a
target pose. They kept the background and changed the reference person’s pose to a target
pose.

In this paper, we define a novel problem of conditional GAN which generates a new
image by synthesizing the background of an original base image and a new object described
by the text description in a specific location. Different from the existing works [4, 19], we
aim to draw a target object on a base image that does not contain similar objects. To the best
of our knowledge, our research is the first attempt to synthesize a target image by combining
the background of an original image and a text-described foreground object. As shown in
Fig. 1, our approach is different from other studies that try to create a random image at a
desired location [19] or to change the foreground style [4] in that we want to independently
apply separate foreground and background conditions for image synthesis. This problem is
not trivial because the generated foreground object and the background from the base image
should be smoothly mixed with a plausible pose and a layout.

To tackle this problem of image synthesis, we introduce a new architecture of multi-
conditional GAN (MC-GAN) using a synthesis block which acts like a pixel-wise gating
function controlling the amount of information from the base background image by the help
of the the text description for a foreground object. With the help of this synthesis block,
MC-GAN can generate a natural image of an object described by the text in a specified
location with the desired background. To show the effectiveness of our method, we trained
MC-GAN using the Caltech-200 bird dataset [20] and the Oxford-102 flower dataset [13, 14]
and compared the performances with those of a baseline model [4].

Our main contributions can be summarized as follows: (1) We define a novel multi-modal
conditional synthesis problem using a base image, a text sentence and location information.
(2) To handle complex multi-modal conditions in GAN, we suggest a new architecture of
MC-GAN using synthesis blocks. (3) The proposed architecture was shown to generate a
plausible natural scene as shown in Fig. 1 and 2 by training publicly available data regardless
of whether the base image contains a similar object to create or not.
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Figure 2: The examples of synthesized images using bird and flower datasets

2 Related Work

Among the diverse variants of GAN [3, 3, 17, 21, 24], we can mainly categorize the studies
into three large groups: 1) the style transfer problem 2) the text-to-image problem 3) the
multi-modal conditional problem.

Style Transfer: The style transfer problem uses an image as an input and converts the
foreground to a different style. Choi et al. [3], Zhu et al. [24] and Kim et al. [8] transfered
images to a different domain style, e.g. from a smile face to an angry one, or from a handbag
to shoes. In addition to these applications, some works created a real image from a map of
segmentation label [1, 21], or used a map of part location in combination with an original
image of a person to generate images of a person with different poses [10].

Text-to-Image: The text-to-image problem uses text description as an input to generate an
image. It has great advantages over other methods in that it can easily generate an image
with the attributes that a user really wants, because text can express detailed high-level in-
formation on the appearance of an object with detailed attributions. The raw text is usually
embedded according to the method in [16] which uses a hybrid of CNN (convolutional neu-
ral network) and RNN (recurrent neural network) structure. Reed et al. [17] proposed a novel
text-to-image generation model, and Zhang et al. [22, 23] improved the image quality later
by stacking multiple GANs.

Multi-modal Conditional Image Generation: A multi-modal conditional problem is to
create images satisfying multiple input conditions in different modalities such as a pair of
(image, location) or (image, text). Reed et al. [19] provided a desired object position by a
bounding box or a set of object part locations by points in an empty image in combination
with the text description to generate an object image (see Fig. 1). Dong et al. [4] used both
an image and a text as inputs to GAN for image generation (see also Fig. 1). They intended
to keep the image part irrelevant to the text and to change the style of the object contained
in the base image based on the text description. Although [19] is similar to our work in
terms of using the location information, our method generates an object with an appropriate
pose by understanding the semantic information of the background image automatically.
Compared to our method, the method of using parts’ locations in [19], which requires a
user to select parts’ locations, is somewhat inconvenient and time-consuming. However, the
bounding box condition in [19] is similar to our problem, thus it can be said that our study
partially includes the problem defined in [19]. The method in [4] also uses both image and
text conditions together. However, our study does not have a restriction that the same kind of
object to generate must be in the base image. In other words, ours does not change the style
of an already existing object but synthesize a new object with a slightly but properly changed
background. (See the last row of Fig. 1 and Fig. 2.)
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Figure 3: Overall structure of MC-GAN. The generator uses text description as well as the
base image to create an image of the object as well as a segmentation mask. Using the image
and the segmentation mask, the discriminator distinguishes whether the input is real or not.

3 Methodology

Fig. 3 represents the overall structure of the proposed MC-GAN. The generator of MC-GAN
firstly encodes the input text sentence t into the text embedding ϕ(t) using the method in
[16]. As in [22] and [23], ϕ(t) is concatenated with a noise vector z to which fully con-
nected (FC) layers are applied to constitute a seed feature map. After then, we use a series
of synthesis blocks whose inputs are the seed feature map, which in combination with the
image features from the background image generates an output image and a segmentation
mask. The synthesis blocks are used to prevent overlapping between the generated object
and the background. In Section 3.1, we describe the characteristics of the proposed synthesis
block in more detail and we introduce the detailed explanation of the model structure and the
training strategy in Section 3.2,

3.1 Synthesis Block

Fig. 4 (a) describes the framework of the proposed synthesis block. In the synthesis block, the
background (BG) feature is extracted from the given image without non-linear function (i.e.
only using convolution and batch normalization (BN)) [7] and the foreground (FG) feature is
the feature map from the previous layer. As shown in the figure, the BG feature is controlled
by multiplying it with an activated switch feature map, a fraction of the FG feature map.
The sizes of the BG and FG feature maps are the same, and the depth of FG feature map
is doubled as it passes through the convolution layers. A half of the doubled feature map
denoted as switch in the figure is used as an input to the sigmoid function, while the other
half is forwarded to generate a larger FG feature map for the next synthesis block. The switch
determines what amount of BG information should be retained for the next synthesis block.
After switch feature map is activated by the sigmoid function, it is multiplied element-wise
with the BG feature map for the suppression of background information where the object is
to be generated. Finally, the spatial dimension of feature map is doubled by the upsampling
layer after element-wise addition of the suppressed BG feature map with the FG feature map.
Because the MC-GAN has `1 loss comparing the background of the created image with that
of the base image, the switch has an effect of suppressing the base image in the object area
and mimicking the base image in the background. Therefore, a visualized switch map has
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Upsampling

Synthesis Block

sw
it
ch

sigmoid

BG

FG
A larger sized bird, solid white in color, with subtle speckles of brown,
that has a long reddish beak with a bump.

(b)

A small mostly grey bird with a yellow crown, black eyerings, white
cheeks, dark grey breast and a bright yellow wingbar on grey wings.

(a) (c)
Figure 4: The structure of synthesis block (a) and the examples of generated image (b) (c)

the opposite concept to that of the segmentation mask.
Fig 4 (b) and (c) show a couple of output examples. From left to right they are 1) a

cropped background image from a specific location, 2) the generated image, 3) the gener-
ated mask and 4) the switch feature map from the final synthesis block. A close look at
the switch feature map in Fig 4 (b) shows that it does not change the original background
much because the object naturally goes with the background. Thus, the background region
is highly activated in the switch while the object region is suppressed (see the last column).
On the other hand, in in Fig 4 (c), because a picture of bird standing on the air is unnatural,
the generator adds a branch in the figure. At this time, since the original background should
not overlap with the newly generated branch, the background information of the new branch
area deactivates the corresponding area of the switch map.

3.2 Network Design and Loss Function
MC-GAN encodes the input text sentence t using the method in [16]. However, the vector
ϕ(t) generated by this method lies on a high dimensional manifold, while the number of
available data is relatively small. Zhang et al. [22, 23] pointed out this problem and proposed
the conditioning augmentation method and used fully connected layers to make an initial
seed feature map from the text embedding ϕ(t) and a noise vector z. Here, we follow this
method of creating the initial seed feature map as in [22, 23]. A cropped region from the
base image as well as the text sentence is inputted to MC-GAN. The spatial size of the input
image is W ×H and the number of synthesis blocks is N. The size of the seed feature map
after fully connected layer is 1024× W

2N × H
2N and the resolution is doubled with each pass

through the upsampling layer. The upsampling layer uses the nearest neighborhood method
to double the resolution and a 3× 3 convolution is applied with BN and ReLU activation
to improve the quality of the image. The number of channels is halved for each block of
upstream. Conversely, the method of creating an image feature (downstream) does not use
any non-linear function, and each step consists of a 3×3 convolution layer with BN. At each
step of downstream, the spatial resolution is halved using stride 2 and the number of channels
is doubled. By combining the upstream and downstream, the final 64×W ×H feature map
is obtained which is converted into 4 channels (3 for RGB and 1 for segmentation masks).

The discriminator takes a tuple of image-mask-text (x-s-t) as an input. The convolution
followed by BN and Leaky ReLU downsamples the image and the mask into an image code
x̃ and an image-mask code [x̂, ŝ] separately both of which have a resolution of W

2N × H
2N . The

image-mask code is concatenated with the replicated text code φ(t), which is obtained by
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the conditioning augmentation technique [22, 23] using the text embedding ϕ(t). We apply
a convolution layer to the associated image-mask-text code, then perform BN and Leaky
ReLU activation to reduce the dimension. The image code x̃, image-mask code [x̂, ŝ], and
image-mask-text code [x̄, s̄, φ̄(t)] are trained by the method proposed in Mao et al. [12]. In
our case, the discriminator learns the following four types of input tuples.

1) image1(x1), mask1(s1), text1(t1) real image with matching mask and text
2) image1(x1), mask1(s1), text2(t2) real image with matching mask but mismatching text
3) image1(x1), mask2(s2), text1(t1) real image with mismatching mask but matching text
4) fake image(xg), fake mask(sg), text(t) generated image and mask with input text

Here, the subscript indicates whether the tuple matches or not. (e.g. the tuple (x1,s2, t1) means
that the image matches with the text but the segmentation mask is mismatched.) Using the
four types of tuples, the discriminator loss function for the output D3 becomes

LD3 =Ex1,s1,t1∼pd [(D3(x1,s1, t1)−1)2]+Ex1,s1,t2∼pd [D3(x1,s1, t2)
2]

+Ex1,s2,t1∼pd [D3(x1,s2, t1)
2]+Exg,sg∼pG(b,t,z), t∼pd [D3(xg,sg, t)2].

(1)

Here, pd and pG denote the distributions of real and generated data respectively. G(b, t,z)
means the output of the generator using the base image b, text t and noise z. The first term
enforces the discriminator to output 1 for the true input (type 1), the second term tries to
distinguish mismatching texts (type 2), the third term for distinguishing false masks (type
3), and finally the last term is to distinguish the fake image and mask from the real one.
Likewise, the loss functions for D1 and D2 become

LD2 = Ex1,s1∼pd [(D2(x1,s1)−1)2]+Ex1,s2∼pd [D2(x1,s2)
2]+Exg,sg∼pG [D2(xg,sg)

2]

LD1 = Ex1∼pd [(D1(x1)−1)2]+Exg∼pG [D1(xg)
2]

(2)

In the training of the generator, to the general loss term of GAN, regularization terms for
the conditioning augmentation and the background reconstruction are added as follows:

LG =Ex,s∼pG(b,t,z), t∼pd [(D1(x)−1))2 +(D2(x,s)−1))2 +(D3(x,s, t)−1))2

+λ1DKL(N (µ(φ(t)),Σ(φ(t)))||N (0, I))+λ2||(x� ( f ◦ s))− (b� ( f ◦ s))||1].
(3)

Here, µ(φ(t)) and Σ(φ(t)) are the mean and the diagonal convariance matrix from the text
embedding by conditioning augmentation and the KL divergence loss term is used as in
[22, 23]. The last term, the background reconstruction loss, affects the feature extraction of
the base image and suggests the activation of the switch determining which part should be
taken for synthesis. The operator f◦ denotes the morphological erode operation to the mask
s for smoothing and � is element-wise multiplication. The areas in the fake image x and the
base image b excluding the object part are taken and trained by the `1 loss.

4 Experiment

4.1 Dataset and training details
We validated the proposed algorithm using the publicly available Caltech-200 bird [20] and
Oxford-102 flower [13] datasets. For comparison, in addition to several ablation methods, we
tested recent Dong et al. [4]’s work which uses image and text based multi-modal conditions.
Reed et al. [19] also used multi-modal conditions for generating images but they did not
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Figure 5: Examples of multi-modal image synthesis. From left to right: Base image, the
synthesized image and mask from MC-GAN (128×128) and baseline method [4] (64×64)

consider image condition and both [4] and [19] are commonly based on the method in Reed
et al. [17]. Thus, only the work of Dong et al. [4] was compared.

Caltech-200 bird dataset consists of 200 categories of bird images (150 categories for
train and 50 categories for test), and gives ground-truth segmentation mask maps for all the
11,788 bird images. For the text attributes, we used the captions from Reed et al. [16] which
contains 10 captions for each image. The captions describe the attributes of a bird such as
appearance and colors. For the background image, we cropped the image patches from the
Caltech-200 bird dataset excluding birds by using the segmentation mask. Separate sets of
background images were used for training and test.

Oxford-102 flower dataset includes 102 categories of 8,189 flower images. The dataset
is divide into a training set with 82 categories and a test set with 20 categories. To achieve the
ground truth segmentation mask, we used a segmentation method of Nilsback and Zisserman
[14]. For the background images, we crawled 1,352 images (1,217 for training and 135 for
testing) from the web with keywords ’flower leaf’ or ’flower foliage’. The captions of the
flower images from [16] were used, which describes the shape and colors of the flowers.

In the training, an initial learning rate of 0.0002 and Adam optimization [9] with a mo-
mentum of 0.5 were used. To generate 128×128 bird images, we used a batchsize of 32 and
trained the network for 1,200∼ 1,500 epochs. For the flower dataset, we trained 900∼ 1,200
epochs. We set λ1 = 2 for experiments on both datasets while λ2 was set to 15 for the bird
and 30 for the flower. We also used an image augmentation technique including flipping,
zooming and cropping randomly. The size of the seed feature map was 8×8 and 4 synthesis
blocks were used to generate an 128×128 image.

4.2 Comparison with the Baseline Method

We compared our method with the baseline [4], which is also a multi-conditonal GAN con-
ditioned by an image and text. Originally, Dong et al. [4] reduced the learning rate by 0.5
in every 100 epochs and trained until 600 epochs. In our implementation, we decreased the
learning rate in every 200 epochs, and trained the network with the same number of epochs,
for fair comparison. Fig. 5 shows some examples of generated images from the proposed
MC-GAN and the baseline work of [4]. From the figures, we confirmed that the results from
[4] did not preserve the background information, or only generated background images with-
out the target object.
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Original

This small bird has a blue crown 
and white belly

A small yellow bird has grey
wings, and a black bill.

An orange bird with green 
wings and blue head.

Baseline method Our result

This black bird has no other 
colors with a short bill.

A small brown bird with a brown 
crown has a white belly.

This particular bird with a red head 
and breast and features grey wing

A black bird with a red head.

Figure 6: Example results for the image synthesis problem defined in [4]. The baseline
method [4] and our method (MC-GAN without mask) on Caltech-200 bird test dataset

4.3 Comparison using the Synthesis Problem in [4]

Here, we show that the synthesis block solves the multi-modal conditional problem more
reliably than the baseline [4]. The semantic synthesis problem of Dong et al. [4] aims to keep
the features of input images that are irrelevant to target text descriptions and to transfer the
relevant part of the input image to the one that matches the target text description. We used
the same text embedding method without a segmentation mask, and reduced the learning rate
by 0.5 for every 100 epochs until 600 epochs under the same condition as [4]. The proposed
structure of MC-GAN is applied to the generator and discriminator networks, but only the
image-text pair loss is used for the discriminator as in [4].

Fig. 6 shows some examples of the baseline method and ours. Dong et al. [4] worked
well if the background image is not complicated (column 3 and 6), but if the background
is complex (column 5), it fails to generate a plausible object. Even though the object was
generated well, the irrelevant part of image was also changed a lot. On the other hand, our
generator using the proposed synthesis block stably maintained the shape of the object and
the texture of the background even in a complex background, and the irrelevant background
part to the text description rarely changes. Although segmentation masks were not used in
the training, image features were provided to each synthesis block to keep the background
and the shape of the object. Therefore, the background part which was irrelevant to the target
texts was maintained and at least the shape was not changed strangely even if the color of
the object changed as the text description.

4.4 Interpolation and Variety

To generate images appropriately for various sentences, the latent manifold of the text em-
bedding should be continuously trained. We generated continuously changing images by
linearly interpolating the two different text embeddings from the sentences shown at the
bottom of Fig. 7. The figure shows some example images that changes its color smoothly
(mainly from orange to blue / from gray to yellow) following interpolated text embedding
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This bird has a orange belly and breast with a short pointy bill             =>
A small chubby bird with a white underbelly, and blue colored wings and head

This bird has wings that are grey and has a white belly =>
This bird has wings that are black and has a yellow belly

Figure 7: Generated images using the interpolation of two text embeddings corresponding to
the text descriptions below. The leftmost is the base image.

This bird has wings that are brown and has a white belly The bird has variations of blue in the feathers and has a grey beak. This bird has a yellow body, brown crown and breast, and black wings.

Base Noise : 0                                                                                        Noise : 1 Noise : 0                                                                                        Noise : 1 Noise : 0                                                                                        Noise : 1

Figure 8: Variety and stability of MC-GAN. The images are generated by linearly interpo-
lating the noise vector z from all-zero to all-one vector.

under the same noise and image conditions.
As another experiment, we generated images using linearly interpolating the two noise

vectors, which are all-zero (z0) and all-one (z1) vectors, under the same text and image con-
ditions to demonstrate our model’s variety and stability. Fig. 8 shows some resultant images.
Although it depends on the text and image conditions, but we usually got half of visually
successful samples as can also be seen in Fig. 8.

4.5 The effect of switch
The switch in the synthesis block prevents the background and the foreground from over-
lapping each other. We compared the images generated by changing the switch value (the
output value of the sigmoid function) under the fixed trained model of MC-GAN with the
same base image, text and noise conditions. Fig. 9 shows some results. If we turn off all the
switches (by zeroing the values) to prevent background information from being added, the
original background disappears and only the generated object and the changed background
are present. If all the switch values are set to 0.5 (half on), the background is reconstructed,
but the object and the background slightly overlap and the image gets blurred compared
to that of the original MC-GAN. Finally, when all the switches are turned on, the original
background information are added without suppression. In this case, the object and the back-
ground overlap with each other and the object is not properly visualized. By this experiment,
we can verify that the switch in the synthesis block analyzes the current image and text
conditions and adjusts the image feature flexibly to assist the proper synthesis of an image.

4.6 High Resolution Image Generation by StackGAN
Based on the proposed MC-GAN, we additionally introduce a model to generate high reso-
lution images by adding the StackGAN style two stage generator. The initial spatial size of
feature map in MC-StackGAN is 4×4 and two multiple GANs were stacked for generating
128× 128 images like [22, 23]. The structure of the first GAN is the same as our original
method and the second GAN takes a 64×64×64 final feature map from the first GAN and a
text embedding code from conditioning augmentation without noise vector as mentioned in
[22, 23]. The first GAN’s final feature map is concatenated with the replicated text embed-
ding code. We applied a convolution to the associated feature map with batch normalization
and ReLU. Finally, we used one more synthesis block and an upsampling layer to generate
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Figure 9: Experiment of generated images of switch transition in the Synthesis block

128× 128 images. MC-StackGAN generates objects more stably than MC-GAN, but tends
to transform the original base image compared to MC-GAN.

Base MC-GAN MC-StackGAN

This bird has a grey crown, a black 
throat, and a grey belly

This is a bright yellow bird with a 
black crown and a grey beak.

This particular bird has a brown neck 
and orange bill.

This bird is red, black, and white in 
color, with a stubby black beak.

The bird has a brown breast and belly 
as well as a black eyering.

This small bird has a white and orange breast, 
long bill, and blue-gray wings and head.

Base MC-GAN MC-StackGAN Base MC-GAN MC-StackGAN

Figure 10: Examples of MC-GAN and MC-StackGAN. From left to right: Base image, the
synthesized image from MC-GAN (128×128), the synthesized image from MC-StackGAN
(128×128) on Caltech-200 bird test dataset

5 Conclusion
In this paper, we introduced a new method of GAN to generate an image given a text attribute
and a base image. Different from the existing text-to-image synthesis algorithms only consid-
ering the foreground object, the proposed method aims to generate the proper target image,
as well as preserving the semantics of the given background image. To solve the problem,
we newly proposed an MC-GAN structure and a synthesis block which is a core component
enabling a photo-realistic synthesis by smoothly mixing foreground and background infor-
mation. Using the proposed method, we confirmed that our model can generate diverse forms
of a target object according to the text attribute while preserving the information of the given
background image. We also confirmed that our model can generate the object even when the
background image does not include the same kind of object as the target, which is difficult
for existing works.
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