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Abstract

Recent CNN-based research reveals that the multi-scale information plays an im-
portant role in boosting the performance of object detection. There are several network
structures proposed to explore an effective multi-scale feature representation. In these
structures, the allocation of information in multi-scale representation has a bias toward
very few layers. In this paper, we present a novel module named Adaptive Multi-Scale
Information Flow (ASIF) to break the bias and find the proper multi-scale representa-
tion for each layer. In ASIF, information from different layers in the feature pyramid is
weighted and aggregated. The allocation of information is adaptive from each layer to
other layers. To ensure both speed and accuracy at the same time, we follow the SSD
detection framework and apply ASIF to it. We evaluate the performance of proposed
method on PASCAL VOC and MSCOCO datasets. Experiments show that ASIF is supe-
rior to many state-of-the-art methods. Given the image size of 320 x 320, the mAP could
reach 80.2% (45 FPS) on PASCAL VOC 2007 test, and 29.3% on COCO test-dev2015.

1 Introduction

Object detection is an essential issue in the field of computer vision research. In recent
years, breakthrough progress has been made in object detectors due to the use of Convolu-
tional Neural Networks (CNN). A main challenge of general object detection comes from
the scale variation of the objects across different images. Recently introduced detectors, such
as SSD [19], try to solve the problem by using different layers to predict object of different
sizes. Large objects and small objects are predicted respectively from deep layers and shal-
low layers. The propose of this design is to keep consistency between the sizes of objects
and filter receptive fields [2].

Based on this straightforward implementation, several improvements of network connec-
tions are proposed to explore an efficient multi-scale features representation. For example,
FPN [17] and DSSD [5] add top-down connection (Figure 1 (a)) to the bottom-up feed-
forward network. Information from the upper layers is propagated down and combined with
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(a) top-down connection (b) dense connection (c) Adaptive Multi-Scale Information Flow
Figure 1: Structures for generating multi-scale feature representation. Symbol ® represents
feature fusion modules. In each sub-figure, blocks on the left side are input features, and
blocks on the right side are output features. Different colors represent information from
different features. In top-down (a) and dense connection (b), the information allocation
contributes more to top or bottom layers in feature pyramid. However, in the proposed ASIF
(c), information are freely transferred between layers, and each layer contains information

from all layers. The allocation of information between layers is determined by the training
process.
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information from lower layers. In addition, DSOD [24] uses dense connection (Figure 1
(b)) to construct feature extraction and detection sub-networks. A methodology called "fea-
ture reuse" [11] is adopted. Proceeding from the bottom layer, each layer generates new
information and adds it to information from preceding layers.

Though the effectiveness has been demonstrated, we find that the structures of top-down
and dense connection are unreasonable. Figure 1 (a) and (b) show that there exists an obvious
bias of information allocation between layers in the updated multi-scale feature representa-
tion. In the top-down connection, information from all layers is taken to the bottom layer,
while the top layer contains only the information of itself. An opposite situation is contained
in the dense connection, where the top layer contains much more information than the bottom
layer. In fact, the detection operates independently on multiple layers. For each detection
layer, it is unknown whether the information from itself is enough to obtain satisfied detec-
tion results, or the combination of information from other layers is needed. The structures of
top-down and dense connection implicit pre-defined information allocation schemes. These
schemes could reduce the flexibility of information selection for different detection layers.
Inspired from Ke e al.’s work [13] on learnable scale-space representation, we consider that
it is a better choice to break the fixed information allocation and make the network learn to
generate proper multi-scale representation for each detection layer.

As a result, we propose a novel module called Adaptive Multi-Scale Information Flow
(ASIF, shown in Figure | (c)) to generate more effective multi-scale feature representation
for object detection. There are plenty of bi-directional connections in ASIF. Information on
each layer flows to other layers through these connections. Several feature fusion modules
are used to weight and aggregate information from different layers. At the output stage, each
layer contains information from itself and all the other layers in the feature pyramid. To
ensure both speed and accuracy at the same time, we apply our method to the proposal-free
detector, such as SSD [19]. Compared with existing methods, the multi-scale representation
generated using ASIF is more effective. Experiments on PASCAL VOC and MS COCO
datasets show that ASIF can achieve significant improvement over state-of-the-art methods.
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2 Related works

Current CNN-based object detectors can be divided into two categories: (1) the proposal-
based methods and (2) the proposal-free methods. From R-CNN [7] to its multiple vari-
ants [3, 22], the proposal-based methods have made the main contribution to performance
improvement in early days. The proposal-based methods first get object proposals and then
classify and refine each of them. However, this complex pipeline makes them have no ad-
vantage in speed. YOLO [21] is the first detector trying to solve the problem by recasting
detection as a straight regression from image to final results, but with the expense of low
accuracy. YOLO can be seen as a typical proposal-free method. Recently proposed meth-
ods, such as SSD [19] and YOLOV2 [20], can achieve a good balance between speed and
accuracy.

Multi-scale detection has become one of the essential technologies of high-performance
detectors. Besides multi-scale training and testing [9], the multi-scale hierarchy in CNN
is exploited by many detectors. There are several ways to use the multi-scale hierarchy.
HyperNet [14] and ION [1] concatenate features from different layers to make prediction.
SSD [19] and MS-CNN [2] predict objects at different layers in hierarchy. In addition, re-
cent methods exploit skip layer connections to associate features maps from different layers.
FPN [17] and TDM [25] create top-down path with lateral connection to transfer strong se-
mantic information from top to bottom layers. DSOD [24] uses dense connection to fuse and
reuse multi-resolution features. RSSD [12] creates rainbow concatenation between different
layers so that features in each layer contain information from all the other layers.

3 Method

In this section, we introduce the proposed Adaptive Multi-Scale Information Flow (ASIF) for
object detection. First, we describe our detection framework in Section 3.1. Then, in Section
3.2, we show the implementation of ASIF and how ASIF adaptively allocates information of
multi-scale feature pyramid to all detection layers. Finally, we give implementation details
in Section 3.3.

3.1 Detection Framework

Figure 2 shows the architecture of proposed detection framework. To ensure accuracy and
speed at the same time, we adopt fully convolutional proposal-free detection framework.
We select VGG 16 [26] as the backbone network ! to generate feature pyramid. We replace
fc6 and fc7 with convolutional layers, and add new layers (conv6_1 and conv6_2) after the
VGG16. These modified and added layers decrease the size progressively and form a feature
pyramid. Then, the ASIF updates features of each layer in the pyramid by using information
from other layers. Finally, several detection sub-networks predict objects using the updated
multi-scale feature representation.

'We split detection network into two parts: the feature extraction part (such as VGG16), and the detection part.
For convenience of description, we call the feature extraction part as "backbone network’.
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Figure 2: The proposed detection framework. The initial multi-scale feature representation
comes from four different layers in the backbone network (VGG16). Different cubic colour
represents information from different layers. Information from each layer in the multi-scale
feature representation is updated by the module called Adaptive Multi-Scale Information
Flow(ASIF). The table in figure shows the information sources of each layer after the pro-
cessing at each stage.

3.2 Adaptive Multi-Scale Information Flow

As mentioned in Section 1, the commonly used top-down and dense connection exist infor-
mation allocation bias between layers in the feature pyramid. The information allocation is
pre-defined to concentrate more on top layers or bottom layers in feature pyramid. This bias
could reduce the flexibility of information selection for each detection layer. To generate
more effective multi-scale feature representation for object detection, we propose a mod-
ule called Adaptive Multi-Scale Information Flow (ASIF) to break the allocation bias and
adaptively transfer and aggregate information from each layer to all layers.

In the proposed detection framework, each layer in the feature pyramid is responsible
for detecting objects within a specified scale range. The advantage of ASIF is that the infor-
mation needed for each layer is determined by the training process. After the processing of
ASIF, each detection layer could get proper information from different layers in the feature
pyramid. We consider that this design can achieve better detection results than the existing
methods for the detection of objects with different scales.

3.2.1 Multi-stage information aggregation strategy

Figure 2 shows the structure of ASIF. The input of the ASIF is the feature pyramid from the
backbone network. The input pyramid has L layers, and the feature in each layer is denoted
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Figure 3: One stage of Adaptive Multi-Scale Information Flow. The upsampling and down-
sampling are implemented using 2 x 2 transposed convolution and 2 x 2 maxpooling respec-
tively. For each layer, information from itself and neighbours is transferred and combined
together.

as F; (1 €{1,2,...,L}). Considering the correlation of information between adjacent layers in
the pyramid, we adopt a multi-stage information aggregating strategy to transfer information
from each layer to all L layers. At each stage, for layer /, information from F; is fused with
information from F;_; and F;, | through bi-directional connections. Before processing, each
layer in the pyramid contains only the information belonging to itself. After the first stage,
feature F; at layer / contains information not only from itself but also from adjacent layers
(I—1) orfand (I +1). Starting from the second stage, the range of information aggregation
extends gradually from the adjacent layers to all layers in the feature pyramid. The table in
Figure 2 shows the information source of each layer after processing by each stage. After
the final stage, each layer in the feature pyramid contains weighted and fused information
from all layers in the feature pyramid.

3.2.2 Information fusion modules

Figure 3 shows one stage of ASIF. Each layer in a stage contains a information fusion mod-
ule. These modules are responsible for processing information transferred from different
layers and transforming them to a new one. Each module contains two operations, "ag-
gregate” and "transform". For each layer in the feature pyramid, the "aggregate" process
fetches features from itself and adjacent layers, then concatenates them to produce multi-
scale intermediate representation. Before concatenation, 2 x 2 max-pooling and 2 X 2 trans-
posed convolution are used as down-sampling and up-sampling operation to make features
have the same sizes. Next, "transform" process uses 3 x 3 convolution kernels to weight each
information and generate fused output. We set the dimension of input and output features at
each stage to 256.

3.3 Implementation Details

Detection Layers Considering the complex network connections in ASIF module (Section
3.2), to ensure the runtime speed, we use conv4_3, conv5_3, fc7 and convé_2 as detection
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layers. These four layers are used to construct the input pyramid of ASIF. Because conv4_3
and conv5_3 have different feature scales from other layers, we normalize features using
L, normalization [18]. In order to fit upsampling operation in ASIF, we resize the input to
320x320, so the feature sizes of detection layers are 40, 20, 10 and 5.

Anchor Boxes We set the scale of anchor boxes on conv4_3, conv5_3, fc7, and convb_2
to 32, 64, 128 and 256, respectively. The choice of anchor scales is based on the method
in [31] showing that controlling the anchor density of each scale to be the same is beneficial
to performance. In addition, for each anchor, we set aspect ratios to a, € {%, 1,2}.

Detection sub-network For each detection layer, we use a sub-network with two convolu-
tional layers to produce detection results. Each convolutional layer has a 3 X 3 X ¢j, X cour
kernel. c;, equals to the dimension of input features. The value of ¢,,, depends on the usage
of kernel. For category prediction c,,; = ¢ and for bounding box regression c,,; = 4c. c is
the number of object categories to predict.

Loss Function We use the multi-task loss L = % (Lloc (x,1,8) + Leong(x, c)) for each training
sample x. Ly, (x,1,g) is the Smooth L1 localization loss [6] between ground truth box g and
predicted box I. Leonr(x,c) is the classification loss for ground truth category c. N is the
number of sampled training anchors for x.

Sampling Training Examples We follow the commonly used Jaccard overlap criterion to
sample positive training examples. If an anchor has Jaccard overlap higher than 0.5 with any
ground truth box, this anchor is picked up as a positive example for training. In addition,
most anchors are negative examples. We use hard negative mining strategy to make the train-
ing process faster and more stable. All negatives are sorted in descending order according
to their loss L and only the top-n negatives are picked up. The ratio between positives and
negatives is 1 : 3.

4 Experiments

4.1 Datasets and Training Options

Datasets and Metrics We evaluate the performance on PASCAL VOC [4] and MSCOCO [16]
datasets. For PASCAL VOC, we use VOC2007 trainval and VOC2012 trainval for training,
and VOC2007 test for testing. For MSCOCO, we use trainval35k for training, minival for
validation and fest-dev2015 for testing. Results on PASCAL VOC are evaluated using mean
Average Precision (mAP) across all object categories. For MSCOCO, six different Aver-
age Precision (AP) metrics are used: (1) AP with IoU€[0.5,0.95], (2) AP with IoU=0.5,
(3) AP with IoU=0.75, (4) AP for small objects (area< 322), (5) AP for medium objects
(32?2 <area< 96%) and (6) AP for large objects (area> 96°).

Optimization We use VGG16 pretrained on ImageNet [23]. All added new layers are
initialized with "xavier" method [8]. The network is trained with a mini-batch size 32. For
PASCAL VOC, we initialize the learning rate to 4 x 1073, then decay it to 4 x 10~* and
4 % 107 at 80k and 100k iterations. For MSCOCO, we use the same learning rate policy
as PASCAL VOC, except that the two modifications are set at 280k and 360k iterations.
Besides, we set momentum to 0.9 and weight decay to 0.0005.
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Figure 4: The structure of fusion modules in top-down and dense connection. They are used
for experiments in Section 4.2.

4.2 Effectiveness of Adaptive Multi-Scale Information Flow
4.2.1 Experiment Settings

To verify the effectiveness of the proposed Adaptive Multi-Scale Information Flow (ASIF),
we add four different multi-scale structures to detection framework for comparison: (a) top-
down connection, (b) dense connection, (c) top-down+dense connection, and (d) Adaptive
Multi-Scale Information Flow (ASIF). Results are obtained using PASCAL VOC dataset.
We give details about the first three structures.

e Top-down connection. We refer the structure in FPN [17] to construct the top-down connection.
The detail of top-down module is illustrated in Figure 4 (a). The (n x n X ¢) input feature x; is
transformed to (n x n x 256) lateral feature x;. Then, we upsample the updated upper-level
(5 x 5 x 256) feature x; using 2 x 2 transpose convolution, merge it with the lateral feature xz
by element-wise addition and further transform it with a 3 x 3 convolutional layer.

e Dense connection. We directly use the structure in DenseNet [11]. Figure 4 (b) shows the
operation of the dense connection. At first, each input feature x; in the pyramid is transformed
to lateral one xz, with 256 channels. We use 2 x 2 max-pooling to downsample the lower-level
feature x; and concatenate it with the lateral feature x;. Finally, a 3 x 3 convolutional layer
converts the concatenated feature to a new one used for detection.

e Top-down+dense connection. We use the combination of top-down and dense connection as an
alternative method to solve the information bias mentioned in Section 1, and compare it with our
proposed ASIF module. First, we use the dense connection to gather information from all layers
in feature pyramid to the top layer. Then, the top-down connection spreads the information to
all the other layers in feature pyramid.

4.2.2 Results and Analysis

Overall performance. Table 1 shows the comparison between different structures. Top-
down connection and dense connection result in mAP of 78.3% and 77.1% , higher than plain
network by 1.8% and 0.6%. These results show that top-down connection is more effective
than dense connection. When combining top-down and dense connection, mAP increases to
78.4%, only 0.1% higher than pure top-down connection. Our proposed ASIF gets 79.2%
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| Method | plain | top-down | dense | top-down+dense | ASIF \
Topology 7 E
O~ ’
i
mAP 76.5 78.3 77.1 78.4
mAPyxg 13.7 20.6 15.7 18.3
mAPg 49.2 57.3 52.3 55.7
mAPy, 73.5 76.6 74.9 75.6
mAP, 80.0 81.8 81.9 82.3
mAPyx;, 81.0 82.6 82.0 83.2

Table 1: Evaluation on different multi-scale structures. Results are measured using the whole
dataset and several subsets with specified object sizes. In topology graphs, @ and © repre-
sent fusion modules in top-down and dense connection respectively. The structure of these
modules are illustrated in Figure 4.

Plain Top-down con. Dense con. Top-down-+Dense con.

Figure 5: Qualitative results of different methods. The first row demonstrates the detection
when objects are occluded by others. The second row shows results when an object appears
in the ambiguous background (the water ripple looks like a deck).

mAP, which is the best among all the other counterparts. This result also illustrates that ASIF
is more effective than the combination of top-down and dense connection when solving the
information bias between different layers. Some qualitative results are shown in Figure 5.

Performance for objects with different sizes. In order to evaluate the performance of
objects with different sizes, referring to the work of Hoiem er al. [10], we split PASCAL
VOC into five subsets: XS(extra-small), S(small), M(medium), L(large), XL(extra-large).
For top-down connection, detection of small objects has nearly 7%~8% mAP boost, which
reveals that top-level semantics is beneficial to performance on small objects detection [5].
On the other hand, the combination of top-down and dense connection has relatively higher
mAP on detection larger objects. Our proposed ASIF achieves the best mAP across almost
all scales.
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| Method Backbone Input size | Npores | Speed(FPS) [ mAP |
Faster R-CNN[22] VGG16 ~1000x 600 300 7 73.2
Faster R-CNNJ[22] ResNet-101 | ~1000x600 300 2.4 76.4
R-FCN[3] ResNet-101 | ~1000x600 300 9 80.5
SSD300[19] VGG16 300x300 8732 46 77.2
SSD321[5] ResNet-101 321x321 17080 11.2 77.1
DSSD321[5] ResNet-101 321x321 17080 9.5 78.6
RSSD300[12] VGG16 300x300 8732 35 78.5
StairNet[27] VGG16 300x300 19390 30 78.8
DiCSSDJ[28] VGG16 300300 8732 40.8 78.1
DSOD300(plain pred.)[24] DenseNet 300x300 8732 20.6 77.3
DSOD300(dense pred.)[24] DenseNet 300x300 8732 17.4 71.7
ASIF-Det320 VGG16 320x320 6375 33 79.2
ASIF-Det320+ VGG16 320x320 6375 48 80.2

Table 2: Results on PASCAL VOC. All networks are trained on VOC2007+VOC2012 train-
val and tested on VOC2007 test.

4.3 Comparison with State-of-the-art Methods
4.3.1 Results on PASCAL VOC

Table 2 shows the experiment results. ASIF-Det320 has 79.2% mAP, higher than state-
of-the-art proposal-free methods. In addition,ASIF-Det320 can meet the need of real-time
detection with a 33FPS runtime speed. DSSD321 and StairNet use the top-down connection
to fuse features. DiCSSD uses multi-scale dilated convolution [29] on each detection layer
to combine multi-scale information. DSOD300 has 0.4% mAP increment when replacing
plain detection structure with dense one. Similar to ASIF-Det320, RSSD300 also generates
features by aggregating scale information from other layers. However, ASIF-Det320 has a
higher mAP than RSSD300. This reveals that the multi-scale feature representation from
ASIF is more effective.

In most cases, only a small amount of bounding boxes cover objects with high confi-
dence. In order to improve the performance of proposed ASIF, we try to refine detection
output. We predict objectness score p,,; for each anchor after the first stage of ASIF , then
at the final stage we generate bounding boxes using anchors satisfying p,,; > ©. This tech-
nique is also exploited by several works [15, 30] for simulating two-stage procedure on the
one-stage detector. We set ¢ to 0.005. After the refinement, ASIF-Det320+ increases the
mAP to 80.2%, and the runtime speed is increased to 48FPS.

4.3.2 Results on MSCOCO

Table 3 shows the results of different networks. ASIF-Det320 achieves 46.6% AP with 0.5
IoU and 28.1% AP with IoU€[0.5,0.95], surpassing most of comparable methods. Compared
with other SSD-based methods, ASIF-Det320 has higher AP when detecting medium-size
objects. However, DSOD300 and DSSD321 have better performance on large objects than
ASIF-Det320. One possible reason is that DSOD300 and DSSD321 uses more powerful
backbone networks. In addition, we also try to add detection refinement process to ASIF-
Det320 when training on COCO dataset. The resulting ASIF-Det320+ achieves 48.8% AP
with IoU=0.5 and 31.0% AP with IoU=0.75.
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AP with different IoU AP with different size
Method Backbone 0.5:095 0.5 0.75 | small medium large
Faster R-CNN[22] VGG16 21.9 32.7 - - - -
R-FCN[3] ResNet-101 29.9 51.9 - 10.8 32.8 45.0
SSD300[19] VGG16 25.1 43.1 258 6.6 25.9 41.4
SSD321[5] ResNet-101 28.0 454 293 6.2 28.3 49.3
DSSD321[5] ResNet-101 28.0 46.1 292 7.4 28.1 47.6
RSSD300[12] VGG16 26.6 459 273 8.3 28.6 39.7
DiCSSD[28] VGG16 26.9 46.3 27.7 8.2 27.5 434
DSOD300[24] DenseNet 29.3 473  30.6 9.4 31.5 47.0
ASIF-Det320 VGG16 28.1 46.6 293 79 32.8 41.2
ASIF-Det320+ VGG16 29.3 48.8 31.0 9.4 329 43.6

Table 3: Results on MSCOCO test-dev2015 set.

5 Conclusion

In this paper, we propose a module called Adaptive Multi-Scale Information Flow (ASIF)
to generate more effective multi-scale feature representation for object detection. Compared
with other multi-scale structures, ASIF breaks the bias of information between different lev-
els in feature pyramid and adaptively allocates information from all levels to each detection
layer. The proposed method achieves state-of-the-art performance on PASCAL VOC and
MSCOCO datasets. ASIF is a flexible structure. There are many ways to improve it. For
example, according to the detecting difficulty of an object, we can use features from different
stages to generate output. This operation could save computing resources and improve the
runtime speed.
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