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Abstract

Visual object tracking by convolutional neural networks has recently made great
progress, which mainly focuses on exploring object appearance; while motion infor-
mation has been largely overlooked, which however in its nature is essentially important
for visual tracking. In this work, we propose deep collaborate tracking network (DCT-
N), a unified framework that jointly encodes both appearance and motion information
for generic object tracking. DCTN establishes a two-stream network with an end-to-end
learning architecture that is consisted of a motion net and an appearance net. Motion-
Net deploys the spotlight filtering in conjunction with the dual pooling operation to fully
capture motion information, which is among the first to establish motion detection with-
in an intact CNN architecture; AppearanceNet uses a pyramidal Siamese patch filtering
to localize object by multi-scale dense appearance matching. The two nets work col-
laboratively and encode complementary motion and appearance information to generate
two response maps, which are fused to produce the final tracking reuslt. The DCTN is
the first generalized framework to model motion and appearance information with deep
learning for object tracking. Extensive experiments on VOT2016 and OTB2015 dataset-
s show that the DCTN can achieve high tracking performance, which demonstrates the
great effectiveness of exploring both motion and appearance information for visual object
tracking.

1 Introduction

Visual object tracking has been extensively studied in computer vision. Given the initial
target state in the first frame, a generic tracker is to detect and localize the target relying
only on information gathered on-the-fly. To deal with such scarcity of object information,
both appearance and motion cues should be fully investigated to characterize and quantify
the consistency in object appearance and motion patterns, thus solving the tracking in a
searching and matching paradigm. However, existing methods based on the convolutional
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Figure 1: Tracking result comparison of our approach (green) with three state-of-the-art
trackers (SiameFC is red, TCNN is blue, CCOT is yellow). As shown, in conditions such as
occlusion, deformation, and cluttered background, the object appearance undergoes severe
variations, DCTN outperforms the others thanks to the help of the motion cues.

neural network (CNN) have focused mainly on object appearance, while largely overlooking
motion information which can also be well explored for improved tracking.

Appearance cues are better studied and developed than its motion counterpart. Early
work focused on exploring handcrafted features, e.g. color histogram [59], color name [7],
HOG [5], SURF [43], subspace features [38], and superpixels [52] to capture object appear-
ance. With its emergence, CNN dominates appearance cues for the superior representation
power [14, 22, 27, 53, 60, 61]. For generic object tracking, appearance cues can be estab-
lished using CNN via online learned appearance models. However, this approach is chal-
lenged by limited sample volumes and inadequate computation efficiency. To solve these
limitations, a popular alternative is to deploy CNN pre-trained on large dataset then on-line
fine-tune the network to gain video-specific knowledge [34, 48, 50]. The prominent Corre-
lation Filter (CF) paradigm falls into this category [3, 10, 11, 12, 21]. Besides deploying
online-trained CNN, off-line trained Siamese network structure has attracted more attention-
s [4, 19, 46, 51]. This strategy does not solely aim at learning a deep appearance feature
representation, but to learn an embedding to match two object instances by characterizing
their appearance similarity. In this way, the appearance extractor and discriminator are inte-
grated and trained compactly end-to-end, so that they can co-adapt and cooperate with each
other.

Comparing to the flourishing appearance-based strategy, motion cues are less studied in
deep tracking methods [13, 25, 56, 63]. In general, motion cues can facilitate tracking in
two strategies, but with only a few attempts. For one, hand-crafted or learning based mo-
tion models are proposed to enable motion prediction [24, 41], aiming at generating object
region-of-interest (ROI) to coarsely locate the object. Secondly, motion detection on basis
of Optical Flow [13, 15, 63] or frame differencing [55, 56] are also utilized to provide object
proposals. However, the motion information is largely underdeveloped, which would be due
to the challenges in modeling motion caused by the following aspects. First, motion is not
an universally available cue but is only present in sequence-based tasks, thus has gained less
focus; Second, motion information is not as discriminative and representative as the appear-
ance cues which are often hard image evidences; Third, motion cues are often contaminated
with noises because of camera motion jitters and background movements. Nonetheless, ob-
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Figure 2: Overview of the proposed deep collaborative tracking network.

ject motion is still indispensable information to realize generic tracking.
Motion and appearance cues are highly complementary and can collaborate with each to

improve object tracking. As demonstrated in Figure 1, motion information is capable to help
overcome severe appearance variations and occlusions, and distinguish target objects from
similar distracters, while appearance cues are dependable to provide hard image evidence
to correct spurious and misleading motion information. In order to leverage the strength of
both appearance and motion information, in this paper, we propose the Deep Collaborative
Tracking Network (DCTN), a new strategy to establish object tracking in a collaborative way
by jointly modeling appearance and motion cues in a two-stream network.

Specifically, to better utilize motion cues, we design an end-to-end trained frame dif-
ferencing motion detection network called MotionNet to provide motion detection responses
with robustness to camera motions. Such a design enables integrating motion features to help
tracking without adding too much extra computation burden. Besides, the response map pro-
vided by MotionNet serves as a spatial attention mechanism to contribute in localizing the
target with awareness to the target’s shape and size. Within MotionNet, a Spotlight Filtering
frame differencing layer first generates motion responses, and then the Dual Pooling layer
performs background suppression and foreground enhancement to clean up the responses.
To integrate with the MotionNet, appearance cues are encoded by AppearanceNet, which
is essentially a Pyramidal Siamese Patch Filter Network to accomplish multi-scale appear-
ance matching via filtering. Both sub-networks deploys generalized conv-nets architectures,
outputting two dense response maps which are fused to generate the final estimation of the
object state. The main contributions of this work are as follows:

• We propose the deep collaborative tracking network (DCTN) for visual object track-
ing. DCTN establishes a unified tracking framework of a two-stream network that can
fully capture complementary motion and appearance information with an end-to-end
learning architecture;

• We design a motion net (MotionNet) to fulfill end-to-end trainable motion detection,
where a Spotlight Filtering layer is instantiated to conduct deep frame differencing
motion detection, followed by the Dual Pooling layer to perform background suppres-
sion and foreground enhancement;
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Figure 3: Illustration of MotionNet.

• We design an appearance net (AppearanceNet) for multi-scale appearance matching
to achieve object localization, where a Pyramidal Siamese Filtering Network is imple-
mented to compute appearance matching iteratively in a filtering way on each level of
a CNN feature hierarchy.

2 Deep Collaborative Tracking Network (DCTN)

In this section we introduce our deep collaborative tracking network, which is a deep col-
laboration of appearance and motion cues in a two-stream network. Both streams share the
same resized image crops as input. In the MotionNet, deep motion detection is conducted to
localize the moving object. In the AppearanceNet, a pyramidal Siamese Filtering network is
designed to locate the object via filtering based multi-scale appearance matching. The final
tracking result is computed by the fusion of response maps output from both networks. The
entire network is generalized in design and end-to-end trainable. In section 2.1 we illustrate
the MotionNet module. Section 2.2 presents the AppearanceNet module.

2.1 MotionNet

MotionNet is proposed to realize reliable generic motion detection in an end-to-end train-
able way. As generic motion detection methods suffer from background noises, MotionNet
is designed to also perform background noise suppression and foreground enhancement op-
erations on top of the detections to clean up the response.

The design of MotionNet is shown in Figure 3 in which the convolution layers in the fig-
ure indicate convolution units with multiple conv-layers. To our knowledge, we are among
the first solving frame differencing based motion detection in a deep learning framework
with robustness to camera jitters. MotionNet takes two ROI patches (Xt−1 is extracted on
frame t-1 from bounding box [xt−1,yt−1,3 ∗wt−1,3 ∗ ht−1], Xt is extracted on frame t at the
same bounding box location.) as input, then a pre-processing Siamese CNN structure is
implemented to transform the input to representative features. With the produced feature
maps, the Spotlight Filtering layer is designed to perform frame differencing motion detec-
tion. As follows, a refinement sub-network is deployed using a set of up-convolutional layers
to restore the spatial resolution [13]. Subsequently, a Dual Pooling layer is implemented to
achieve background suppression and foreground enhancement.

Spotlight Filtering layer. The central idea of Spotlight Filtering is to use element-wise
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Figure 4: Illustration of the Spotlight Filtering operation.

subtraction and a set of different-sized filtering kernels to filter out the motion detection re-
sponse given two input image patches. This layer is resilient to camera jitters by applying
filtering kernels instead of simple element-wise subtraction, where the level of spatial ab-
straction dilutes the motion noise introduced by image-level movement. As shown in Figure
4, the Spotlight Filtering starts with aligning two feature maps X1 and X2 spatially, then
conducting element-wise subtraction between aligned regions with same size as the kernel
F l ∈ Rk×k. The filtered response s f is computed as the summation of all the subtractions.

s f = ∑
j

k∗k
∑

i=1
(|X i

1, j−X i
2, j|), j ∈Ω

Ol
s f (X1,X2) = s f (ρ l(X1),ρ

l(X2))
(1)

In the definition, s f j is the response of the jth filtering location, Ω denotes the set of all
filtering locations. Ol

s f ∈ R3∗M×3∗M is the resulting response map on the lth scale, with the
same size as the input image patch (with stride = 1 and zero padding). s f (∗) denotes the
Spotlight Filtering operation, ρ l(∗) indicates the pre-processed feature map. l is added to
specify the multi-scale implementation. For each scale l, we use a different kernel size to
provide different receptive fields to adapt to motion with varied magnitude. All L response
maps from different scales are fused depth-wise with a 1*1 convolution layer before passing
to the refinement layers. To design the Spotlight Filtering end-to-end trainable, in imple-
mentation it is instantiated using basic convolution operations. In specifics, it first computes
the element-wise subtraction between two ROI patches, then apply different size convolu-
tion filters on the output subtracted feature map. In this way, the s f (∗) operation is further
extended into a weighted version, where Wl ∈ Rk∗k is the convolution filter on the lth scale:

s f
′
j = ∑

j

k

∑
i=1

W i
l ∗ (|X i

1, j−X i
2, j|), j ∈Ω (2)

Dual Pooling Layer. After the refinement sub-networks restored the spatial resolution,
the refined response map is fed into the Dual Pooling layer. This layer establishes a set
of max pooling and average pooling layers with different kernel size to realize foreground
enhancement and background suppression. Each kernel offers a level of abstraction, while
doing a max pooling will respond to the dominate foreground motion in the region, and
an average pooling is similar to the effect of median image background subtraction opera-
tions [36] to suppress the background. At the meantime, the dual pooling can also achieve
image morphological operations to clean up the response map [18]. By establishing a multi-
scale hierarchy with different size kernels, the dual pooling layer is selectively responsive
to motions with different magnitudes, as the same design as the multi-scale Spotlight Filter-
ing setups. The final response map at each scale is computed by element-wisely subtracting
the max pooled map with the average pooled map. All maps are fused in-depth with 1*1
convolution layers.
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Figure 5: The illustration of the AppearanceNet Structure.

2.2 AppearanceNet

Given an object template and a Region-of-Interest (ROI), AppearanceNet is designed to lo-
calize that object within the region. This localization is in form of an appearance matching
response map, which is generated by filtering the object template densely across the ROI,
and computing cross-correlation along the way with each pair of sampled sub-windows.

Generally, two approaches have been proposed to perform the matching task. For one,
candidate object proposals are sparsely sampled in the ROI, and then a binary classification
is preformed on them to generate individual similarity score [9, 34, 45, 49]. The second ap-
proach(i.e. the Siamese filtering method we implement in this work) performs the matching
in a dense filtering way. As the similarity score can be computed efficiently with a cheap
cross-correlation computation between the template and the sampled region, this approach
affords to operate in a sliding window strategy, resulting in a dense response map traversing
the ROI. As the filtering process, it can be configured as a network layer and easily inte-
grated into an end-to-end trainable CNN. The difference between this configured layer and
a normal convolution layer is that, instead of computing convolution between a filter and a
feature map, it computes the cross correlation between two feature maps. Such an opera-
tion is not parameterized, but gradients can flow through easily in back propagation. This
Siamese filtering approach can be further categorized as Correlation Filter based [16, 46] or
plain feature map based filtering [4, 19], depending on how the similarity is computed at
each location. In the former one, extra computation has to be spared for training to maintain
the Correlation Filter, and in return the template is more discriminative and representative.

In this work, we adopt the plain feature map template strategy, although performance
can be even improved by using more sophisticated techniques. As shown in Figure 5 (in
the figure each convolution operation represents a convolution unit), the two L-layered CNN
streams share the same parameters, taking the object template and ROI as input. For a filter-
ing based localization task, the spatial resolution information matters, therefore we deploy
a shallow network structure with no downsize pooling to preserve the spatial information.
Besides, no zero padding is added in the filtering process to keep the resulting response map
clean. For the pyramidal implementation, at each of the lth layer the appearance features of
the template patch and the ROI patch are parallelly extracted and represented at a particu-
lar level of abstraction, so that the multi-scale matching and searching is reasonable. The
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feature transformation from spatial dimension to depth dimension is achieved via stride 2
convolutions. At frame t, the template patch Zt−1 ∈ RM×M×D is extracted from the tracked
bounding box in frame t-1 [xt−1,yt−1,wt−1,ht−1]. Meanwhile, ROI Xt ∈ R3∗M×3∗M×D is ex-
tracted from the bounding box [xt−1,yt−1,3 ∗wt−1,3 ∗ ht−1] at frame t. The filtering-based
matching computation at the lth parallel layer is formulated as:

Ot
l = f (φ l(Zt−1),φ

l(Xt)) (3)
where Ol

t ∈ R3∗M×3∗M×1 is the resulting response map and φ l denotes the embedded feature
extracted at the lth layer, while f (∗) is the similarity computation carried out repeatedly
through the filtering process.

In our formulation, f (∗) is the cross correlation which is fast to compute and back prop-
agate friendly. The difference between (3) and a regular convolution layer in a CNN is that,
instead of instantiating another variable Wt as filter to slide through the feature map φ l(Xt),
here we use another feature map as the filter, where gradient is defused during training. The
cross-correlation layer provides an simple method to implement the filtering efficiently with-
in the framework of existing conv-net libraries [4]. The fusion of the total L response maps
{Ot

l |l ∈ L} is conducted through an 1∗1 convolutional layer. For the fusion of two response
maps from both sub-networks, we stack the two response maps in depth, and then also apply
a 1*1 convolution layer to generate a depth 1 output.

3 Experiments
We conduct experiments on OTB2015 [54] and VOT2016 [37] datasets. On OTB2015
we show the results of one-pass evaluation using precision and success plot. 16 trackers
(ECO[11], CCOT [10], SINT [44], SimaeseFC [4], CFNet[46], Struck [17], HCF [32], SCM
[62], TLD [26], ASLA [23], VTD[28], DFT[42], CT[57], IVT[39], CSK[20], MIL[1]) par-
ticipate in the comparison. We compare with 15 published trackers on VOT 2016 dataset (C-
COT [10], TCNN [35], Staple [3], MDNet_N [34], DeepSRDCF [8], SiamAN [4](SiameseFC),
MAD [2], ASMS [47], DSST2014 [12], MIL [1], STRUCK2014 [17], FCT [33], STC [58],
IVT [39], CTF), the performance is measured by the expected average overlap (EAO) metric.

Experimental results have shown that our DCTN achieves top overall performance by
jointly considering the tracking accuracy and speed. DCTN offers a unified tracking network
that jointly capturing both motion and appearance information for visual tracking.

3.1 Implementation Details

Network Training. The DCTN network is end-to-end trained from scratch. We use training
data generated from NUS-PRO [30], TempleColor128 [31], and MOT2015 datasets [29].
Sequences overlap with the test set are eliminated from the first two. The network inputs
are three resized patches, i.e. the object template patch and the ROI centered at the template
patch in frame t-1, also the ROI in frame t. ROI in frame t is cropped at bounding box
[xt−1,yt−1,3 ∗wt−1,3 ∗ ht−1]. Template patch is resized to 64 * 64, while ROI patches to
192 * 192. Training data patches are pre-cropped and resized offline. In experiments, we
use mini-batch size of 16, Xavier initialization, Adam optimizer with weight decay of 0.005,
learning rate start at 1 * 10-3, step-wise dropping to 1 * 10-5. The loss L to be minimized
is defined as an element-wise ridge loss between two response maps, (Spred ∈ RM×M is the
network output, Sgt ∈ RM×M is the ground truth response map, j denotes all elements in the
map, M = 192). The regularization term in the loss is achieved implicitly using the weight
decay method. Spred values are squashed by a sigmoid layer to [0,1]. Sgt is generated by

Citation
Citation
{Bertinetto, Valmadre, Henriques, Vedaldi, and Torr} 2016{}

Citation
Citation
{Wu, Lim, and Yang} 2015

Citation
Citation
{Roffo, Kristan, Matas, Felsberg, Pfugfelder, Cehovin, Vojjir, HAger, Melzi, and Fernandez} 2016

Citation
Citation
{Danelljan, Bhat, Khan, and Felsberg} 2017{}

Citation
Citation
{Danelljan, Robinson, Khan, and Felsberg} 2016

Citation
Citation
{Tao, Gavves, and Smeulders} 2016

Citation
Citation
{Bertinetto, Valmadre, Henriques, Vedaldi, and Torr} 2016{}

Citation
Citation
{Valmadre, Bertinetto, Henriques, Vedaldi, and Torr} 2017

Citation
Citation
{Hare, Golodetz, Saffari, Vineet, Cheng, Hicks, and Torr} 2016

Citation
Citation
{Ma, Huang, Yang, and Yang} 2017

Citation
Citation
{Zhong, Lu, and Yang} 2012

Citation
Citation
{Kalal, Matas, and Mikolajczyk} 2010

Citation
Citation
{Jia, Lu, and Yang} 2012

Citation
Citation
{Kwon and Lee} 2010

Citation
Citation
{Sevilla-Lara and Learned-Miller} 2012

Citation
Citation
{Zhang, Zhang, and Yang} 2012

Citation
Citation
{Ross, Lim, Lin, and Yang} 2008{}

Citation
Citation
{Henriques, Caseiro, Martins, and Batista} 2012

Citation
Citation
{Babenko, Yang, and Belongie} 2011

Citation
Citation
{Danelljan, Robinson, Khan, and Felsberg} 2016

Citation
Citation
{Nam, Baek, and Han} 2016

Citation
Citation
{Bertinetto, Valmadre, Golodetz, Miksik, and Torr} 2016{}

Citation
Citation
{Nam and Han} 2016

Citation
Citation
{Danelljan, Hager, Shahbazprotect unhbox voidb@x penalty @M  {}Khan, and Felsberg} 2015{}

Citation
Citation
{Bertinetto, Valmadre, Henriques, Vedaldi, and Torr} 2016{}

Citation
Citation
{Becker, Krah, H{ü}bner, and Arens} 2016

Citation
Citation
{Vojir, Noskova, and Matas} 2014

Citation
Citation
{Danelljan, H{ä}ger, Khan, and Felsberg} 2017{}

Citation
Citation
{Babenko, Yang, and Belongie} 2011

Citation
Citation
{Hare, Golodetz, Saffari, Vineet, Cheng, Hicks, and Torr} 2016

Citation
Citation
{Maresca and Petrosino} 2014

Citation
Citation
{Zhang, Zhang, Liu, Zhang, and Yang} 2014

Citation
Citation
{Ross, Lim, Lin, and Yang} 2008{}

Citation
Citation
{Li, Lin, Wu, Yang, and Yan} 2016

Citation
Citation
{Liang, Blasch, and Ling} 2015

Citation
Citation
{Leal-Taix{é}, Milan, Reid, Roth, and Schindler} 2015



8 JIANG et al.: DEEP COLLABORATIVE TRACKING NETWORKS

Figure 6: Experiments results on OTB2015 and VOT2016

placing a 2D Gaussian distribution peak at the ground truth bounding box location, with the
radius equals to the bigger value of box width and height to ensure complete enclosure.

L = ∑
j

∥∥∥S j
pred−S j

gt

∥∥∥2
+Lregularization (4)

Tracking Algorithm. with the trained DCTN network, the tracking in test time is de-
scribed as follows: at frame t, three image patches are cropped and resized online relying
on the estimated object state at frame t-1. These patches are then fed into the DCTN net-
work to compute the fused response map, upon which the estimation of current object state
is obtained by searching the maximum value into a bounding box annotation [6].

3.2 Results

OTB2015. As shown in Figure 6, CFNet, SiameseFC, and SINT are latest Siamese based
trackers. Amongst the three, SINT is more related to the proposed method as it integrates
motion cues by taking optical flow as motion features. Noteworthily, the adoption of optical
flow in SINT is off-the-shelf and not end-to-end trainable. Even so, We perform on par with
SINT and achieve much faster speed. SINT runs at around 4fps, while DCTN can reach
26.7fps. CFNet adds a correlation layer based on SiameseFC, but the performance gain
is not considerable. Speed-wise, SiameseFC and CFnet run at approximately 80fps, but we
outperform both of them on success and precision rate measurements. HCF, CCOT and ECO
are the elite trackers applying correlation filter within the deep feature hierarchy pyramidal-
ly. Such a strategy is highly effective but hinders the real-time performance of the tracker.
HCF and CCOT operate at 1fps, ECO speed up CCOT to 8 FPS with the implementation of
factorized convolution operators. In comparison, the proposed tracker reports comparative
performance with significantly increased speed.

VOT2016. As shown in Figure 6, DCTN reports consistent results as on OTB2015,
maintaining an overall favorable performance among all participants. Particularly, DCTN
still outperforms SiamAN, and also shows better results than FCT tracker, which uses pyra-
midal Lucas-Kanade optical flow algorithm to track points object points with motion cues in
pyramid levels. TCNN is one of the best tracker in the VOT challenge, but for maintaining
multiple CNNs, it runs at only 2 FPS.

Ablation Study. To demonstrate the efficacy of the deep collaboration and highlight
the contribution of the motion cues, a further ablation study is conducted. In tracking
scenes where object undergoes challenges such as occlusion, deformation, and illumination
changes, the appearance of the object alters therefore contaminates the appearance informa-
tion. Intuitively, motion cues is insensitive to such variations, and thus is helpful in these
cases. As depicted in Figure 7, the success plots of DCTN and AppearanceNet in condition-
s of occlusion, rotation, scale and illumination changes are reported on OTB2015. In the
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Figure 7: Success plot of DCTN and AppearanceNet in cases of deformation, Occlusion,
and illumination variations

Figure 8: Comparison in scenarios of scale changes and occlusion on OTB2015.

comparison between the DCTN and the AppearanceNet, we aim to demonstrate the contri-
bution of the MotionNet by ablating it out of the DCTN. In accordance with the intuition,
overall DCTN outperforms its appearance-only counterpart by 8.4% in the AUC measure.
While in the appearance-altering scenarios, the improvement ranges increase to 10.6%, 15%,
12.2%, respectively. Moreover, as shown in Figure 8, the ranking of DCTN increase from
the fourth in general to the second best among all in case of occlusion, further indicates the
effectiveness of collaborating appearance and motion cues. What’s more, the performance
improvement of DCTN over AppearanceNet indicates the contribution of the MotionNet.

Table 1: Success plot and speed performance of top-ranking trackers on OTB2015. In the
table, superior readings over the proposed DCTN is marked in green.

Trackers DCTN ECO SINT SiameseFC CFNet TCNN HCF
FPS 27 8 4 86 75 2 1
AUC 0.654 0.694 0.655 0.607 0.574 0.654 0.638

Discussion. DCTN achieves best performance in terms of the overall tracking accuracy
and speed. As shown in Table 1, no listed tracker can beat DCTN in both accuracy and speed
measures. Specifically, only SiameseFC and CFNet are faster then DCTN, while DCTN out-
performs them greatly in tracking accuracy. Meanwhile, in comparison with ECO and SINT
who are the only two that have better tracking accuracy, DCTN runs significantly faster.
This result can be attributed to the effective collaboration of appearance and motion cues,
resulting in more informative and robust feature representation. Particularly, the motion cue
is compactly integrated with acceptable computation overhead, and is proven to be benefi-
cial and contributive to handle appearance variations. Besides, the AppearanceNet is also
lightweight and cheap-to-compute, and the pyramidal feature hierarchy equips the tracker
with scale adaptivity (DCTN ranks the third overall in handling scale variations as shown in
Figure 8). What is more, the overall end-to-end training of the DCTN tightly couples all the
components in the network, achieving an intact and cooperative solution. The offline training
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strategy of DCTN relieves the online training and updating expenses, further contributing to
the network efficiency. We highlight that the major contribution made in this work is the
unified tracking framework that jointly explores both motion and appearance information.
Indeed, the overall performance of DCTN can be further boosted by off-line training the
AppearanceNet on larger dataset such as ImageNet Video [40].

Even though DCTN shows leading performance jointly considering tracking accuracy
and speed, yet there are still challenges that could lead to degradation of tracking perfor-
mance, or even tracking failures. Firstly, the MotionNet can absorb the camera motion to
some degree, but excessive camera motion may still result in noisy detections by the Mo-
tionNet as false positive responses, therefore limits the contribution of the motion features in
locating the target; Secondly, as in AppearanceNet we progressively update the target tem-
plate using newly tracked target state, so that when drastic occlusion or deformation occurs,
the template may fail to represent the true appearance of target thus lead to drifting problem.
As a solution, in future works we plan to fuse the target template acquires from initialization
together with the updated template, so that the fused template can be updated with stability.

4 Conclusions
In this paper, we have presented deep collaborative tracking network, a generalized frame-
work that capturing both motion and appearance for visual tracking. We design the Motion-
Net to realize deep frame differencing motion detection with background suppression and
foreground enhancement. We design AppearanceNet to conduct pyramidal Siamese filtering
based appearance matching. Extensive experiments results demonstrate the contribution of
the motion cues and the benefits of collaborating motion with appearance in tracking.
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