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Abstract

In bin-picking scenarios, multiple instances of an object of interest are stacked in a
pile randomly, and hence, the instances are inherently subjected to the challenges: severe
occlusion, clutter, and similar-looking distractors. Most existing methods are, however,
for single isolated object instances, while some recent methods tackle crowd scenarios as
post-refinement which accounts for multiple object relations. In this paper, we address
recovering 6D poses of multiple instances in bin-picking scenarios in depth modality
by multi-task learning in deep neural networks. Our architecture jointly learns multiple
sub-tasks: 2D detection, depth, and 3D pose estimation of individual objects; and joint
registration of multiple objects. For training data generation, depth images of physically
plausible object pose configurations are generated by a 3D object model in a physics
simulation, which yields diverse occlusion patterns to learn. We adopt a state-of-the-art
object detector to generate bounding boxes and 2D offsets are further estimated via a
network to refine misalignments in 2D detections. Additionally, the depth and 3D pose
estimators are designed to generate multiple hypotheses per detection. This allows the
joint registration network to learn occlusion patterns and remove physically implausi-
ble pose hypotheses. We apply our architecture on both synthetic (our own and Siléane
dataset) and real (a public Bin-Picking dataset) data, showing that it significantly outper-
forms state-of-the-art methods by 15-31 % in average precision.

1 Introduction
6D object pose recovery has been extensively studied in the past decade as it is of great
importance to many real-world applications, such as scene interpretation, augmented real-
ity, and particularly, robotic grasping and manipulation. Robotic manipulators can facilitate
industry-related processes, e.g., warehousing, material handling, packaging, picking items
from conveyors, shelves, pallets, and placing those to desired locations, as demonstrated in
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Figure 1: Our multi-task learning network architecture consists of three modules, each optimized for
different sub-tasks: 2D detection, 6D pose estimation, and joint registration. During inference, each
sub-tasks are sequentially performed (red and blue arrows). During training, the network is trained
jointly using multi-task losses, generating the convolutional features shared across sub-tasks.

Amazon Picking Challenge (APC) [9].
A special scenario for robotic manipulation is bin-picking, where multiple instances of

an object of interest exist in the scene. Being randomly stacked in a box, or on a pallet, the
instances are inherently subjected to severe occlusion and clutter, thus making the estimation
of the 6D poses of multiple instances challenging.

Most existing methods considers single object instance [30] scenario, while few recent
methods tackle crowd scenarios in post-refinement which accounts for multiple object rela-
tions [7]. Prior-arts for 6D object pose include template-based methods [10], point-pair fea-
tures [8], or per-pixel regression/patch-based on top of Hough forests [4, 7, 17, 27]. These
methods are mostly applied and tested on single object scenario with mild occlusion. More
recent methods adopt CNNs for 6D pose estimation, taking RGB images as inputs. BB8 [21]
and Tekin et al. [29] perform corner-point regression followed by PnP for 6D pose estima-
tion. SSD6D [16] uses SSD for 2D bounding box detection, while depth is directly inferred
from the scales of bounding boxes, and applies a network with a softmax layer for 3D pose.
The method has shown comparable performance to other RGBD-based methods, however,
fails in the occlusion dataset [4].

For the crowd scenarios, i.e., bin-picking, rather than considering each hypothesis indi-
vidually, [1] formulates a joint registration problem. It obtains an optimal set of hypotheses
of multiple objects by minimizing the cost function. Doumanoglou et al. [7] collect a real
dataset of bin-picking scenarios, proposing 6D pose estimator based on a sparse auto-encoder
and hough forest, and then tackling the joint registration in the similar way [1]. Recently,
[5] proposes a dataset of both synthetic and real in bin-picking scenarios, and [20] tackles
deformable objects (fruits) in crowd by matching local descriptors.

In the domain of 2D object detection, recent methods have shown that learning the rela-
tion between nearby hypotheses in crowd scenario can increase the detection performance by
effectively suppressing false hypotheses. [13] proposes a method to learn non maximum sup-
pression for 2D bounding boxes. More recently, [14] trains a 2D detection network jointly
with relation module in an end-to-end manner.

In this paper, we propose a depth-based 6D pose estimation network which jointly detects
and directly recovers (without ICP) full 6D poses from single depth images. Depth image is
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used in the proposed architecture, as instances are densely populated in crowd scenario and
geometric information from depth image is desirable. Directly estimating multiple 6D poses
of objects from a single image is a difficult task, therefore the architecture has modules opti-
mized for different sub-tasks: image 2D detection, depth estimation and 3D pose estimation
for individual objects, and joint registration of multiple objects as shown in Fig. 1. Although
the full architecture consists of several modules, the tasks are jointly learned. The proposed
network explicitly learns physically plausible object pose configurations and occlusion pat-
terns from depth images generated by physics simulator and 3D models of objects.

2D offset estimation regresses 2D center position of the object given the detected box
coordinate to compensate misalignment during the bounding box regression. Multiple hy-
potheses per detected object are generated by the depth and 3D pose estimator by formulating
the estimation problem as a classification task. Lastly, relations between hypotheses from
the pose estimator are modeled by the joint registration network using block modules [13]
to suppress false positives. Our architecture is evaluated on both synthetic and real datasets
demonstrating that it significantly outperforms state-of-the-art methods by 15-31 % in AP.

2 Related Work
In this section, we first review 6D object pose recovery for single object instances, and then
for crowd scenarios, i.e., bin-picking. Lastly, we present studies on relational reasoning,
which is used to further improve the confidence of a 6D hypothesis in our study.
Single object instances. Under moderate occlusion and clutter, accurate pose estimation
has been achieved by approaches with handcrafted features [8, 10, 27]. 3D feature pro-
posed in [8] can deal with clutter and occlusion but the performance depends on the com-
plexity of the scene and it is computationally expensive. A holistic template matching ap-
proach, Linemod [10], exploits color gradients and surface normals to estimate 6D pose.
However, it is sensitive to occlusion as it is difficult to match occluded object to template
captured from a clean view of the object. More recently, per-pixel regression/patch-based
approaches [4, 7, 17, 27] has shown robustness across occlusion and clutter. [4, 17] use
random forest to obtain pixel-wise prediction of class and object coordinate followed by
RANSAC. However, performance was only evaluated on scenes with mild occlusion and
limited variability of object poses relative to the camera. LCHF[27] and Doumanoglou et
al. [7] use patch-based approach on top of hough voting and has shown strong performance
under moderate occlusion. However, detection of objects under strong occlusion is difficult
as the occluded object only receives vote from visible portion in hough space.

More recent paradigm on recovering 6D object pose is to formulate the problem using
neural networks[3], jointly learning 6D pose estimation in RGB-only images [16, 29, 31].
[16] extends 2D object detector to simultaneously detect and estimate pose and recover 3D
translation by precomputing bounding box templates for every discrete rotation. However,
predicted bounding boxes can be highly variable in the presence of occlusion which may
lead to incorrect 3D translation estimation. Rad et al. [21] regress 3D bounding box coordi-
nates in 2D image plane and utilizes PnP algorithm to recover the full 6D pose. However, the
method uses segmentation masks to detect objects and thus making the hypotheses unreliable
when objects of the same class are in high proximity. Despite being robust across occlusion
and clutter under non-crowd scenarios, the methods [16, 21] require a final refinement step
in order to generate accurate hypotheses. [29] does not need post-processing. However, the
method aggregates estimation from multiple cells under the assumption that adjacent cells in
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the tessellated input image belong to the same object, limiting the scalability of the method
to isolated scenarios.

Crowd scenarios. Bin-picking scenario is a very challenging task for any vision algorithm
since it exhibits several cascading issues (e.g., severe occlusions, foreground clutter, etc.).
The method proposed by Liu et al. [19] extracts robust depth edges and employs fast direc-
tional chamfer matching to reliably detect objects and estimate their poses. [1] obtains an
optimal set of hypotheses of multiple objects by minimizing a cost function, rather than con-
sidering each hypothesis individually. [7] proposes 6D pose estimator of individual objects
based on a sparse auto-encoder and hough forest tackling the joint registration in a similar
way as [1]. However, the method is computationally demanding with increasing number of
hypotheses. [20] tackles deformable objects (fruits) in the crowd by matching local descrip-
tors. Recently, Zeng et al. [32] address the challenges of the crowd scenarios proposing a
self-supervised deep learning method for 6D pose estimation in Amazon Picking Challenge.
Relational reasoning. Although most modern object detectors generate detection hypothe-
ses independently, recent works have shown exploiting the relation between hypotheses helps
under high occlusion. [18] models the relation between detection hypotheses and uses de-
terminantal point process to select the most confident hypothesis. [26] proposes a network
for person detection which eliminates the non maximum suppression stage by modeling the
relation between detections using LSTM [12]. Gossipnet[13] performs non-maximum sup-
pression by proposing a block module which develops a representation for each detection
which accounts for other nearby detections. [14] adds an extra layer called relation module
to the standard object detection framework and jointly trains in an end-to-end fashion. It
has shown that learning object detector with relational reasoning improves detection perfor-
mance. Both methods [13, 14] use relational reasoning to remove duplicate hypotheses in 2D
detection. In this work, the architecture developed in [13] is extended to 6D pose estimation
problem.

3 Proposed Architecture
A key challenge in object pose estimation in bin-packing scenarios is that multiple object
instances exhibit severe occlusions under environments cluttered with the same object. For
severely occluded objects, the 6D pose predictions made based on visible parts are inherently
ambiguous (see Fig. 2(b)). Therefore, a joint registration step exploiting the neighborhood
context (of how the pose of an object is related to neighboring objects) is essential to making
reliable predictions. Existing approaches address this issue only at the testing stage, e.g.,
using non-maximum suppression (NMS) and the training of their pose estimators is agnostic
to such occlusion behaviors: They are trained on isolated object instances. Instead, we
directly incorporate the variety of occlusion patterns and the possibility of exploiting the
neighborhood context into the training phase. To facilitate this process, we construct a new
training dataset that reflects such a realistic occlusion-heavy application environment.

Figure 1 shows our pose estimator architecture consisting of three modules, each instan-
tiated as a deep neural network: The detection module (red) estimates 2D (along the im-
age plane in the depth map) object locations as bounding boxes. Within each hypothesized
bounding box, 6D pose estimation module (blue) estimates the center of the object (which
may differ from the center of its bounding box) and its depth (completing the 3D locations),
and based on them, generates multiple 3D pose hypotheses (as singling out a correct pose
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is challenging under heavy occlusions). Finally, the joint registration module (green) disam-
biguate between multiple 6D pose hypotheses and eliminate false positives by considering
local neighborhood structures. Exploiting the dependency present in these three tasks and
the corresponding modules, we formulate their joint training as multi-task learning (MTL):
All three modules share the same depth feature extractor (yellow block in Fig. 1), enabling
the training of convolutional features in a unified manner.1

The overall loss function (of network weights) is defined per depth image as:

L = LD +LO +LD +LP, (1)

with LD, LO, LD, and LP being the losses for estimating 2D bounding boxes, 2D object
centers, 3D depths, and 6D poses, respectively. During training, the backward propagation
takes place as usual for each module, and they are subsequently combined to update the
shared feature extractor in Fig. 1. The 2D detection and 6D pose estimation modules are
simultaneously updated while for the update of the joint registration module, we hold the
rest of the network weights fixed for improved convergence. The remainder of this section
details each module and the corresponding individual loss function in Eq. 1.

Generating training images. Unlike most existing 6D pose estimators which learn object
appearance from isolated views of objects, our system jointly learns object appearances and
their mutual occlusion patterns based on cluttered scene images. Figure 2(a) illustrates the
generation of training data in this scenario: First, we construct a cluttered scene in a virtual
environment by randomly stacking the object of interest in a box similarly to [5, 25](Fig. 2(a)
left). Each object has 2,000 different bin picking scenes, each of which has 10 to 20 in-
stances in the virtual bin. Then, we render training depth images by sampling virtual camera
views (Fig. 2(a) middle): The camera is always facing towards the center of the bin but with
randomized in-plane rotations to capture various occlusion patterns. 17 depth images are
generated from each scene constituting a set of 34K images per object.

2D bounding box detection. In a bin-picking scenario, the number of objects in a given
scene is not known a priori. Therefore, the traditional detection strategy of predicting the
single most probable location is not applicable. We employ Faster RCNN [22] which has
shown its effectiveness in detecting multiple objects in cluttered scenes. While Faster RCNN
was originally developed for RGB images, applying it to depth maps is straightforward.
The network receives a single image and generates a bounding box and its confidence per
object instance: During training, it minimizes the box regression error (via L1-loss), and for
the detection confidence, the soft classification error (via cross entropy) of foreground and
background. We denote the combination of the two losses as LD (see Eq. 1).

6D pose estimation. The 6D pose of an object consists of its 3D location and 3D pose
(orientation). Given the bounding box of each object instance estimated by 2D detection
module, 6D pose estimation module generates multiple hypothesized 6D poses, which are
subsequently fed to the joint registration module.

2D object center estimation. For each bounding box, we first estimate the accurate 2D
location of the corresponding object center. In existing 6D pose estimation approaches (de-
veloped for uncluttered scenes) [6, 16], the center of an estimated box is considered identical
to the center of the object it contains. For uncluttered scenes, this is reasonable as often, the

1As there are non-differentiable paths joining the three modules (along the red and blue arrows in Fig. 1), the
training is not end-to-end.
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Figure 2: (a) Training data generation process: (left) A cluttered scene generated via physical simula-
tion; (middle) An example training view rendered from the scene in (left); (right) Example occlusion
patterns (for visualization only; our network is trained on holistic images). (b) (left) An example detec-
tion under severe occlusion (overlaid on the RGB image for visualization); (right) Multiple hypotheses
with confidences (the brighter is the higher in the heatmap) generated by the 6D pose estimator.

estimated boxes are well-aligned with the underlying tight ground-truth bounding boxes.
However, we experimentally observed that for objects under severe occlusion, such accurate
bounding box estimation is extremely challenging, and naïvely basing the joint registration
on such erroneous 2D location estimates eventually leads to erroneous 6D pose predictions
(see Table 1(a) ‘Ours (w/o offset)’). Therefore, we construct an additional 2D regression
network that explicitly estimate the object centers by minimizing the deviation from the
ground-truth within each bounding box:

LO =

∥∥∥∥[x− cx

w
,

y− cy

h

]>
−
[

x∗− cx

w
,

y∗− cy

h

]>∥∥∥∥
1
, (2)

where (x,y) and (x∗,y∗) denote the predicted and the ground-truth object center coordinates,
respectively, (w,h) represents the width and height of the detected box, and (cx,cy) is the
top-left corner coordinate of the box.

3D pose and depth estimation. A common approach to 3D pose estimation is regression,
e.g., to estimate the quaternion [2] or the elements of rotation matrices [6]. However, in
the preliminary experiments, we observed that when the object undergoes severe occlusion,
generating a single reliable pose estimate is challenging: Inspected at only small portions
of objects, indeed, significantly different pose configurations can be instantiated from visu-
ally very similar depth values (see Fig. 2(b) for example). To circumvent this challenge, we
first generate multiple pose hypotheses and disambiguate them afterward by exploiting the
context of neighboring detections and their pose hypotheses during joint registration. To fa-
cilitate hypothesis generation, we adopt the classification approach of Kehl et al. [16]: Three
rotation components are estimated separately, each represented as a classification problem
with different classes binning an angle range: We use 30, 13, and 30 classes for pitch, yaw,
and roll, respectively. For objects with axial symmetry, the roll component is not estimated.
Similarly, the 3D depth values are estimated via classification (into 140 bins). The standard
soft-max cross-entropy loss is used for training (LP for 3D pose and LD for depth):

LP(D) =
1
N

N

∑
i=1

y∗i · log(yi), (3)

where y∗ is the ground-truth in the form of one-hot encoding, yi is the class estimation after
softmax activation, and N is the batch size. Combining the hypotheses across all rotation and
depth dimensions, we obtain 1.638M possible combinations (1.75K for axially symmetric
objects) each provided with a confidence value as a product of individual classification con-
fidences. These confidences are used by the joint registration module along with the spatial
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Figure 3: (a) Schematic diagram of the feature extractor in the joint registration module (inspired
by [13]) applied to a hypothesis (green) with multiple neighboring hypotheses. Hatched boxes are the
6D relation features. Color in the box corresponds to hypotheses on the left image. Features from
different hypothesis and 6D relation feature are concatenated. Variable number of neighbors for each
hypothesis is reduced to a single feature by max-pooling. (b) An example neighborhood pattern: The
intersection of the corresponding bounding boxes is highlighted in yellow; The black dotted line joints
the center of bounding boxes; Blue and magenta arrows represent yaws and pitches, respectively.

configurations of neighboring detections. For computational efficiency, before joint registra-
tion, we sample only five hypotheses per object by first removing many similar hypotheses
using NMS, and then selecting the remaining hypotheses with the five highest confidences.

Joint registration. By design, the pool of hypotheses generated from 6D pose estimation
module contains multiple false positives. As no prior information on the number of ground-
truth object instances or their spatial configurations is available, the joint registration module
needs to consider simultaneously the spatial configurations of multiple hypothesized object
poses. We adapt GossipNet framework proposed by Hosang et al. [13] for this purpose:
Applied to the bin-picking scenario, our GossipNet adaptation classifies each hypothesis of
interest (HOI) into True positive (1) or False positive (−1) classes. The classification is
made based on a contextual feature encapsulating the spatial configurations of neighboring
hypotheses (whose 3D bounding boxes overlap with the HOI). Figure 3(a) visualizes this
feature extraction process: First, for a given HOI (green), all neighboring hypotheses (NH;
e.g. red) are identified. Then, for each identified NH and HOI pair, an intermediate fea-
ture vector is generated by concatenating 1) the image depth features calculated within the
bounding boxes of HOI and NH, respectively (solid green and red boxes in Fig. 3(a); See
Fig. 1(shared feature)) and 2) 13-dimensional feature vector of their joint configurations(6D
relation feature): (1-2) confidence score of each detection, (3) intersection over union score
of bounding boxes, (4-9) Euler angles normalized to [0,1], (10-12) distances between the two
detection centers along each x, y, and z direction, normalized by the bounding box diameter,
and (13) normalized L2 distance between the two detection centers.

The multiple intermediate pair-wise features (for all identified NHs) constructed in this
way are then pooled to make a single contextual feature vector facilitating the classification
independently of the number of neighboring hypotheses. During training, the registration
network fJ (combining the contextual feature extractor and a fully connected network clas-
sifier) minimizes the classification loss given below [13]:

LJ( fJ) =
N

∑
i=1

ai · log(1+ exp(− f (hi) · yi)). (4)

Here, the batch-size N is the number of total hypothesis {hi} in a single depth image, yi ∈
{−1,1} represents the ground-truths, and ai is a weight compensating the class imbalance
decided at 1 and 16 for 1 and −1 classes, respectively.
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Figure 4: Qualitative results of top 20 hypotheses for the Coffee cup and bunny scenario. (a) For
each triplet: (top) Input depth image. (middle) Detected bounding boxes. RGB image is used for
visualization. (bottom) Reconstructed scene from hypotheses. Difficult objects are highlighted in
green box annotated with visibility ratio. Objects with severe occlusion, some of which have visibility
as low as 30%, are successfully recovered. (b) For each triplet: (top) and (middle) The input depth
image and the corresponding RGB image (for visualization); (bottom) Hypotheses projected onto the
RGB image. True and false positives are highlighted in green and red, respectively

4 Experiments
We evaluate our network on four objects from two different bin-picking datasets where multi-
ple object instances occlude each other, reflecting realistic application cases: Coffee cup from
the Bin-Picking dataset [7], and Bunny, Pepper, and Candlestick from the Siléane dataset [5].
We compare with existing algorithms: Linemod algorithm [10]; 3D point-pair-feature (PPF)-
based algorithm [8]; and Latent-class Hough forest (LCHF) [27]. While PPF and LCHF are
known to be robust to scene clutters and occlusions, respectively, they are not specifically
designed for bin-picking applications. Therefore, we also compare with hypotheses verifi-
cation approach [1] that extends Linemod and PPF for bin-picking applications (referred to
as ‘Linemod+PP’ and ‘PPF+PP’, respectively). To gain an insight into the effectiveness of
our multi-task learning approach in general 6D pose estimation (non bin-picking cases), we
also evaluate our algorithm on the Domestic Environment dataset (Coffee cup object) [27]
providing examples of multiple object instances under mild occlusions.

The accuracy of predictions is measured in average precision (AP; equivalently, the area
under the precision-recall curve) evaluated based on Sym criteria adopted from [5]: Based on
Sym, a hypothesis is accepted (considered as a true positive) if the distance to ground-truth
is smaller than 10% of the diameter of the smallest bounding sphere. We calculated the AP
values of our algorithm using the evaluation code shared by the authors of [5] enabling a
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(a) (b)
22

Figure 5: (a) Input depth image and example 6D pose estimates by Linemod, LCHF, and Ours, respec-
tively (clockwise from top-left). Correctly estimated poses are highlighted in green. (b) The precision
and recall curves of Linemod, LCHF, and our algorithm on Coffee cup dataset.

Table 1: (a-b) AP values of different algorithms in crowd scenario: Each pose hypothesis is evaluated
in Sym criterion (a) and ADD criterion (b). (c) F1 scores for Domestic Environment dataset (Cup
object) [27] with ADD.

Method Bunny [5] cup [7] pepper [5] C.stick [5]

Linemod [10] 0.39 0.08 0.04 0.38
Linemod+PP [1] 0.45 0.20 0.03 0.49
PPF [8] 0.29 0.28 0.06 0.16
PPF+PP [1] 0.37 0.30 0.12 0.22

Ours (w/o offset) 0.49 0.53 0.32 0.53
Ours 0.74 0.55 0.43 0.64

(a)

Method Cup [7] Cup [7]
(real) (synt.)

Linemod [10] 0.38 0.32
LCHF [27] 0.30 0.31
SSD6D [16] 0.07 0.01

Ours 0.68 0.80

(b)

Method Cup [27]

Linemod [10] 0.819
PPF [8] 0.867
LCHF [27] 0.877
Sahin et al. [24] 0.793
Kehl et al. [15] 0.972

Ours 0.992

(c)

direct comparison with the results of Linemod(+PP) and PPF(+PP) supplied from [5]. We
also measure the AP based on ADD criteria [11] which accepts a hypothesis if its average
distance from the ground-truth pose is less than 0.1 times the object diameter.

Results on bin-picking datasets. 2 Table 1(a) summarizes the AP scores. No clear win-
ner was found among the two classical algorithms, Linemod and PPF: Each one is better
than the other on two datasets. As these algorithms are not designed for heavily cluttered-
scenes, applying extra verification [1] significantly improved performance (Linemod+PP and
PPF+PP). None of these four existing methods accounts for the occlusion patterns during
training. Instead, they use the ICP to verify and refine the estimated hypothesis. By explic-
itly and simultaneously learning the occlusion patterns and object shapes during training, our
algorithm (Ours) constantly outperformed existing algorithm with a large margin (15-31%)
even without having to rely on the external ICP algorithm.

For qualitative comparison, Fig. 5(a) shows example detections: LCHF, Linemod, and
Ours all correctly estimated the 6D poses of unoccluded foreground objects. However, LCHF
and Linemod missed multiple objects with only mild levels of occlusions (highlighted in

2As the original Bin-Picking dataset contained erroneous ground-truth annotation, every frame has been manu-
ally re-annotated via visual inspection.
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red), while our algorithm correctly recovered all objects with only two false positives lead-
ing to constantly and significantly higher precision across different recall values (Fig. 5(b)).

Due to severe occlusions caused by multiple instances of a single object, estimating
the 6D poses in bin-picking using pure RGB-based approaches is challenging. We verified
this by applying the state-of-the-art SSD6D algorithm [16] in this scenario3 (Table 1): Not
surprisingly, the results of SSD6D algorithm failed to match the level of any depth image-
based pose estimation algorithms in comparison.

‘Ours (w/o offset)’ in Table 1(a) shows the AP score of our algorithm obtained without
the object center estimation to assess its contribution: Under severe occlusion, the initial
bounding box detections are not tightly aligned with the ground-truths. Therefore, excluding
this component severely degraded the joint registration process.

We also evaluate the performance of our algorithm with ADD (Table 1(b)), which recon-
firms the benefit of our explicit occlusion pattern learning approach. Note that both Linemod
and LCHF, in comparison, use RGBD data whereas ours uses only depth images.

Non bin-picking scenario. We use the F1 score following publicized results supplied in
[15, 28] (Table 1(c)): Even though our algorithm was trained for bin-packing scenes (with
training data consisting of only foreground scenes), and it does not use the ICP refinement in
contrast to others, it significantly outperformed Linemod [10], PPF [8], and LCHF [24] and
is on par with the state-of-the-art kehl et al.’s algorithm [15] demonstrating the effectiveness
and robustness (to unseen background clutters) of our algorithm.

Implementation details and complexities. Our shared feature extractor (Fig. 1) is initial-
ized with Imagenet-trained VGG network [23]. The entire network was trained using the
ADAM optimizer with 10−5 learning rate. Training the network on each object took around
10 hours in a machine with a GTX1080ti GPU. Testing a single depth image took 204ms.

5 Conclusion

Object detection and pose estimation in bin-packing scenarios is challenging due to severe
occlusions caused by multiple instances of the same object. Existing approaches are lim-
ited in that their estimators are trained on isolated object instances and they do not directly
consider possible mutual occlusion patterns during training. We presented a new 6D pose
estimation framework that is trained directly on the scenes demonstrating multiple occlusion
patterns. Our framework is instantiated as 2D detection, 6D pose hypothesis generation,
and joint registration submodules which are jointly trained via a new multi-task loss. The
resulting algorithm significantly outperformed the state-of-the-art 6D object pose estimation
approaches on challenging datasets.

Acknowledgement: This work is part of Imperial College London-Samsung Research
project, supported by Samsung Electronics. Kwang In Kim thanks RCUK EP/M023281/1.

3We used the code kindly shared by the authors of this work.
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