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Abstract

We propose a self-supervised framework for learning facial attributes by simply watch-
ing videos of a human face speaking, laughing, and moving over time. To perform this
task, we introduce a network, Facial Attributes-Net (FAb-Net), that is trained to embed
multiple frames from the same video face-track into a common low-dimensional space.
With this approach, we make three contributions: first, we show that the network can
leverage information from multiple source frames by predicting confidence/attention
masks for each frame; second, we demonstrate that using a curriculum learning regime
improves the learned embedding; finally, we demonstrate that the network learns a mean-
ingful face embedding that encodes information about head pose, facial landmarks and
facial expression – i.e. facial attributes – without having been supervised with any la-
belled data. We are comparable or superior to state-of-the-art self-supervised methods
on these tasks and approach the performance of supervised methods.

1 Introduction

Babies and children are highly perceptive to the facial expressions of the people they interact
with [14, 18]. The ability to understand and respond to changes in people’s emotional state is
similarly important for computer vision systems and affective systems when interacting with
a human user. Thus being able to predict head pose and expression is of vital importance.

Recently, leveraging deep learning has led to state-of-the-art results on a variety of tasks
such as emotion recognition and facial landmarks detection. Despite these advances, super-
vised methods require large amounts of labelled data which may be expensive or difficult to
obtain in realistic, unconstrained settings, or necessitate assigning data to ill-defined cate-
gories. For example, categorising emotions with three human annotators leads to only 46%
agreement [2], and labelling pose in the wild is notoriously difficult. Moreover, performing
each task independently does not leverage the fact that detecting landmarks requires under-
standing pose and facial features, which in turn correspond to expression.

Consequently, we consider the following question: is it possible to learn an embedding
of facial attributes that encodes landmarks, pose, emotion, etc. in a self-supervised man-
ner without any hand labelling? The learned embedding can then be used for another task
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Figure 1: An overview of FAb-Net. In the single-source case (top), the encoder-decoder
architecture takes one source frame and a target frame as inputs and learns to generate the
target frame. The 256-dimensional outputs of the encoders – the source and target attribute
embeddings – are concatenated and input to the decoder. The decoder predicts the point-
to-point correspondence from the source frame to the target frame, and RGB values for the
generated frame are then obtained from the source frame using a bilinear sampler. The
network is trained with an L1 loss between the generated frame and the target frame. In the
multi-source case (bottom), the decoder also predicts a confidence map, and the confidence
maps are used to weight the contributions of the different source frames.

(e.g. landmark, pose, and expression prediction) using a linear layer. To do this, we con-
tribute FAb-Net, a self-supervised framework for learning a low-dimensional face embed-
ding for facial attributes (Section 3). We take advantage of video data which contains a large
collection of images of the same person from different viewpoints and with varied expres-
sions. Given only the embeddings corresponding to a source and target frame, the network
is tasked to map the source frame to the target frame by predicting a flow field between
them. This proxy task forces the network to distil the information required to compute the
flow field (e.g. the head pose and expression) into the source and target embeddings. After
explaining the setup for a single source frame in Section 3.1, we introduce our additional
contributions: a method for leveraging multiple frames in order to improve the learned em-
bedding in Section 3.2; and how a curriculum strategy for training FAb-Net in Section 4 can
be used to improve performance.

The learned embedding is extracted and used for a variety of tasks such as landmark
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detection, pose regression, and expression classification in Section 5 by simply learning a
linear layer. Our results on these tasks are comparable or superior to other self-supervised
methods, approaching the performance of supervised methods. These experiments verify the
hypothesis that our self-supervised framework learns to encode facial attributes which are
useful for a variety of tasks. Finally, the method is tested qualitatively by using the learned
embedding to retrieve images with similar facial attributes across different identities.

2 Related Work

Self-supervised learning. Self-supervised methods such as [12, 38, 43, 62] require no man-
ual labelling of the images; instead, they directly use image data to provide proxy supervision
for learning good feature representations. The benefit of these approaches is that the features
learned using large quantities of available data can be transferred to other tasks/domains
which have less or even no annotated data. To provide further supervision from image data,
the images themselves can be transformed via a synthetic warp or rotation and the network
trained to recognise the rotation [19] or to learn equivariant pixel embeddings [40, 51, 52].

Of more direct relevance to our training framework are self-supervised frameworks that
use video data ([1, 8, 11, 16, 17, 21, 22, 30, 34, 44, 55, 56, 58, 61]). Our approach builds in
particular on those that use frame synthesis [8, 11, 22, 44, 56, 58], though for us synthesis is
a proxy task rather than the end goal. Note, unlike [16, 30, 34, 55], we do not make use of
the temporal ordering information inherent in a video; nor do we predict future frames con-
ditioned on a number of past frames [44], or explicitly predict the motion between frames
as a convolutional kernel [22, 58], or condition the generation on another modality (e.g.
voice [8]). Instead, we treat the frames as an unordered set, and propose a simple formula-
tion: that by embedding the source and target frames in a common space and conditioning
the transformation from source to target frame on these embeddings, the learned embeddings
must learn to encode the relevant modes of variation necessary for the transformation.

Concurrent to our work, Zhang et al. [64] and Jakab et al. [21] build on [51] by using the
discovered landmarks to reconstruct the original image. However, unlike these works, we do
not place any constraints on the learned representation – such as an explicit representation
that encodes landmarks as heatmaps.
Supervised learning of face embeddings. Given known (labelled) attribute information,
e.g. for pose or expression, the embedding can be learned by training in a supervised manner
to directly predict the attribute [28, 32, 46], or to generate images (of faces, cars, or other
classes) at a new, known pose, expression, etc. [13, 25, 53, 59, 68]. Another way of su-
pervising a face embedding is to explicitly learn the parameters of a 3D morphable model
(3DMM) [7]. As fitting a 3DMM is relatively expensive, [3, 50] learn this end-to-end using
either landmarks or a photometric error as supervision. However, unlike our method, these
methods require either ground truth labels or a morphable model which fixes the modes of
variation and the embedding.
An interesting half-way point is weak supervision, where the learned object or face em-
bedding is conditioned for instance on object labels [39] or weather/geo-location informa-
tion [31] respectively. This requires additional meta-data, but results in embeddings that can
represent attributes such as age and expression for faces or keypoints for objects.
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3 Method

The aim is to train a network to learn an embedding that encodes facial attributes in a self-
supervised manner, without any labels. To do this, the network is trained to generate a target
frame from one or multiple source frames by learning how to transform the source into the
target frame. The source and target frames are taken from the same face-track of a person
speaking, i.e. the frames are of the same identity but with different expressions/poses. An
overview of the architecture is given in Fig. 1 and further described for a single source frame
in Section 3.1 and for multiple source frames in Section 3.2 (additional details are given in
the supp. material).

3.1 Single-source frame architecture

The input to the network is a source frame s and a target frame t from the same face-track.
These are passed through encoders with shared weights which learn a mapping f from the
input frames to a 256-dimensional vector embedding (as shown in Fig. 1). The embeddings
corresponding to the target and source frames are vt = f (t) and vs = f (s) respectively. The
source and target embeddings are concatenated to give a 512-dimensional vector which is
upsampled via a decoder. The decoder learns a mapping g from the concatenated embeddings
to a bilinear grid sampler, which samples from the source frame to create a new, generated
frame s0 = g(vt ,vs)(s). Precisely, g predicts offsets (dx,dy) for each pixel location (x,y) in
the target frame; the generated frame s0 at location (x,y) is obtained by sampling from the
source frame s according to these offsets : s0(x,y) = s(x+dx,y+dy). The network is trained
to minimise the L1 loss between the generated and the target frame: L(s0, t) = ||t � s0||1.

This setup enforces that the embeddings vs and vt represent facial attributes of the source
and target frames respectively since the decoder maps from the source frame s to generate
the frame s0 (i.e. it uses pixel RGB values from the source frame s to create the generated
s0 – a similar formulation has been proposed concurrently to this work by [54]). As the
decoder is a function of the target and source attribute embeddings, and the decoder is the
only place in the network where information is shared, the target attribute embedding must
encode information about expression and pose in order for the decoder to know where to
sample from in the source frame and where to place this information in the generated frame.

3.2 Multi-source frames architecture

While using two frames for training enforces that the network learns a high-quality embed-
ding, additional source frames can be leveraged to improve the learned embedding. This
is achieved by also predicting a confidence heatmap – a 1 channel image – for each source
frame via an additional decoder. The heatmaps denote how confident the network is of the
flow at each pixel location – e.g. if the source frame has a very different pose than the target
frame, the confidence heatmap would have low certainty. Moreover, it can express this for
sub-parts of the image; if the mouth is closed in the source but open in the target frame,
the confidence heatmap can express uncertainty in this region. The confidence heatmaps Ci
are combined pixel-wise for each source frame si using a soft-max operation. For n source

frames, the loss function to be minimised is given as L= ||t � Ân
i=1 eCi⇤(g(vt ,vsi )(si))

Ân
i=1 eCi

||1.
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4 Curriculum Strategy

The training of the network is divided into stages, so that knowledge can be built up over
time as the examples given become progressively more difficult, as inspired by [5, 27]. The
loss computed by a forward pass is used to rank samples (i.e. source and target frame pairs)
in the batch according to their difficulty in a manner similar to [33, 37, 48, 49]. However,
these methods use only the most difficult samples, which was found to stop our network
from learning. Similarly to [37], using progressively more difficult samples proved crucial
for the strategy’s success.

Given a batch size of N randomly chosen samples, i.e. source and target frame pairs, a
forward pass is executed and the loss for each sample computed. The samples are ranked
and sorted according to this loss. Initially the loss is back-propagated only on the samples in
the batch which are in the 50th percentile (i.e. the 0.5N samples with the lowest loss com-
puted by the forward pass). These are assumed to be easier samples. When the loss on the
validation set plateaus, the subset to be back-propagated on is shifted by 10 (e.g. the samples
in the 10th-60th percentile range). This is repeated 4 times until the samples being back-
propagated on fall into the 40th-90th percentile range. At this point the curriculum strategy
is terminated, as it is assumed that the samples in the 90-100th range are too challenging or
may be problematic (e.g. there is a large shift in the background which is too challenging to
learn).

5 Experiments

In this section, we evaluate the network and the learned embedding. In Section 5.1, the
performance of using FAb-Net’s learned representation is compared to that of state-of-the-
art self-supervised and supervised methods on a variety of tasks: facial landmark prediction,
head pose regression and expression classification. Section 5.2 discusses the benefit of using
additional source frames, and Section 5.3 shows how the learned representation can be used
for retrieving images with similar facial attributes.
Training. The model is trained on the VoxCeleb1 and VoxCeleb2 video datasets [9, 36]; we
refer to the combined datasets as VoxCeleb+. The VoxCeleb+ dataset consists of videos of
interviews containing more than 1 million utterances of around 7,000 speakers. The frames
are extracted at 1 fps. The frames are cropped, resized to 256⇥ 256, and the identities are
randomly split into train/val/test (with a split of 75/15/10).

The models are trained in PyTorch [42] using SGD, an initial learning rate of 0.001, and
momentum 0.9. When using the curriculum strategy described in Section 4, the batchsize
is N = 32, else N = 8. The learning rate is divided by a factor of 10 when the loss on the
validation set plateaus. (If the curriculum strategy is used, the learning rate is updated only
when the 40-90th percentile is considered.) This is repeated until the loss converges. Further
details about the training can be found in the supp. material.

5.1 Using the embedding for regression and classification

First, we investigate the representation learned in our embedding and evaluate whether it
indeed encodes facial attributes by challenging it to predict three different attributes: land-
marks, pose, and expression.
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Setup. Given a network trained on VoxCeleb+, a linear regressor or classifier is trained
from the learned embedding to the output task. The linear regressor/classifier consists of
two layers: batch-norm [20] followed by a linear fully connected layer with no bias. The
regression tasks are trained using a MSE loss. The classification tasks are trained with a
cross-entropy loss. The parameters of the encoder are fixed while the two additional layers
are trained on the training set of the target dataset using Adam [23], a learning rate of 0.001,
b1 = 0.9 and b2 = 0.999.

5.1.1 Baselines

Self-supervised. There are prior publications on using self-supervision for landmark pre-
diction on the datasets we evaluate on, but none for predicting emotion on standard datasets.
Consequently, we implement an autoencoder and a set of state-of-the-art self-supervised
methods [19, 63] for object detection and segmentation. The baselines are trained using the
same architecture as FAb-Net but with their associated loss functions and training objectives.
For [63], the regression loss for both the L and ab channels is used. These models are trained
on VoxCeleb+ until convergence, with the same training parameters and data augmentation
as FAb-Net. More details are given in the supp. material.
VGG-Face descriptor. We additionally compare to the VGG-Face descriptor which is ob-
tained from the 4096-dimensional FC7 features from a VGG-16 network trained on the
VGG-Face dataset [41]. Contrary to popular belief, it has been recently shown that a net-
work trained for identity does retain information about other facial attributes [10, 15]. We
use the VGG-Face descriptor to learn a linear regression/classification layer to the desired
attribute task. This provides a strong baseline, and the results obtained confirm the finding
that a network trained for identity does indeed encode expression and to some extent also
pose information. However, note that unlike our method, this face descriptor requires a large
dataset of labelled face images for training.

5.1.2 Results

Facial landmarks. Facial landmark locations are regressed from the learned embedding and
compared to state-of-the-art methods on MAFL [66] and the more challenging 300-W [47]
datasets. The evaluation is performed as outlined in [51, 66], and the errors given in inter-
ocular distance. For MAFL, 5 facial landmarks are regressed for 19k/1k train/test images.
For 300-W, 68 landmarks are regressed for 3148/689 train/test images which are obtained
(as described in [51]) from combining multiple datasets [4, 67, 70].

The results are reported in Table 1 and some qualitative results are visualised in Fig. 2
and Fig. 3. These results first demonstrate that fine-tuning with additional views and our
curriculum strategy improve the embedding learned by FAb-Net. Second, these results show
that our method performs competitively or better than state-of-the-art unsupervised landmark
detection methods, better than the VGG-Face descriptor baseline and competitively with
state-of-the-art supervised methods. This is achieved even though the other self-supervised
methods [21, 51, 52, 64] are explicitly engineered to detect landmarks whereas our method
is not. In addition to that, our method is able to bridge the domain gap between VoxCeleb+
and CelebA [32] (the other self-supervised methods that we compare to are pre-trained on
CelebA).
Pose. The learned embedding is used for pose prediction and compared to a supervised
method [26] and to using the VGG-Face descriptor. To perform the evaluation, the linear
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Method 300-W MAFL

Self-supervised
Trained on VoxCeleb+
FAb-Net 6.31 3.78
FAb-Net w/ curric. 5.73 3.49
FAb-Net w/ curric., 3 source frames 5.71 3.44
Trained on CelebA
Jakab et al. [21] (2018) – 3.08

Zhang et al. [64] (2018) – 3.15
Thewlis et al. [51] (2017) 9.30 6.67
Thewlis et al. [52] (2017) 7.97 5.83
Supervised
Trained on CelebA
MTCNN [65] (2014) – 5.39

LBF [45] (2014) 6.32 –
CFSS [69] (2015) 5.76 –
cGPRT [29] (2015) 5.71 –
DDN [60] (2016) 5.65 –
TCDCN [66] (2016) 5.54 –
RAR [57] (2016) 4.94 –
VGG-Face descriptor [41] 11.16 5.92

Table 1: Landmark prediction error on 300-W
and MAFL datasets. Lower is better.

Method Roll Pitch Yaw MAE

Self-supervised
FAb-Net 5.54� 7.84� 12.93� 8.77�
FAb-Net w/ cur-
ric.

5.33� 7.21� 11.34� 7.96�

FAb-Net w/ cur-
ric., 3 source
frames

5.14

�
7.13

�
10.70

�
7.65

�

Supervised
VGG-Face de-
scriptor [41]

8.24

� 8.36� 18.35� 11.65�

KEPLER [26]
(2017)

8.75� 5.85

�
6.45

�
7.02

�

Table 2: Pose prediction error on the
AFLW test set from [26]. Lower is bet-
ter.

Figure 2: Landmark prediction visualisation for FAb-Net on the MAFL dataset. A dot de-
notes ground truth and the cross FAb-Net’s prediction. A failure case is shown to the right.

(a) Ground truth landmarks

(b) FAb-Net’s predicted landmarks

Figure 3: Landmark prediction visualisation for FAb-Net on the 300-W dataset.

regression is trained from the given embedding to head pose labels using the AFLW dataset
[24], but after leaving out the 1,000 images of the AFLW test set from [26]. As can be seen
in Table 2, FAb-Net performs better in predicting the roll angle, and the MAE is comparable
to [26] which is supervised with head pose labels. Furthermore, our embedding outperforms
the VGG-Face descriptor which is trained on identities; i.e. our learned embedding encodes
more information about head pose.
Expression. We evaluate the performance of our learned embedding for expression estima-
tion on two datasets: AffectNet [35] and EmotioNet [6], which both contain over 900,000
images. These datasets are taken ‘in-the-wild’ as opposed to in a constrained environment.
AffectNet contains 8 facial expressions (neutral, happy, sad, surprise, fear, disgust, anger,
contempt) and EmotioNet contains 11 action units (AUs) (combinations of AUs correspond
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AUC for different AUs
1 2 4 5 6 9 12 17 20 25 26 avg.

Self-supervised

FAb-Net 72.0 68.9 73.2 69.4 88.2 78.6 89.5 71.0 75.9 81.4 72.0 76.4
FAb-Net w/ curricu-
lum

73.4 71.8 75.3 67.8 90.4 78.8 91.9 72.4 74.5 83.7 73.3 77.6

FAb-Net w/ cur-
riculum, 3 source
frames

74.1 72.3 75.8 68.8 90.7 81.8 92.5 73.7 77.2 83.6 73.6 78.6

Gidaris et al. [19] 68.6 64.0 72.8 70.0 83.9 78.1 83.8 68.4 72.6 73.1 67.2 72.9
SplitBrain [63] 65.5 59.8 66.7 60.8 71.8 65.8 73.3 64.5 57.4 68.1 61.1 65.0
Autoencoder 67.2 60.5 70.1 65.1 79.6 70.4 80.1 68.3 66.5 70.5 64.1 69.3
Supervised

VGG-Face descrip-
tor [41]

81.8 83.0 83.5 81.8 92.0 90.9 95.7 80.6 85.2 86.5 73.0 84.9

VGG-11 (from
scratch)

74.7 77.2 85.8 83.7 93.8 89.7 97.5 78.3 86.9 96.4 81.5 86.0

Table 3: Expression classification results for state-of-the-art self-supervised and supervised
methods on EmotioNet [6] for multiple facial action units (AUs). Higher is better for AUC.

AUC
Neutral Happy Sad Surprise Fear Disgust Anger Contempt avg.

Self-supervised
FAb-Net 70.0 87.6 68.8 75.5 76.5 70.0 73.2 71.2 74.2
FAb-Net w/ curric. 71.5 90.0 70.8 78.2 77.4 72.2 75.7 72.1 76.0
FAb-Net w/ curric., 3
source frames

72.3 90.4 70.9 78.6 77.8 72.5 76.4 72.2 76.4

Gidaris et al. [19] 67.8 84.9 69.0 73.9 75.7 69.8 71.5 68.7 72.7
SplitBrain [63] 63.9 74.7 64.2 61.3 68.3 58.6 68.2 62.8 65.3
Autoencoder 65.8 80.0 64.7 66.1 70.6 63.4 68.3 65.0 68.0
Supervised
VGG-Face descriptor [41] 75.9 92.2 80.5 81.4 82.3 81.4 81.2 77.1 81.5
AlexNet [35] – – – – – – – – 82

Table 4: Expression classification results for state-of-the-art self-supervised and supervised
methods on AffectNet [35]. Higher is better for AUC.

to facial expressions).
Both of these datasets were organised for challenges with a held out, unreleased test

set. Therefore, the train set is subdivided into two subsets; one is used for training and the
other for validation. The validation set of the original dataset is used to test the different
models. The linear classifier for EmotioNet is trained with a binary cross-entropy loss for
each AU, whereas for AffectNet, a cross-entropy loss is used. Both training datasets are
highly imbalanced. As a result, the examples from the under-represented classes are re-
weighted inversely proportionally to the class frequencies to penalise the loss more heavily
for mis-classifying images of the under-represented classes.

The embedding learned by FAb-Net is compared to a number of self-supervised and
supervised methods by measuring the Area Under the ROC curve (AUC). For each class
(e.g. emotion or AU), the AUC is computed independently and the result is averaged over
all classes. The results are reported in Table 3 and Table 4 for EmotioNet and AffectNet
respectively showing that our network performs better than other self-supervised methods
over both metrics when given the same training data. This is supposedly due to the fact that
the network must learn to transform the source frame in order to generate the target frame.
As parts of the face move together (e.g. an eyebrow raise or the lips when the mouth opens),
the embedding must learn to encode information about facial features and thereby encode
expression. Interestingly, the autoencoder performs well, presumably due to the restricted
nature of this domain.
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Figure 4: Confidence heatmaps learned by FAb-Net. Higher intensity corresponds to higher
confidence. The network chooses the frames with most similar poses to draw from and
ignores those with less similar poses (see Example (a)). In Example (b), the mouth has
higher confidence in the third source frame allowing the network to re-construct the teeth
that are present in the target frame. More examples can be found in the supp. material.

FAb-Net is also not far off supervised methods despite the domain shift; VoxCeleb+ con-
sists only of people being interviewed (and consequently with mostly neutral/smiling faces),
so it does not include the range/extremity of expressions found in AffectNet or EmotioNet.
Finally, it can be observed that the VGG-Face descriptor trained to predict identities does
surprisingly well at predicting emotion.
Discussion. FAb-Net has achieved impressive performance, as most self-supervised methods
when transferred to another task have a large gap in comparison to supervised methods.
There is no gap or a small gap for the smaller datasets (landmarks/pose) and the model
approaches supervised performance for the larger datasets (expression).

5.2 What is the benefit of additional source frames?

The previous sections have shown that using additional source frames improves performance.
This is at the expense of performing additional forward passes through the encoder (in this
case two). Given enough GPU memory, these forward passes can be done in parallel, affect-
ing only the memory requirements and not the computational speed.

Using multiple source frames is further investigated by visualising confidence heatmaps
for a given set of source frames in Fig. 4. The confidence heatmaps allow images with more
similar pose to be used for creating the generated frame. Furthermore, the network can focus
on one frame for generating a part of the face (e.g. the mouth) and on another one for a
different part.

5.3 Image retrieval

This section considers an application of the learned embedding: retrieving images with sim-
ilar facial attributes (e.g. pose) but across different identities. To perform this task, a subset
of 10,000 randomly sampled test images from VoxCeleb+ is obtained. For a given query
image, all other images (the gallery) are ranked based on their similarity to the query image
using the cosine similarity metric between the corresponding embeddings. For a given query
image Q, the embedding xq is extracted by performing a forward pass through the network.
Similarly, the embedding xi is extracted for each image Ii in the gallery. Each image Ii is
then ranked according to the cosine similarity between xq and xi. If the network does indeed
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(a)

(b)

(c)

Query Images Nearest Neighbours. Arranged left to right.

(d)

(e)

(f)

Query Images Nearest Neighbours. Arranged left to right.

Figure 5: Retrieval results using the embedding learned by FAb-Net. The embedding cap-
tures similar visual attributes since gallery images with similar facial attributes are retrieved
for a given query image. The retrieved images have similar pose to the query in all cases,
and the expression similarity can be seen for example in (b) with the eyes shut, and (a) with
the mouth slightly open. Please refer to the supp. material for additional examples.

encode salient information about facial attributes, the cosine similarity can be used to iden-
tify images with similar poses and facial attributes. For a set of query images, the results are
visualised in Fig. 5. From these results it is again affirmed that our embedding encodes in-
formation about facial attributes, as the retrieved images have poses and expressions similar
to those of the query images. Note, the embedding is largely unaffected by facial decorations
(e.g. glasses) and identity, as these do not change within a face-track and so do not need to
be learned in order to predict the transformation.

6 Conclusion

We have introduced FAb-Net: a self-supervised framework for learning facial attributes from
videos. Our method learns about pose and expression by watching faces move and change
over a large number of videos without any hand labels. The features of our trained network
can then be used to predict pose, landmarks, and expression on other datasets (despite the
domain shift) by just training a linear layer on top of the learned embedding. The features
have been shown to be comparable or superior performance to self-supervised and supervised
methods on a variety of tasks. This is impressive as generally the performance of self-
supervised methods has been found to be worse than that of supervised methods, yet our
method is indeed competitive/superior to supervised methods for pose regression and facial
landmark detection, and approaches supervised performance on expression classification.
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