
PÉREZ-RÚA, ET AL.: EPNAS 1

Efficient Progressive Neural Architecture
Search

Juan-Manuel Pérez-Rúa
juanmanuel.perezrua@orange.com

Moez Baccouche
moez.baccouche@orange.com

Stéphane Pateux
stephane.pateux@orange.com

Orange Labs
4 rue Clos Courtel, 35512
Cesson-Sévigné, FRANCE

Abstract

This paper addresses the difficult problem of finding an optimal neural architecture
design for a given image classification task. We propose a method that aggregates two
main results of the previous state-of-the-art in neural architecture search. These are, ap-
pealing to the strong sampling efficiency of a search scheme based on sequential model-
based optimization (SMBO) [15], and increasing training efficiency by sharing weights
among sampled architectures [18]. Sequential search has previously demonstrated its ca-
pabilities to find state-of-the-art neural architectures for image classification. However,
its computational cost remains high, even unreachable under modest computational set-
tings. Affording SMBO with weight-sharing alleviates this problem. On the other hand,
progressive search with SMBO is inherently greedy, as it leverages a learned surrogate
function to predict the validation error of neural architectures. This prediction is directly
used to rank the sampled neural architectures. We propose to attenuate the greediness
of the original SMBO method by relaxing the role of the surrogate function so it pre-
dicts architecture sampling probability instead. We demonstrate with experiments on the
CIFAR-10 dataset that our method, denominated Efficient progressive neural architecture
search (EPNAS), leads to increased search efficiency, while retaining competitiveness of
found architectures.

1 Introduction
Since the popularization of convolutional neural networks (CNN) for image classification by
Krizhevsky et al. [12] in 2012, many subsequent works have proposed new hand-designed
architectures leading to steady performance improvements over the years (see, for exam-
ple [6, 7, 9, 22, 26], among others). The process leading to all these discoveries is almost
always arduous, requiring careful experimentation and the intuition of an expert. Some of
these findings seem to point to the fact that intricate neural network designs can offer large
gains in performance [7, 9, 26]. However, it is not always obvious what to change in a known
design to push performance even further. Evidently, there is a need for efficient yet effective
ways to discover new architectures of CNN automatically. This is the problem that we tackle
in this paper. Here, we focus on finding optimal CNN architectures for image classification,

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Huang, Liu, Weinberger, and vanprotect unhbox voidb@x penalty @M {}der Maaten} 2017

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Huang, Liu, Weinberger, and vanprotect unhbox voidb@x penalty @M {}der Maaten} 2017

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich, etprotect unhbox voidb@x penalty @M {}al.} 2015

2 PÉREZ-RÚA, ET AL.: EPNAS

while keeping in mind that, very often, advances in neural networks for image classification
transfer to a large variety of other learning problems.

Current advances in neural architecture optimization can be categorized in roughly three
groups: genetic algorithms (GA), reinforcement learning (RL), and surrogate-based opti-
mization (SO). GA-based approaches [19, 25, 28] consist on iteratively mutating, training
and evaluating promising architectures, while only top performers on a validation set are
selected for further mutation. In RL methods [29, 30, 31], a controller agent generates the
description of a neural model, which is then trained and evaluated on a validation set. Vali-
dation error is then fed-back to the agent as a reward function, improving the controller and
generating better models in future iterations. On the other hand, by SO we refer to methods
that rely on learning a sort of surrogate function expressing a relationship between sampled
models and validation error or similar. Typical examples are Bayesian optimization [23, 24]
and sequential model-based optimization (SMBO) [15].

Recently, progressive neural architecture search (PNAS) [15], one of the surrogate-based
search methods, achieved state-of-the-art results on the CIFAR-10 dataset [11]. Their al-
gorithm performs a progressive scan of the neural architecture search space (which is con-
strained by design according to findings of previous state-of-the-art). The top K best per-
forming architectures are chosen at each step of the algorithm and validation errors are col-
lected by training the selected architectures for several epochs. These errors are then used to
train a surrogate function that predicts validation error of subsequent architectures. The sur-
rogate function allows efficient exploration of the search space by decreasing the amount of
architectures that are actually trained. Computational cost is nonetheless high, requiring 100
GPUs working for 2 days to achieve their best results. However, PNAS [15] is considerably
more efficient than previous methods, which rely on up to 800 GPUs working for a month
(i.e., NAS [30]) to achieve their best results.

A recent work based on RL, ENAS [18], proposed to leverage weight-sharing among
sampled architectures to increase search efficiency. The motivation behind this idea is the
observation that the main bottleneck during neural architecture search is the training of sam-
pled models to completion. Weight-sharing in this context removes the need to train sam-
pled architectures from scratch. This idea improves time efficiency by a factor of 1000
with respect to NAS [30]. We propose in this paper to investigate the effect on speed
and performance of weight-sharing in progressive SMBO-based optimization for neural
architecture search. The purpose of this is to benefit from the simplicity and impressive per-
formance of PNAS [15], while improving on speed thanks to the efficiency of ENAS [18].
Leveraging the gain on efficiency, we also propose to relax the sampling strategy of PNAS
by performing probabilistic sampling of new architectures based on the prediction of the
surrogate function. We shall call this new approach efficient progressive neural architec-
ture search (EPNAS).

The remainder of this paper is organized as follows. In Section 2, we give an overview
of the related work and state-of-the-art in neural network architecture search. In Section 3
we introduce the search space our method acts on, and in Section 4 we explain EPNAS, our
algorithm for neural architecture optimization. Later on, in Section 5, we present experi-
mental results and analysis of the properties of our method. Finally, in Section 6, we give
concluding remarks and discuss future work.

Citation
Citation
{Real, Moore, Selle, Saxena, Suematsu, Le, and Kurakin} 2017

Citation
Citation
{Stanley and Miikkulainen} 2002

Citation
Citation
{Xie and Yuille} 2017

Citation
Citation
{Zhong, Yan, and Liu} 2018

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Snoek, Larochelle, and Adams} 2012

Citation
Citation
{Snoek, Rippel, Swersky, Kiros, Satish, Sundaram, Patwary, Prabhat, and Adams} 2015

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

PÉREZ-RÚA, ET AL.: EPNAS 3

2 Related work
Optimization of neural network hyperparameters is a problem that has been tackled since
the early nineties [1, 3]. Researchers quickly realized that, due to the extremely high com-
putational demands of the problem, neural topology optimization would need to wait for the
advent of higher-order parallel computing hardware and software [3]. Traditionally, up to
this point, most of the attempts to tackle the problem were based on randomized search
methods. A few years later, in 2002, Stanley and Milkkulainen [25] proposed an evolution-
ary random search approach that solves jointly for optimal weights and network topology.
In their work, topology mutation follows structured constraints and it is performed progres-
sively.

Fast forward to recent years, evolutionary and genetic algorithms are still relevant. How-
ever, most modern methods focus on evolving the neural topology [16, 19, 20, 28], leaving
the optimization of neural weights to gradient-based approaches. These methods, however,
are reserved for large hardware set-ups with hundreds of GPUs running for weeks.

Another group of practical approaches for automatically selecting a neural topology re-
lies on Bayesian optimization [23, 24]. In this type of methods, the validation error of neural
models is modeled as a Gaussian process, leading to optimal selection of candidate con-
figurations. However, these methods cannot handle variable-size and variable-connectivity
models.

Very recently, reinforcement learning appeared as an alternative to previous search
methods. The technique usually consists of a controller recurrent neural network that sam-
ples new architectures at each iteration. This controller is trained with policy gradient [30]
or Q-learning [29], by feeding it with the validation errors collected by training the sampled
networks to completion. A large scale benchmarking work by Real et al., [20], demonstrates
that evolutionary approaches either match or surpass performance of RL methods while also
reaching that outcome faster. In order to increase efficiency, subsequent works have focused
on constraining the search space to modular elements composed of convolutional operations
with demonstrated value for image recognition [31]. Similarly to the method from [19],
which allows weight inheritance during exploration of the search space, ENAS [18] proposes
an interesting idea: sharing weights among sampled architectures. The weight-sharing strat-
egy in RL-based approaches offers competitive results while improving exploration speed
by a large margin.

In parallel to RL-based approaches, a different type of methods appeared recently. Sur-
rogate aided exploration has also demonstrated accuracy and efficiency for network hy-
perparameter optimization [15, 17]. Sequential model-based optimization (SMBO) lies at
the core of such methods. SMBO originated as a technique for general algorithm parame-
ter optimization. The method itself does not require gradients, but it requires the training
of an intermediate function that scores parameter configurations. During exploration, this
learned intermediate function or surrogate, is evaluated across a large set of parameter con-
figuration candidates. The top K performing configurations according to the surrogate are
chosen to continue sequential exploration for another iteration. In the context of machine
learning, this method has been used to automatically construct ensembles of classifiers by
Lacoste et al., [13]. On a different line, an interesting surrogate-based method, denominated
SMASH [4], displays strong results. The surrogate function of SMASH is not designed
to rank tested configurations, but to predict the weights of sampled architectures. Through
random search, SMASH is able to find competitive architectures in a number of datasets.

More recently, Liu et al.,[15] proposed to use SMBO-based progressive search (PNAS)

Citation
Citation
{Angeline, Saunders, and Pollack} 1994

Citation
Citation
{Branke} 1995

Citation
Citation
{Branke} 1995

Citation
Citation
{Stanley and Miikkulainen} 2002

Citation
Citation
{Miikkulainen, Liang, Meyerson, Rawal, Fink, Francon, Raju, Navruzyan, Duffy, and Hodjat} 2017

Citation
Citation
{Real, Moore, Selle, Saxena, Suematsu, Le, and Kurakin} 2017

Citation
Citation
{Real, Aggarwal, Huang, and Le} 2018

Citation
Citation
{Xie and Yuille} 2017

Citation
Citation
{Snoek, Larochelle, and Adams} 2012

Citation
Citation
{Snoek, Rippel, Swersky, Kiros, Satish, Sundaram, Patwary, Prabhat, and Adams} 2015

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Zhong, Yan, and Liu} 2018

Citation
Citation
{Real, Aggarwal, Huang, and Le} 2018

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Real, Moore, Selle, Saxena, Suematsu, Le, and Kurakin} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Negrinho and Gordon} 2017

Citation
Citation
{Lacoste, Larochelle, Laviolette, and Marchand} 2014

Citation
Citation
{Brock, Lim, Ritchie, and Weston} 2017

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

4 PÉREZ-RÚA, ET AL.: EPNAS

Input
image

Softmax

maxpool
3x3

meanpool
3x3

conv
3x3

conv
5x5

maxpool
3x3

meanpool
3x3

conv
3x3

conv
5x5

maxpool
3x3

meanpool
3x3

conv
3x3

conv
5x5

maxpool
3x3

meanpool
3x3

conv
3x3

conv
5x5

Figure 1: Structure of the macro search space used in this paper. In this example, for
the sake of simplicity, the number of layers is L = 4, and the number of possible operations
per-layer is 4. The dotted lines represent the skip connections that are also part of the search
space.

within a constrained search space as in [31], achieving state-of-the-art results in image
classification on CIFAR-10, while also being significantly less computationally intensive
than [31]. The architecture hyperparameters learned for CIFAR-10 were successfully trans-
ferred to ImageNet with simple modifications. However, the method is still considerably
slower (∼ 200 times) than ENAS [18]. In this paper we are interested in assessing the inclu-
sion of weight-sharing in SMBO-based approaches. Beyond that, we believe PNAS suffers
from over-greediness as it merely chooses the top K architectures at each step of the progres-
sion of the method. In this paper we are also interested in checking whether surrogate-based
sampling could lead to better results with respect to the greedy choice of configuration can-
didates.

3 Search space structure
In this section, we describe the search space used by our method. Following [18], we limit
the search space of our algorithm to one of two possible structures. First, we consider what
they denominate macro search space, spanning entire deep convolutional models with skip
connections. Later on, we work on a micro search space, operating over modular convolu-
tional cells.

Macro search space. First we focus on regular convolutional neural networks with vari-
able skip connections and convolutional operations, namely the macro space (see Fig. 1).
For this search space we start from a fixed convolutional module to expand the input image
from 3 color channels to the fixed number of channels C that will take place along the net-
work, with a maximum number L of convolutional layers. At each layer one of six possible
operations is chosen. We follow [18] regarding the considered operations:

• 3×3 max pooling
• 3×3 mean pooling
• 3×3 convolution

• 5×5 convolution
• 3×3 depthwise convolution [5]
• 5×5 depthwise convolution [5]

At the output of the CNN described by a realization of the macro search space, a softmax
layer processes the channel-wise global average of the last convolutional layer. This idea,

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Chollet} 2016

Citation
Citation
{Chollet} 2016

PÉREZ-RÚA, ET AL.: EPNAS 5

introduced by [14], precludes the use of large fully connected layers that might prevent
stable training during the architecture search. Overall, we can describe a layer l of a network
in the macro space with a tuple (Ol ,Sl). Here, Oi ∈ O, where O is the set of possible
operations. Sl is a variable-length tuple describing what previous layers are used as input
to layer l. This allows the search space to contain neural networks with variable amounts
of skip connections. Observe then that Sl ⊆ (H1, · · · ,Hl−1), where Hl is the output of layer
l, avoiding unwanted loops in the underlying computational graph. To summarize, a whole
network of L layers is fully described by a L-tuple ((O1,S1), · · · ,(Ol ,Sl), · · · ,(OL,SL)).

Micro search space. For the micro search space, we keep the fixed input convolution as
in the macro space and employ, again, global average pooling of the last convolutional layer
as input to the final softmax layer. Fig. 2 shows a diagram that explains the micro search
space in detail. A neural network configuration stemming from a realization of the micro
search space is formed by stacks of convolutional modules denominated cells. According to
the network topology that is shown in the bottom row of Fig. 2, a cell is replicated several
times. In such a way, a whole network configuration is described only by a cell structure.

As it can be appreciated in the bottom part of Fig. 2, to form a CNN from the micro
space, two types of cell are stacked: normal, and reduction. The only difference between
them is that the reduction cells use strides. The objective is to increase the receptive field of
deeper layers in the network. Normal cells are stacked N times in between reduction ones.

Each one of these cells, as seen in the top row of Fig. 2 is formed by B blocks. We shall
denote the space of possible blocks with B. As opposite to the depth-only structure of the
macro space, the block-based structure of the micro space allows networks to go wider as
needed. The structure of each block is defined by two convolutional operations, and their
corresponding input connection. The possible operations for each block are the same ones
than for the macro search space plus the identity transformation1. On the other hand, the
possible input connections for a given block in a cell are the outputs of the previous two cells
plus the outputs of all previous blocks inside the cell. Finally, the two convolutional features
of a block are summed up, as in [15]. This means we can describe cell c by a concatenation
of B 4-tuples, one tuple with the form (O1,O2,S1,S2) for each block b. For the micro search
space, Oi ∈O, and Si ∈ {Hc−2

B ,Hc−1
B ,Hc

1 , · · · ,Hc
b−1}. Here, H j

i is the output of block i at cell
j. When constructing the final cell output, we simply concatenate all the outputs of blocks
that were not used as input of any other block within the cell.

The two described search spaces end up being extremely large. The cardinality of the
solution space of macro configuration is ∼ 2× 1029 when L = 12. On the other hand, the
solution set of the micro space is of cardinality ∼ 5× 1014 when we allow up to B = 5
blocks. To put those numbers in context, it can be noted that there are only ∼ 2× 1011

galaxies containing ∼ 1024 stars in the observable universe.

4 Efficient progressive neural architecture search
In this paper we adhere to the notion of PNAS [15] that highlights the difficulty of adequately
exploring an exponential search space like ours in a direct manner. A more direct approach
to neural architecture exploration as done by NAS [31] or ENAS [18] often requires sam-
pling a large number of configurations. This is the main reason why we adopt a sequential

1The identity operation allows blocks to directly combine features from previous layers and blocks in a similar
way to ResNets[7].

Citation
Citation
{Lin, Chen, and Yan} 2013

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

6 PÉREZ-RÚA, ET AL.: EPNAS

maxpool
3x3

meanpool
3x3

conv
3x3

conv
5x5

maxpool
3x3

meanpool
3x3

conv
3x3

conv
5x5

+

Block iLayer j-2

Layer j-1

Block 1

Block i-1

Layer j-2

Layer j-1

Block 1

Block i-1

Layer j-2

Layer j-1

Cell

Block 1

Block 2

Input
image

Softmax

N cells
stride 1

1 cell
stride 2

N cells
stride 1

1 cell
stride 2

N cells
stride 1

1 cell
stride 2

Figure 2: Structure of the micro search spaces used in this paper. Top row: Block
structure on the left, cell structure on the right. Recall that a cell is formed by one or more
blocks. In this example, the number of possible operations per block is 4. Observe that for
any given block inside a cell, the possible inputs for the two operations of the block are the
outputs of previous two layers and previous blocks of the same cell. Bottom row: a neural
network in the micro search space is formed by stacks of cells with the same structure.

exploration scheme.

Sequential search with shared weights. Under such a paradigm, we explore the search
space at increasing levels of model complexity, starting with simple ones first. This means
that, in the case of the macro search space we start the exploration by considering archi-
tectures with L = 1, while for the micro space we consider architectures with B = 1. The
sampled neural architectures are then trained for a small number of epochs2. This is possible
because shared weights are refined further when new sampled architectures are trained3. The
accuracy scores derived from a validation dataset are then used to train a surrogate function
that predicts scores of new configurations (details on the surrogate function as described later
on).

Subsequently, we take all the possible network configurations at the next level of com-
plexity (B = 2 for micro and L = 2 for macro) and combine them with all the configurations
of the previous step. At this point, the number of considered architectures is very high.
Training all of them with modest hardware setups, even for very few epochs, would be too
expensive. Instead, we sample K of them. The probability of architecture i with predicted
accuracy si to be selected is pi = si/∑ j s j.

Thus, our surrogate function predicts sampling probability of neural architectures. These
K sampled configurations are then trained again for the same number of epochs (three). The
newly obtained validation accuracy scores are used to update the surrogate function.

2While [18] only trains sampled architectures for a single epoch, we found our method to behave better by
training for three epochs.

3Two sampled networks share convolutional weights if the same convolutional operations at the same depth are
used by the two of them.

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

PÉREZ-RÚA, ET AL.: EPNAS 7

step 1 step 2 step 3

Surrogate
update

Model
Training

Surrogate
evaluation

Sampling
K models

Model
Training

Surrogate
update

step 4

Surrogate
evaluation

Sampling
K models

step 5

Model
Training

Surrogate
update

Figure 3: Illustration of the progressive model-based search procedure used in this pa-
per. In this example, a maximum number of three blocks (if considering the micro space)
or layers (macro space) are used. Step 1: We list all the possible configurations for the sim-
plest complexity level (B = 1, or L = 1). Each of these models are trained sequentially by
sharing-weights among themselves, for a small number of epochs. When validation errors
are collected, the surrogate function is trained for the first time. Step 2: The second level of
complexity is unrolled, leading to a total number of possible configurations of |B1|×|B2|. In-
stead of training all these configurations, the surrogate function is used to sample K models.
Step 3: K configurations are trained, and the surrogate is updated. Step 4: The previously
sampled K configurations are combined with the new unroll of the architecture complexity.
A subset of B1:3 is then evaluated by the surrogate and K new configurations are sampled.
Step 5: the surrogate is updated again. This whole procedure is repeated for a small number
of iterations (dotted arrow) while cooling down the sampling temperature.

During following exploration steps, all the possible configurations that unfold at subse-
quent levels of complexity are combined with the currently sampled K architectures. The
sampling, training, and surrogate updating loop continues until the maximum complexity
level is reached. In Fig. 3 we explain in more detail the search procedure of EPNAS.

Observe that, departing from PNAS [15], we only train sampled architectures for a small
number of epochs. The noisy estimation of sampled architecture accuracy is attenuated by
implementing iterations on the sequential exploration. In our experiments, we repeat the
whole process described before (the sequential exploration from simplest to highest level of
network complexity) up to five times. More importantly, we adopt the graph-based inter-
pretation of the search space proposed by ENAS [18], allowing us to employ their weight-
sharing strategy. In this way, the more an operation at a layer or block is used by sampled
architectures, the more its weights are updated. Effectively, search is biased towards archi-
tectures with previously trained modules as long as they have been refined more through
gradient descent (presenting better classification accuracy scores). This is why in our im-
plementation, probabilistic random sampling is preferred over simply taking the top K per-
forming architectures. Random sampling allows our method to escape local minima. We
implement a temperature-driven sampling procedure, so the search space is explored more
randomly first, while fully trusting the surrogate function at the end. The final sampling
probability of architecture i is given by p1/τ

i /∑ j p1/τ

j with temperature τ decaying quickly
to one as the number of iterations increases. In this sense, EPNAS lies in between a greedy
progressive approach and purely random search.

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

8 PÉREZ-RÚA, ET AL.: EPNAS

Table 1: Neural architecture search on the CIFAR10 dataset. We present final validation
errors for a number of methods, including our best architectures from the macro and micro
search spaces. For the reported neural search methods, we provide with time duration of the
search and the number of used GPUs.

Method GPUs Time Parameters Error
(days) (millions) (%)

ResNet [7] - - 1.7 6.43
DenseNet [9] - - 25.6 3.46

Super Nets [27] - - - 9.21
ConvFabrics [21] - - 21.2 7.43
SMASH [4] 1 1.5 16.0 4.03
QNAS [2] 10 10 11.2 6.92
NAS [30] 800 28 37.4 3.65
ENAS macro [18] 1 0.32 21.3 4.23
EPNAS macro (ours) 1 1.2 5.9 5.14
EPNAS macro (ours + more channels) 1 1.2 38.8 4.01

NASNet micro [31] 450 4 3.3 3.41
ENAS micro [18] 1 0.45 4.6 3.54
PNAS micro [15] 100 1.5 3.2 3.63
EPNAS micro (ours) 1 1.8 1.6 5.69
EPNAS micro (ours + more channels) 1 1.8 6.6 3.71

Surrogate function. The progressive search used in this paper, together with the type of
architectures with variable length and connectivity we deal with, make of recurrent neural
networks an ideal candidate for implementing our surrogate function. This is a choice that is
common in the literature [15, 18, 29, 31]. In practice, we use a LSTM [8] network.

The actual input to the LSTM is computed with a small linear layer that acts as decoder
for the symbol array describing the network configuration. Another linear layer with a sig-
moid non-linearity processes the last hidden state of the LSTM. The output is a scalar in
[0,1] representing the accuracy score on the validation dataset of the input neural network
described by the input string describing a neural configuration. The input dataloader for
the LSTM is implemented with a hash-table so we can keep control of repeated network
configurations. The surrogate function is trained with Adam [10] with a L1 loss.

5 Experiments
Experimental setup. In this paper, neural architecture search for image classification is
evaluated on CIFAR-10 [11], as it is common practice [15, 31]. This dataset contains 50.000
training images and testing 10.000 images. As it is standard for image classification, the im-
ages are normalized for training. The dataset is augmented by performing random-cropping
and random mirroring.

Implementation details. Since we use shared weights, we need to guarantee that the num-
ber of input channels remain the same for operations at the same block or layer. We achieve
this by including 1× 1 convolutions in between cells and layers, for the micro and macro
search spaces respectively. This structure was originally proposed by [18]. The weights of
such intermediate convolutions are also shared among sampled architectures.

The surrogate function is a LSTM with 100 hidden units, processing an input feature of
size 100. The weights of the linear layers are initialized randomly with a uniform distribu-
tion between [−1,1]. During exploration, K = 25 network configurations are sampled at each
step. These configurations are trained sequentially for three epochs. The number of channels

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Huang, Liu, Weinberger, and vanprotect unhbox voidb@x penalty @M {}der Maaten} 2017

Citation
Citation
{Veniat and Denoyer} 2017

Citation
Citation
{Saxena and Verbeek} 2016

Citation
Citation
{Brock, Lim, Ritchie, and Weston} 2017

Citation
Citation
{Baker, Gupta, Naik, and Raskar} 2016

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Zhong, Yan, and Liu} 2018

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

PÉREZ-RÚA, ET AL.: EPNAS 9

Input
image

Softmax

conv
3x3

conv
3x3

co
nc

at

co
nc

at

co
nc

at

co
nc

at

fixedi
maxpool

3x3
stridie 2 co

nc
at conv

3x3
conv
5x5

co
nc

at

co
nc

at

fixedi
maxpool

3x3
stridie 2

diepthconv
3x3

co
nc

at conv
3x3

conv
5x5

co
nc

at

co
nc

atdiepthconv
5x5

maxpool
3x3

maxpool
3x3

maxpool
3x3

conv
5x5

fixedi
avgpool
global

Figure 4: Best found CNN in the macro search space.

Cell

Layer j-2

Layer j-1

Block 1

identity conv
3x3

concat

+

Block 2

+

Block 3

+
Block 4

+

Block 5

+
conv
5x5 identity

depthconv
5x5 identitydepthconv

5x5 identity

depthconv
5x5

depthconv
3x3

Figure 5: Best found cell in the micro search space.

for the convolutional layers is 24 during exploration. For the micro search space, the number
of stacked normal cells is N = 2, while the maximum number of blocks is B = 5. During the
final training of the found architectures, we let N = 3 and the initial number of convolutional
channels to 96 for the micro space. On the other hand, for the macro search space, we set the
number of layers to L = 12, and the initial number of channels to 200. We also evaluate the
found configurations with a larger number of channels (512 for the macro space, and 128 for
the micro). Models with fewer channels are faster but less accurate, while models with more
channels turns into higher accuracy at the cost of being slower. The convolutional weights
are learned under the same optimizer configuration and learning rate schedule of [31]. Fur-
thermore, we perform three to five iterations of our progressive search. In our experiments,
three iterations always performed around 8% better than a one-pass progressive search, even
when the sampled models were trained for more epochs.

Discussion. Our results are shown in Table 1 along with several baselines and other state-
of-the-art algorithms. The first group in Table 1 presents results of recent hand-designed
neural architectures. In particular, we show results by ResNet [7], the work that introduced
residual skip connections. Along with ResNets, impressive results for image classification
by DenseNets [9] are presented. The second group in Table 1 is conformed by other neural
search methods, spanning several different kind of techniques. All of those methods aim at
designing full networks, as in our macro space. The third group is formed by more direct
competitors of our method on the micro search space. Indeed, PNAS [15] and NASNet [31]
search neural architectures within a very similar search space to ours.

It must be observed that our method delivers competitive results with respect to
PNAS, while being close to a hundred times more efficient in terms of GPU/days. The
best found CNN from the macro space is represented in Fig. 4, while the best found cell
from the micro space can be seen in Fig. 5. Moreover, even though NASNet [31] finds ar-
chitectures that perform better on the validation set, our method is almost 900 times faster.

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Huang, Liu, Weinberger, and vanprotect unhbox voidb@x penalty @M {}der Maaten} 2017

Citation
Citation
{Liu, Zoph, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

10 PÉREZ-RÚA, ET AL.: EPNAS

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
Iteration

5.2

5.4

5.6

5.8

6.0

6.2

Va
lid

at
io

n
er

ro
r

Figure 6: Behaviour of EPNAS across multiple parallel runs and number of iterations
on the macro space. Dots indicate independently run instances of EPNAS. Black star indi-
cates the mean for runs with the same number of iterations and blue shadow the variance.

Our results, not being too far from the absolute top performer, present convenient trade-off
between number of parameters and performance, as it can be appreciated by our experiments
with more channels. It can also be pointed out that better results are expected with larger
K. However, we noticed that the increase on exploration cost are large. With more than one
available GPU, one could run several search threads in parallel and choose the best found
architecture from all of the them. The behaviour of EPNAS among threads can be seen in
Fig 6. Observe that for few iterations the variance of the accuracy of found architectures is
relatively high. This can be explained by the increased sampling temperature. As the num-
ber of iterations increases and the sampling temperature decreases, the variance is reduced.
Observe that different architectures offer relatively similar validation accuracy. This is likely
due to the shape of the constrained search space, which increases the likelihood of randomly
sampled architectures to perform well. Overall, runs of EPNAS with more iterations seem
to perform generally better.

6 Conclusions
In this paper we have introduced a new method for neural architecture search that works well
on modest hardware configurations with a single or few GPUs only. Our method is based
on a progressive paradigm by means of the Sequential Model-based Optimization technique.
To enable faster exploration, we adopt a recently-proposed heuristic from the state-of-the-art
that consists of sharing weights among sampled architectures during exploration. This al-
lows search methods to circumvent the need for complete training of sampled architectures,
a common bottleneck in neural architecture search. The savings on computational expense
allow us to explore modifications to the original sequential approach. We introduce search
iterations and surrogate-based probabilistic sampling of network configurations as opposite
to a one-shot greedy-selection of top architectures at each exploration step. We demon-
strate on the challenging CIFAR-10 dataset that our method is able to find very competitive
architectures with results that are not far from the state-of-the-art. With this paper, we also
demonstrate the applicability of weight-sharing for neural architecture search methods based
on progressive search. Future work includes the exploration of our efficient progressive neu-
ral architecture search (EPNAS) for a wider variety of learning problems.

PÉREZ-RÚA, ET AL.: EPNAS 11

References
[1] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An evolutionary al-

gorithm that constructs recurrent neural networks. IEEE Transactions on Neural Net-
works, 5(1):54–65, 1994.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural net-
work architectures using reinforcement learning. 2016.

[3] Jürgen Branke. Evolutionary algorithms for neural network design and training. In In
Proceedings of the First Nordic Workshop on Genetic Algorithms and its Applications.
Citeseer, 1995.

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-
shot model architecture search through hypernetworks. In International Conference on
Learning Representations, 2017.

[5] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Computer Vision Pattern Recognition, 2016.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In International
Conference on Computer Vision, pages 1026–1034, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Computer Vision Pattern Recognition, pages 770–778, 2016.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[9] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely
connected convolutional networks. In Computer Vision Pattern Recognition, volume 1,
page 3, 2017.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[11] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. 2009.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Conference on Neural Information Processing
Systems, pages 1097–1105, 2012.

[13] Alexandre Lacoste, Hugo Larochelle, François Laviolette, and Mario Marchand. Se-
quential model-based ensemble optimization. arXiv preprint arXiv:1402.0796, 2014.

[14] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[15] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv
preprint arXiv:1712.00559, 2017.

12 PÉREZ-RÚA, ET AL.: EPNAS

[16] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier
Francon, Bala Raju, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving
deep neural networks. arXiv preprint arXiv:1703.00548, 2017.

[17] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and train-
ing deep architectures. arXiv preprint arXiv:1704.08792, 2017.

[18] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

[19] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, 2017.

[20] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution
for image classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

[21] Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In Conference on
Neural Information Processing Systems, pages 4053–4061, 2016.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[23] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In Conference on Neural Information Processing Sys-
tems, pages 2951–2959, 2012.

[24] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International Conference on Machine Learn-
ing, pages 2171–2180, 2015.

[25] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127, 2002.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going
deeper with convolutions. In Computer Vision Pattern Recognition, 2015.

[27] Tom Veniat and Ludovic Denoyer. Learning time-efficient deep architectures with
budgeted super networks. CoRR, 2017. URL http://arxiv.org/abs/1706.
00046.

[28] Lingxi Xie and Alan Yuille. Genetic cnn. International Conference on Computer
Vision, 2017.

[29] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with
Q-learning. In AAAI Conference on Artificial Intelligence, 2018.

[30] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
In International Conference on Learning Representations, 2017.

http://arxiv.org/abs/1706.00046
http://arxiv.org/abs/1706.00046

PÉREZ-RÚA, ET AL.: EPNAS 13

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Computer Vision Pattern Recognition,
2018.

