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Abstract
Despite the recent popularity of Zero-shot Learning (ZSL) techniques, existing ap-

proaches rely on ontological engineering with heavy annotations to supervise the trans-
ferable attribute model that can go across seen and unseen classes. Moreover, exist-
ing cross-sourcing, expert-based, or data-driven attribute annotations (e.g. Word Em-
beddings) cannot guarantee sufficient description to the visual features, which leads to
significant performance degradation. In order to circumvent the expensive attribute an-
notations while retaining the reliability, we propose a Fuzzy Interpolative Reasoning
(FIR) algorithm that can discover inter-class associations from light-weight Simile an-
notations based on visual similarities between classes. The inferred representation can
better bridge the visual-semantic gap and manifest state-of-the-art experimental results.

1 Introduction
Existing image classification techniques highly rely on supervised models that are trained on
large-scale datasets. Despite improved ontology engineering, such as ImageNet that includes
20K+ daily categories, the scale is far behind the requirement of generic image recognition.
First of all, semantic concepts are complex and structured whereas the label space for most
of current supervised learning consists of discrete and disjoint one-hot category vectors. The
associations between classes are imposed to be neglected. Secondly, the dimension of label
space is ever-growing. For example, on average, 1,000 new entries are added to Oxford Dic-
tionaries On-line every. Consequently, for the scalability of conventional supervised learning
is limited due to expensive acquisition of high-quality training images with annotations.

In the past decade, Zero-shod learning (ZSL) was proposed a potential solution which
aim to transfer a learnt supervised model to unseen classes without acquiring new training
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data at the test time. The essential problem is how to teach the machine what visual features
will present in the test class using prior human knowledge. Therefore, the representation
of human knowledge is required to maximumly bridge the visual-semantic gap. Most of
existing approaches adopt visual attributes [15, 18, 26] so that a discrete class label can
be embedded by a boolean representation, each dimension of which denotes whether an
attribute present of absent. In this way, visual-attribute model from seen classes can be
shared to unseen ones with using pre-defined attribute embeddings.

Although the generalisation to new classes can circumvent training image collection,
constructing an attribute-based ontology is even more costly. As shown in Fig.1 (B), both
seen and unseen classes need to be annotated by tens or hundreds of attributes. For example,
the most popular benchmark, AwA, requires the annotator to give 85 attributes for each of 50
classes, let alone instance-level datasets, such as aPY and SUN which contain hundreds of
thousands of manual annotations. Such restrictions severely prevent ZSL from being widely
applied to many non-attribute scenarios. Furthermore, designing attributes is an ambiguous
work since most of visual features are intangible. Constructing a large-scale ontology with
attributes is thus time-consuming and error-prone. Recently, Demirel et al. [8] categories
approaches without dedicated annotation efforts as Unsupervised Zero-shot Learning, which
includes to use readily word embeddings [19], textual descriptions from the website [20],
and hierarchical taxonomy information [2]. However, excluding tedious attribute annotation
is at the cost of exhibiting a significant lower performance.

In this paper, we investigate how to spend the minimal annotation cost while still retain
the high performance of that using attributes. Our first idea is inspired by an intuitive fact. To
describe an unseen instance, the most straightforward way is to relate it to previously seen
classes. Such expressions are called Similes [14] or Classemes [24] which explicitly compare
two things by connecting words, e.g. like, as, as, etc. . However, most of existing approaches
fail to quantify the simile between each pair of seen and unseen classes. And the annotation
cost, as shown in Fig.1 (C), is not less than that using attributes. To this end, we propose
a Fuzzy Interpolative Reasoning (FIR) algorithm that can infer full associations between
seen and unseen classes using only a few similes. In our empirical study, we find only two
similes are enough to outperform existing ZSL approaches using attributes. According to
the common 40/10 seen/unseen split of AwA, the number of required labelling is reduced
from 50× 85 to only 10× 2 that is only 0.47% of the original annotation work. Our main
contribution is summarised as follows.

• We propose a simile-based ZSL learning framework that can significantly reduce the
required annotation cost added to conventional supervised learning.

• The proposed FIR algorithm can effectively quantify similes and infer a reliable simile
vector that can be used as improved semantic auxiliary information over conventional
visual attributes.

• Despite low annotation cost, our approach outperforms state-of-art approaches includ-
ing those using heavy-annotated attributes.

Related Work Simile refers to a part of speech which is proposed to describe complex
visual features, e.g. facial similarity[14]. Another term is known as the Classemes [24]
that can describe either objects similar to, or objects seen in conjunction with an unseen
class, i.e. class-to-class-similarities. Existing methods often involve expensive class-to-class
annotations [27], which is no difference to that of using attributes in terms of annotation cost.
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Figure 1: Zero-shot Learning framework comparison. Fuzzy Interpolative Reasoning lever-
ages a few similes to infer the full associations of an unseen class to all of seen classes. Solid
lines and arrows denote required annotations or associations.

Therefore, despite a large-scale simile-based ontology [16], such a stream of approaches
have not gain much attention until some recent work [6, 17]. Contrary to these methods,
our work utilise word embeddings as clues to find some initial similes to further minimise
the human intervention. Due to the non-visual similarities of word embeddings, the human
intervention is required to adjust the rank based on visual similarities and select a number
of top similes. Despite light-weight annotations, the inferred representation through FIR can
significantly boost existing ZSL methods by substituting their used attributes.

2 Methodology

2.1 Method Overview
1) Simile Vector Our framework is demonstrated in Fig.1 (D). Like most of conventional
supervised classification using that in Fig.1 (A), given a set of seen classes c ∈ 1, ...,C, a
one-versus-all classifier φc is trained for each class. The classifier output is real-valued,
i.e. φc(xi) > φc(x j) implies that xi is more similar to class c, where x denotes the visual
feature vector of an image. Both training and test images then can be represented by f1(x) =
[φ1(x), ...,φC(x)] which is referred as the Simile Vector in the simile space V .
2) Fuzzy Interpolative Reasoning Since each dimension vi = φi(x) denotes a similarity to
a seen class, conventional approaches [27] exhaustively estimate all of seen classes to each
unseen class and quantify the values by averaging the weights from a user questionnaire.
However, such an paradigm suffers from subjective biases and requires heavy annotations,
as shown in Fig.1 (C). We argue that a concise simile list is not only simple but also accurate
for visual description. For example, it can be agreed that leopard looks like bobcat and tiger
on a somehow close level. But it is difficult to decide either rat or whale is more dissimilar
to leopard. Therefore, we model the problem as a fuzzy process where an unseen class can
be represented by a membership function over top similes [c1, ...,ck] and later we introduce
how to in turn convert the discrete similes to real values in the simile vector [vc1 , ...,vck ]. The
goal of FIR aims to modify each simile value in a complete vector v, i.e. f2c(vc1 , ...,vck) = vc.
Simile-based ZSL Suppose we have U unseen classes u ∈ C+1, ...,C+U that are dis-
joint from seen classes. Conventional supervised classifiers (Fig.1 (A)) cannot apply due
to missing the link between images and these U class labels. This is known as the Zero-shot
Learning problem. Now using the FIR inferred simile vector of each unseen classes ZSL
prediction can be achieved by maximising a conventional compatibility score: v1, ...,vU
argmaxu f3( f1(x),vu).
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2.2 Fuzzy Interpolative Reasoning
A fuzzy membership function is defined as a measurable map:

f2 := M(v)→ [0,1] (1)

For example, given leopard is 0.9 similar to bobcat, the function can infer how much it is
similar to tiger based on a rule base of observed membership, i.e. shared similarity between
bobcat and tiger. Different from the probability theory that model predictions exclusively at
a time, fuzzy process focus more on how much information in common at the same time. In
this way, sparse values can likely get shared members to smooth the variance. In our case, we
hope to maximise the tolerance to annotation errors, such as bad ranks or missing important
similes due to the visual-semantic discrepancy.
Fuzzy Rule Base In this paper, we adopt the simplest Gaussian kernel as the membership
function. Given a x, K nearest neighbours [x1

c , ...,xK
c ] in class c are selected to estimated the

similarity between x and class c:

φc(x) =
1
K

K

∑
i=1

exp(− 1
2σ2 ‖x

i
c−x‖2

2). (2)

where σ = 1 without loss of generality. The similarity value is normalised to [0,1] using a
sigmoid function. In this way, we can convert the whole training set X into the simile space
V as the fuzzy rule base using V = [φ1(X ), ...,φC(X )].
Simile Quantification For each unseen class, we have [c1, ...,ck] similes. As argued earlier
that it can be difficulty to give a specific value of the similarity and simile annotations can
suffer from subjective variances. In this paper, we propose a novel empirical alternative that
use the values in the rule base for initial quantification of discrete similes. Specifically, an
unseen class has a simile of seen class ci ∈ [c1, ...,ck], we use the averaged self similarities
of instances in ci to make an approximation:

v′ci
=

1
|ci| ∑

vi∈Vci

vi, (3)

where |.| is the cardinality of a class ci; Vci denotes self-similarity values of all instances in
class ci: φci(x). In this way, we can in turn calculate the initial similarity values of the give
similes [c1, ...,ck]→ [v′c1

, ...,v′ck
]. Next, we elaborate how to select proper observations in

the rule base to complete the FIR algorithm: f2c(v
′
c1
, ...,v′ck

) = vc for C times to achieve a
full simile vector v = [v1, ...,vc, ...vC]. Note that the initialised v′s are also updated so as to
further mitigate the annotation bias.
Fuzzy Rule Selection Like the membership estimation, it is not necessary to use all of the
training instances as fuzzy rules. We only require rules that can make prominent effects
to the conclusion. In this paper, we adopt a sparse manner to refine the fuzzy rule base.
Firstly, we use the local region surrounding the observation instead of the global one, which
is implemented by searching Q nearest neighbours of [v′c1

, ...,v′ck
] in the ck dimensional rule

base. Afterwards, the profile curvature of the local region is constructed to represent the
extent to which the local region deviates from being ‘flat’ or ‘straight’. By viewing the
pattern to be modelled as a geometry object, as shown in Fig.2, curvature values are used to
estimate the prominence to the hidden pattern. As the ‘flat’ or ‘straight’ regions can be easily
interpolated or approximated by its surroundings, only regions with higher curvature values
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Figure 2: An demonstration of Spare fuzzy rule selection. The ideal value is computed by
averaging the Leopard-Lion SMSs using real visual data. Using high-curvature points, the
inferred value is more accurate than that using nearest neighbours. Note that the stars are in
a vertical line and not on the surface. Some points are occluded.

need to be explicitly selected to construct fuzzy rule base. For simplicity, we introduce the
following steps using a 2-D case as an example.

We employ the method in [23] to select the points with the steepest downward gradient
for a given direction. Let the surface of the local region be denoted as f (v1,v2), the gradient
can be expressed as a 2-D vector field O f = ( fv1 , fv2 ,0) = f (i)v1 + f ( j)

v2 , where i and j are steps.
The slope is defined as a scalar field:

S(v1,v2) = |O f |=
√

f 2
v1
+ f 2

v2
(4)

Using the S, the corresponding unit vector u is u = (−O f/S). For a given scalar field
F(v1,v2) the directional derivative Du on the direction u and the overall profile curvature
value Kv can be calculated:

Du(F) = OF ·u (5)
Kv =−S−2( f 2

v1
fv1v2 +2 fv1 fv2 fv1v2 + f 2

v2
fv2v2), (6)

where Du compute the changing rate at F given a movement u; and Kv can be either positive
or negative which corresponds to the convexity and the concavity respectively. For simplic-
ity, we use longitudinal profile curvature that is a streamline passing through F(x,y). Firstly,
we calculate eight directional derivatives for each point (clockwise from North to North-
west) which corresponds to the cardinal and inter-cardinal directions: {Du1 , ...,Du8}. The
point on each direction is interpolated using the v4 function of Matlab toolbox griddata with
parameter u as the density unit. The longitudinal profile curvature Ku can be calculated by
comparing the pair of directional derivatives Du and D′u on the opposite directions (Du >D′u):

Ku =
Du−D′u

S2 (7)

Now the overall rule base V is refined into only top R points [v1, ...,vR] with the highest
Ku values. In this paper, we propose a novel multi-dimensional Gaussian membership func-
tion that can simultaneously accounts the R points, as shown in Fig.3 (R=5 here). For each
of the r selected high-curvature points vr, the fuzzy set is constructed using its T nearest
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Figure 3: Fuzzy Rule Interpolation. V1 : V5 are refined high-curvature rules. V1ci : V5ci are
corresponding output fuzzy sets. V ∗ci

is the final interpolation result.

neighbours [v1, ...,vT ] from the overall rule base. The membership function for each r point
is:

M(vr) = exp(− (vr−mur)
2

2Σ2
r

), (8)

where mur and Σr are the mean and covariance of [v1, ...,vT ]. Hereby, the representa-
tive value is updated from vr to Rep(vr) = mur for further smoothing the data. Note that
the membership value denotes the degree that a point belonging to the fuzzy set, where
M(mur) = 1.
Fuzzy Rule Interpolation As shown in Fig.3, the refined rule base is composed by R fuzzy
rules. Given the initialised observation v′ = [v′c1

, ...,v′ck
], we can construct its corresponding

fuzzy set using eq.8. The new representative value is Rep(v) = mean(v′) instead of v′. Our
final step is to interpolate the real conclusion vc using v:

vc =
1
R

R

∑
r=1

λrvr, (9)

where λ j is the interpolative ratio of the jth fuzzy rule, which can be estimated by:

λr = αr exp
(
−1

2
(Rep(v′)−Rep(vr))

>
Σ
−1
r (Rep(v′)−Rep(vr))

)
, (10)

where α j =
1√

(2π)2‖Σ j‖
, j ∈ {1, ...,r}. Finally, we can repeat the process from Eq.3 to Eq.10

for each seen class i to infer an SV class-level prototype: v∗ = [Rep(V ∗1 ), ...,Rep(V ∗C )].
Related Approaches Fuzzy logic theory provides an effective way to handle vague informa-
tion that arises due to the lack of sharp boundaries or crisp values. With an inherent ability to
analysis human natural language, the fuzzy logic theory has been widely applied to various
intelligent systems [28]. Fuzzy interpolative reasoning is proposed to deal with the problem
at where only sparse rule bases are available, that means, observations do not overlap with
any rule antecedent values thus classical fuzzy inference methods have no rule to fire and
cannot obtain any certain conclusions. It can be mainly categorised into two classes, the KH
method [13] which is based on α−cut of fuzzy set and interval algebra, and the HS methods
[12, 22] which are based on representative values and analogical scaling and moving. Our
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Table 1: Comparison to State-of-the-art Methods.

Annotation Type Method AwA aPY
WE SV WE SV

Unsupervised

DeViSE[11] 44.5 47.5 25.5 27.4
ConSE[19] 46.1 48.2 22.0 27.8
Text2Visual[9] 55.3 - 30.2 -
SynC[5] 57.5 58.9 - -
ALE[1] 58.8 60.1 33.3 36.2
LatEm[25] 62.9 63.2 - -
CAAP[4] 67.5 - 37.0 -
Attri2Classname[8] 69.9 - 38.2 -
Ours - 78.5 - 48.8

Attri SV Attri SV

Supervised

DAP[15] 54.0 58.5 28.5 36.6
ENS[21] 57.4 31.7
HAT[3] 63.1 38.3
ALE-attr[1] 66.7 70.1 - -
SSE-INT[29] 71.5 - 44.2 -
SSE-ReLU[29] 76.3 - 46.2 48.9
SynC-attr[5] 76.3 78.5 - -
SDL[30] 79.1 82.2 50.4 52.5
Ours 80.5 83.2 51.2 56.7

WE: Word Embedding; SV: Simile Vector; Attri: Attribute Embedding.

unique contribution is to regard similes and visual similarities as fuzzy processes, for which
we propose a new multi-variable multi-antecedent fuzzy interpolative reasoning algorithm
that can accurately infer the similarity values.

2.3 Zero-shot Recognition Using SV

Using FIR, we can convert the light-weight sparse simile annotations into a full simile vector
for each unseen class u vu = [v1, ...,vc, ...vC]. During the test, an unseen image x̂ is also
converted into a simile vector f1(x̂) = v̂ using Eq.4. Without loss of generality, we simply
adopt the simplest nearest neighbour classifier to predict the label:

f3 := argmin
u
‖v̂−vu‖2

2 (11)

3 Experiments
We first compare our approach to state-of-the-art results. Since simile-based ZSL has only a
few previous work, our comparison involves published results under various settings, frame-
works, and visual/semantic data. We discuss the characteristics of our method is details and
try to understand how does each component contributes to the overall performance.

Our method is evaluated on AwA [15], and aPY [10] benchmarks. We follow standard
40/10 and 20/12 seen/unseen splits as that in [8] for the sake of fair comparison. We adopt
the VGG-19 deep visual features released by [29]. Although the whole approach is non-
parametric, there are four NN parameters: [K,Q,R,T ]. The seen classes are divided into

Citation
Citation
{Frome, Corrado, Shlens, Bengio, Dean, Mikolov, etprotect unhbox voidb@x penalty @M  {}al.} 2013

Citation
Citation
{Norouzi, Mikolov, Bengio, Singer, Shlens, Frome, Corrado, and Dean} 2014

Citation
Citation
{Elhoseiny, Saleh, and Elgammal} 2013

Citation
Citation
{Changpinyo, Chao, Gong, and Sha} 2016

Citation
Citation
{Akata, Perronnin, Harchaoui, and Schmid} 2013

Citation
Citation
{Xian, Akata, Sharma, Nguyen, Hein, and Schiele} 2016

Citation
Citation
{Al-Halah, Tapaswi, and Stiefelhagen} 2016

Citation
Citation
{Demirel, Cinbis, and Ikizler-Cinbis} 2017

Citation
Citation
{Lampert, Nickisch, and Harmeling} 2009

Citation
Citation
{Rohrbach, Stark, and Schiele} 2011

Citation
Citation
{Al-Halah and Stiefelhagen} 2015

Citation
Citation
{Akata, Perronnin, Harchaoui, and Schmid} 2013

Citation
Citation
{Zhang and Saligrama} 2015

Citation
Citation
{Zhang and Saligrama} 2015

Citation
Citation
{Changpinyo, Chao, Gong, and Sha} 2016

Citation
Citation
{Zhang and Saligrama} 2016

Citation
Citation
{Lampert, Nickisch, and Harmeling} 2009

Citation
Citation
{Farhadi, Endres, Hoiem, and Forsyth} 2009

Citation
Citation
{Demirel, Cinbis, and Ikizler-Cinbis} 2017

Citation
Citation
{Zhang and Saligrama} 2015



8 LONG ET AL.: TOWARDS LIGHT-WEIGHT ANNOTATIONS: FIR FOR ZSL

Figure 4: Investigation of the characteristic of using similes.

Figure 5: Performance w.r.t. nearest neighbour max-pooling parameters.

four folds. We use leave-one-fold-out cross-validation to choose the best parameters and fix
them for all of the test.

One of the main concerns is how to achieve similes of unseen classes. In this paper, we
defined three protocols: 1) Unsupervised Similes: class similarities are purely estimated
by their word embeddings and top ck similes are fed to FIR; 2) Attribute-based Similes:
using conventional attributes as class embeddings, we can compute top ck similes for FIR
inputs; 3) Supervised Similes: human intervention to the rank from protocol 1) to correct
unsatisfied similes. The annotations use the judgements of a colleague who was unfamiliar
with the details of this work.

3.1 Main Results
Baselines We summarise our main comparison in Table 1. It can be seen that most of the
results of attribute-based approaches are better. The experimental results can be categories
by two dimensions. Firstly, we compare our method to pure unsupervised approaches us-
ing word embedding-led similes. We then compare to conventional ZSL approaches using
attributes to compute the similes. Furthermore, we provide light-weight human intervention
to correct some simile errors due to semantic dominances from the above two embeddings.
We focus on how much improvements can gain from the light-weight annotations. The av-
eraged performance improvement is over 3.5%. Such a promising result indicate that our
algorithm can provide an interesting interface for human-computer interaction to actively
learn the parameters.

The other dimension is the comparison between conventional semantic models, i.e. WE
and Attri, and the proposed SV. Also also implement some existing approaches with their
released codes. Again, we observe significant performance gains by substituting WE and
Attri by our inferred SV representation.

Our method steadily outperforms all of the above baselines. We ascribe our success to
that encoding semantic similes by visual similarities between classes leads to little informa-



LONG ET AL.: TOWARDS LIGHT-WEIGHT ANNOTATIONS: FIR FOR ZSL 9

Table 2: Upper bound increase using SV as representation.
AwA aPY

Feature Deep Low-level Deep Low-level
Raw 92.33 80.64 94.82 84.73
SV 96.83 91.88 97.42 95.62

tion loss comparing to attribute or word representations. Also, in contrast, the transductive
setting is purely based on visual data distribution which may not be consistent with semantic
distributions, whereas our similes are directly related to class labels.

3.2 Detailed Discussions

To understand the promising results, we discuss our approach from following aspects that
are supported by extensive experiments.
Deep feature effect To understand the contribution of the SV representation, we separately
study it using a supervised setting on seen classes. It can be seen that the supervised classifi-
cation rates are remarkably increased, indicating the SV not only bridges the visual-semantic
gap, but is a better visual representation as well. We verify our finds on conventional low-
level features, e.g. a concatenation of PCA, PHOG, etc. to show its independence to deep
features.
Simile Vector performance upper bound A recent novel evaluation metric is proposed in
[7] to estimate the upper bound of the expected performance empirically. We absorb the
same spirit and use the mean of real unseen visual data as prototypes. In Table 2, it can be
seen that our SV can remarkably boost the upper bounds (roughly 4% for deep features and
10% for low-level features) than using raw features, which manifest our SV representation
is not only interpretable but also more discriminative.
Reducing training samples In Fig. 4 (left), we gradually reduce the training size by ran-
domly sampling a different number of images. The results are averaged by three repeats. It
can be seen our method requires approximate 100 and 50 samples for AwA and aPY respec-
tively to achieve reliable performance.
Simile error tolerance Semantic similes may be slightly inconsistent due to different inter-
est points can be focused. Thus, in Fig. 4 (mid), we permute the top four similes and check
their effects on the overall performance. It is shown that the first and second similes are more
important than the third and fourth ones. aPY is more sensitive to simile errors because the
number of seen classes (20) is much smaller than that of AwA (40). Hence, it can be difficult
to give more than two similes to each unseen classes.
Increasing simile number A very interesting question is why we choose a pair of similes.
We answer this question by the experiments in Fig. 4 (right). It is shown that using one
simile is not satisfied. Our original assumption is that the performance would increase while
more similes are given. To our surprise, using two, three, or four top similes does not make
significant changes. Using five similes can harm the performance. The reason our FIR can
regard correlated similes as one fuzzy set. Similes are not complementary to each other can
lead to noise and redundancy. Thus, a pair is just enough.
NN parameters There are totally four NN processes in our approach. NN is a simple way
for max-pooling on the feature level that can suppress noise and reduce redundancy. In Fig.
5, we show the effects of each parameter on the overall performance by fixing the other
three. Generally, for MKE and high-curvature points, smaller k and r is better so as to pick
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out high-quality observations. In contrast, higher q and t are better so that the rule base can
contain sufficient fuzzy rules.

4 Conclusion
In this paper, we proposed an efficient simile-based ZSL framework that can recognise un-
seen classes with light-weight simile annotations. The proposed simile vector made the
image representation more interpretable and discriminative. By regarding both input and
output as fuzzy processes, our FIR significantly boosted the ZSL performance by accurately
predicting the similarity value of each seen class in the simile vector using only discrete
simile annotations. We achieved state-of-the-art results on both AwA and aPY. Our method
significantly exceeded the performances of both supervised and unsupervised approaches.
One of the future improvement could focus on how to apply similes on fine-grained tasks,
which can be investigated in the future work.
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