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Abstract

Semi-supervised learning is recently addressed by means of neural networks in the
framework of deep learning. For the semi-supervised tasks where training samples are
partially labeled, the generative adversarial networks (GANs) are applicable not only to
augmentation of the training samples but also to the end-to-end learning of classifiers
exploiting the unlabeled samples. It, however, is found that the previous GAN-based
semi-supervised method is less effective on the smaller number of labeled samples, and
thus in this paper, we propose a novel GAN-based method to effectively work on fewer
labeled samples. In the GAN framework, through analyzing gradients of the discrimi-
nator which are fundamental to learn the network via back-propagation, we formulate a
discriminator model and accordingly a generator loss to cope with the less discriminative
classifier trained on the fewer labeled samples. The proposed model is also mixed with
the original one to further improve discriminativity on the semi-supervised learning in an
efficient way beyond the simple linear combination. The experimental results on semi-
supervised classification tasks using MNIST, SVHN and CIFAR-10 datasets show that
the proposed method exhibits favorable performance compared to the other methods.

1 Introduction
Building classifiers requires labeled training samples in the learning process, and thus it is
effective to formulate the learning scheme in the semi-supervised framework utilizing both
unlabeled samples and (the smaller number of) labeled ones, which reduces the human labor
for annotating samples. The semi-supervised learning problem has so far been addressed
mainly by exploiting the relationships among samples in a graph where pair-wise similarities
are assigned to the edges [1, 2, 23, 25]. In recent years, it is tackled by means of neural
networks in the deep learning framework, such as by improving the network architecture [9,
18] and/or the objective loss on which the network is learned [11, 14], without explicitly
considering the relationships among the labeled and unlabeled samples.

In that framework, the generative adversarial networks (GANs) [5, 17] contribute to
learning the classifier in a semi-supervised way, while they remarkably advance the field of
image generation [6, 26]. The GANs can generate realistic images which are regarded as
part of training data [20, 27] to effectively augment data for improving classification per-
formance. While the methods [20, 27] leverage the (fake) images generated by separately
pre-trained GANs to the data augmentation, there also exist the methods [16, 19, 21] that di-
rectly couple GANs with classifiers in an end-to-end manner utilizing the unlabeled samples.
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Though the methods are effective without carefully controlling the labels of the generated
images by GANs, we empirically found that they compromise performance in the case that
labels are assigned only to the smaller number of samples. Such a case of the fewer labeled
samples is practically desirable for significantly reducing human labor in label annotation,
though leading to the less discriminative classifier due to lack of labels.

In this paper, we propose a method to further improve the performance of the GAN-
based semi-supervised learning by coping with the less discriminative classifier especially
on the smaller number of labeled samples. Through analyzing how the previous GAN-
based method works on the semi-supervised learning from the viewpoint of gradients, the
fundamentals to update network parameters, we present a novel discriminator model and
accordingly a loss for training the generator to boost performance of the less discriminative
classifier. Then, to bridge the gap between the proposed method and the previous one, we
mix those two methods to further improve discriminativity in an efficient way beyond the
simple linear combination which actually results in a performance drop.

2 GAN-based Semi-Supervised Learning
We first briefly review the GAN-based methods [16, 19] that we focus on, and then analyze
how the network parameters are updated by those methods with discussing why it fails to
work on the fewer number of labeled samples.

For classifying an image I to one of C classes, the classifier φθθθ is built by the neural net-
work of L layers whose parameters are denoted by θθθ . It produces the posterior probabilities
of an image I by means of softmax as

p(c|I;θθθ) =
exp(xc)

∑
C
c′=1 exp(xc′)

, ∀c ∈ {1, · · · ,C}, (1)

where xc indicates the c-th neuron activation at the last layer to form the vector xxx , φ L
θθθ
(I) ∈

RC as shown in Fig. 1. On the other hand, given a random vector zzz ∈ Rd , the generator G
produces a fake image Ĩ = Gηηη(zzz) with the parameters ηηη in the same manner as the standard
GANs to generate images [5, 17]. In the semi-supervised learning framework, the discrimi-
nator D is constructed by leveraging the classifier φθθθ to the discrimination between real and
fake images as

Dθθθ (I) =
∑

C
c exp(xc)

1+∑
C
c exp(xc)

= p(real|I;Dθθθ ), (2)

and accordingly p(fake|I;Dθθθ ) = 1−Dθθθ (I). This is based on the C+1-class softmax where
the fake class is added to the C classes of the classification targets and represented by “1” in
the denominator without loss of generality [19]. From the above formulation, we can derive
the following loss to be minimized w.r.t θθθ ;

min
θθθ

EI∈L[− log{p(cI |I;θθθ)}]+EI∈U [− log{Dθθθ (I)}]+EĨ∈FGηηη
[− log{1−Dθθθ (Ĩ)}], (3)

where cI indicates the class label assigned to an image I drawn from the labeled image set
L, although such labels are not provided in the unlabeled image set U and the fake image set
FGηηη

produced by Gηηη ; note that the fake image setFGηηη
can be updated in accordance with the

updated Gηηη . While both the classifier and the discriminator parameterized by θθθ are trained in
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(3), according to the standard protocol in GANs [5], the generator Gηηη can be simultaneously
learned by adversarially minimizing the following loss to fool the discriminator [16];

min
ηηη

EĨ∈FGηηη
[− log{Dθθθ (Ĩ)}]. (4)

In [19], the generator loss is improved for semi-supervised learning by introducing the
feature-matching loss of

min
ηηη
‖µµµ l

θθθ
− µ̃µµ

l
θθθ ,ηηη‖

2
2, (5)

where µµµ l
θθθ
= EI∈L∪U [φ

l
θθθ
(I)] and µ̃µµ

l
θθθ ,ηηη = EĨ∈FGηηη

[φ l
θθθ
(Ĩ)] are the averaged neuron activations

(feature vectors) at the l-th layer φ l
θθθ

, l < L, over real and fake images, respectively; we use
l = L− 1, the second last layer as shown in Fig. 1. In [19], it is empirically found that
the feature-matching loss (5) to train the generator works well in the semi-supervised learn-
ing. The GAN-based semi-supervised learning method alternately optimizes the classifier
φθθθ /discriminator Dθθθ in (3) and the generator Gηηη in (4) or (5).

2.1 Analysis of Gradient
Although the GAN-based method effectively works by simply relating the classifier and the
generator via the discriminator, we empirically found, as shown in Sec. 4, that the method
is vulnerable to a less discriminative classifier especially trained on the smaller number of
labeled samples. In this section, we explain the finding through analyzing the gradient-based
updates of the network.

The unsupervised loss regarding the unlabeled images I ∈ U in (3) induces the following
updates, corresponding to the negative gradients, with respect to the neurons {xc}Cc=1;

− ∂

∂xc
[− log{Dθθθ (I)}] =

1
1+∑

C
c′=1 exp(xc′)

exp(xc)

∑
C
c′=1 exp(xc′)

= p(fake|I;Dθθθ )p(c|I;θθθ). (6)

The update (6) pushes the network to further enhance the current prediction p(c|I;θθθ) no
matter how it is correct or not; the neuron xc∗ associated with the predicted class c∗ =
argmax[p(c|I;θθθ)] receives the largest update, being further encouraged. It should be also
noted that the scaling factor p(fake|I;Dθθθ ) is not small due to the adversarial training of the
generator, ideally reaching 1

2 . Thus, this update works on the basis that the current classifier
φθθθ is so discriminative as to produce fairly correct prediction p(c|I;θθθ). Such a discrimina-
tive classifier, however, is obtained by using considerable amount of labeled samples and/or
sufficiently proceeding the learning at the later epochs. It could degrade performance in case
that the classifier is immature and less discriminative, producing wrong predictions which
are unfavorably enhanced through (6). The issue would manifest itself in the tasks using
fewer labeled samples on which the classifier is too poor to exhibit enough discriminativ-
ity power especially at the early learning stage. Therefore, we conjecture that due to the
updating formula (6) the GAN-based method [19] produces a less effective classifier in the
semi-supervised learning tasks of the smaller number of labeled samples.

The same discussion can be applied to the adversarial generator loss (4), though it is
replaced with the feature-matching loss (5) in [19]. From the above-mentioned viewpoint,
the loss (4) would be less effective for the semi-supervised learning since the prediction by
the poor classifier unfavorably affects the updating process of the generator during training.
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3 Proposed Method
To remedy the issue discussed in the previous section, we propose the discriminator model
and accordingly the loss for training the generator such that their updates are not dependent
on the predictions by the (poor) classifier during training. For further improving discrimina-
tivity power, we also present an effective method to mix the proposed model with the previous
one that comprises the discriminator (2) and the generator loss (5); the overall procedure is
shown in Algorithm 1.

3.1 Discriminator Model
The proposed discriminator is modeled in the following form:

D̂θθθ (I) =
exp( 1

C ∑
C
c=1 xc)

1+ exp( 1
C ∑

C
c=1 xc)

= s

(
1
C

C

∑
c=1

xc

)
= p(real|I; D̂θθθ ), (7)

where s indicates a sigmoid function. The proposed discriminator (7) detects real images
based on the averaged neuron activation, which induces the updates for the discriminator D̂θθθ

on real images I and fake ones Ĩ as

− ∂

∂xc
[− log{D̂θθθ (I)}] =

1
C
− 1

C
D̂θθθ (I) =

1
C

p(fake|I; D̂θθθ ),

− ∂

∂xc
[− log{1− D̂θθθ (Ĩ)}] =−

1
C

p(real|Ĩ; D̂θθθ ).

(8)

These update formulas do not resort to the current prediction, p(c|I;θθθ) in (1), and all the
neuron activations xxx get unbiased updates with the scale of p(fake|I; D̂θθθ ) or p(real|I; D̂θθθ ).
These neurons are forced to be activated only on real images I, thereby forming a subspace
for the features xxx of real images. As the generator provides more realistic fake images Ĩ,
the subspace becomes tighter to facilitate learning the classifier which focuses on the labeled
samples in the restricted subspace. Through this formulation, the semi-supervised loss (3) is
clearly decomposed into two types of learning; one is for a discriminator D̂θθθ to differentiate
real unlabeled images from fake images and the other is for a classifier φθθθ across C classes
on the labeled samples. Actually, the updates (8) of the discriminator, which are constant
over {xc}Cc , are perpendicular to the classifier, not affecting the softmax posterior p(c|I;θθθ) =

exp(xc)
∑c exp(xc)

= exp(xc+β )
∑c exp(xc+β ) ,∀β ∈ R, while the previous discriminator model (2) makes some

effects on the classifier through its updating formula (6). Thus, the proposed discriminator
(7) just outlines the subspace of the real images so as to improve generalization performance
of the classifier on it, leaving the enhancement of discriminativity to the supervised learning
of the classifier based on the labeled samples L.

On the other hand, the discriminator (7) is also applicable to the adversarial learning for
the generator Gηηη . In contrast to the previous model (2,6), our model (7,8) is not dependent
on the classifier prediction and thus is freed from the (poor) performance of the classifier
during training. Therefore, we can directly apply it to the following generator loss:

min
ηηη

EĨ∈FGηηη
[− log{D̂θθθ (Ĩ)}]. (9)

This loss for the generator Gηηη is adversarial to that for the discriminator D̂θθθ , which is con-
sistent from the viewpoint of the adversarial learning [5]. The consistency would contribute
to increasing stability in training networks.
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softmax

feature matching

Figure 1: Layers of the network φθθθ . The last
output by the L-th layer is fed into softmax to
produce p(c|I;θθθ), while the L−1-th output con-
tributes to the feature-matching loss.

mean

quasi-max

Center

Figure 2: Arithmetic mean and quasi max
over five features {xc}5

c=1. The discrimi-
nators (7) and (11) are built on them.

3.2 Mixing Two Models
The proposed discriminator (7) effectively copes with the poor classifier which is trained on
the smaller number of labeled samples through immature learning at the earlier epochs, as
discussed above. On the other hand, for a matured classifier exhibiting enough discrimina-
tivity such as at the later learning epochs, it would be beneficial to apply the classifier as
a discriminator to exploit the discriminative information of the unlabeled samples via the
updating (6), as in the previous model (2). We incorporate those positive aspects into the
semi-supervised learning by mixing the two models.
Discriminator
It is straightforward to mix the two models (2) and (7) in terms of losses into

wEI∈U [− log{Dθθθ (I)}]+ (1−w)EI∈U [− log{D̂θθθ (I)}]
+wEĨ∈FGηηη

[− log{1−Dθθθ (Ĩ)}]+ (1−w)EĨ∈FGηηη
[− log{1− D̂θθθ (Ĩ)}], (10)

with the balancing parameter 0 ≤ w ≤ 1. It, however, does not work at all as demonstrated
in Sec. 4.1. The loss (10) implies that real and fake images are classified by two types of
discriminators, which rather lacks consistency from the perspective of the adversarial learn-
ing based on single discriminator. Therefore, we here consider to mix them while keeping
consistency as follows.

Without loss of generality, we first slightly modify the discriminator Dθθθ into

D′
θθθ
(I) =

1
C ∑

C
c=1 exp(xc)

1+ 1
C ∑

C
c=1 exp(xc)

= s
(

log
{ 1

C

C

∑
c=1

exp(xc)
})

= p(real|I;D′
θθθ
), (11)

which provides the same updating as in (6); − ∂

∂xc
[− log{D′

θθθ
(I)}] = p(fake|I;D′

θθθ
)p(c|I;θθθ).

It should be noted that log{ 1
C ∑

C
c=1 exp(xc)}, input to the sigmoid s, is close to maxc(xc) [3]

as depicted in Fig. 2; thus we call it quasi max. From this viewpoint of the sigmoid-based
discrimination, the discriminator (11) is sensitive to the maximum neuron activation via the
quasi max while the proposed discriminator (7) is built on the mean activation. On the basis
of this analysis, we can mix those discriminators consistently in the sigmoid function;

D̄θθθ (I;w) = s

(
(1−w)

1
C

C

∑
c=1

xc +w log
{

1
C

C

∑
c=1

exp(xc)

})
, (12)
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where the arithmetic mean and the quasi max are mixed with a linear weight w, followed by
the sigmoid function to construct the discriminator. This mixed discriminator provides the
following update formula:

− ∂

∂xc
[− log{D̄θθθ (I;w)}] = p(fake|I; D̄θθθ )

[
(1−w)

1
C
+wp(c|I;θθθ)

]
, (13)

which is regarded as the linear combination of (8) and (6), while the loss-based mixing (10)
does not lead to such a formulation but result in

− ∂

∂xc
[−(1−w) log{D̂θθθ (I)}−w log{D′

θθθ
(I)}]=(1−w)p(fake|I;D̂θθθ )

1
C
+wp(fake|I;D′

θθθ
)p(c|I;θθθ),

(14)

where the two fundamental updates 1
C and p(c|I;θθθ) are weighted by not only w but also

p(fake|I; D̂θθθ ) and p(fake|I;D′
θθθ
) of which balance is dependent on the discrminative powers

of the two discriminators. Compared with (14), we can see that the proposed mixed discrim-
inator (12) favorably works to mix the two characteristics of the discriminators in learning;
one is to tightly shape subspace of real images for facilitating the learning of the classifier
(Sec. 3.1) and the other is toward discriminative learning (Sec. 2.1).

As discussed in Sec. 3.1, the discriminator (7) is effective at the earlier learning epochs
when the classifier is immature, while the other one (11) works on the matured classifier at
the later epochs. Thus, we can gradually increase the balancing weight w as the learning
proceeds; in this work, w is increased by 0.01 every epoch. As a result, the loss for training
a classifier/discriminator in semi-supervised learning is finally defined as

min
θθθ

EI∈L[− log{p(c|I;θθθ)}]+EI∈U [− log{D̄θθθ (I;w)}]+EĨ∈FGηηη
[− log{1− D̄θθθ (Ĩ;w)}]. (15)

Generator
For increasing stability in training GAN, we slightly modify the feature-matching loss (5) for
the generator Gηηη by introducing the matching loss regarding standard deviation as shown in
(16). This is inspired by the style loss [13] in which two images of different styles are
related through matching two kinds of statistics, mean and standard deviation. This helps to
effectively move fake images to real ones especially from the viewpoint of style.

We have presented two types of generator losses in (9) and (5). In contrast to the case
of mixing discriminators, both losses are defined at different layers (Fig. 1) to optimize the
identical generator Gηηη and thus can be simply mixed as in deep supervision [24];

min
ηηη

(1−w)EĨ∈FGηηη
[− log{D̂(Ĩ)}]+w

{
‖µµµ l

θθθ
− µ̃µµ

l
θθθ ,ηηη‖

2
2 +‖σσσ l

θθθ
− σ̃σσ

l
θθθ ,ηηη‖

2
2
}
, (16)

where σσσ l
θθθ
=
√

EI∈L∪U [(φ l
θθθ
(I)−µµµ l

θθθ
)2] and σ̃σσ

l
θθθ ,ηηη =

√
EI′∈FG

[(φ l
θθθ
(I′)− µ̃µµ

l
θθθ ,ηηη)

2] are the stan-
dard deviations of the neuron activations at the l-th layer across real and fake images, respec-
tively; l = L−1 in this study. It should be noted that the balancing weight w is shared with
the mixed discriminator (12) so that the discriminator and the generator losses are varied
correspondingly and gradually.

The two losses (15) and (16) are alternately minimized according to the standard adver-
sarial learning protocol, finally producing the classifier φθθθ

∗ ; the training procedure is shown
in Algorithm 1.
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Algorithm 1 : GAN-based Semi-supervised Learning
Input: φθθθ : classifier network, Gηηη : generator network, T : number of training epochs

L: labeled image set {I,cI}, U : unlabeled set containing only images {I},
Z: random value generator for the input of the generator G

1: Initialize network parameters θθθ of the classifier (discriminator) and ηηη of the generator
2: for t = 1 to T do
3: Set the balancing weight as w = min[1,0.01(t−1)] ∈ [0,1]
4: while Mini-batch sampling w.r.t L, U and Z do
5: [Discriminator] Update θθθ to minimize the loss (15) based on the gradient (13)
6: [Generator] Update ηηη to minimize the loss (16)
7: end while
8: end for

Output: θθθ
∗: optimized network parameter for the classifier φθθθ

4 Experimental Results
The proposed method is applied to semi-supervised classification tasks on MNIST [12],
SVHN [15] and CIFAR-10 [10] datasets. We use the same network architectures as in [19];
on MNIST dataset, the classifier network φθθθ is simply based on multiple-layer perceptron
(MLP) with 5 hidden layers and the generator Gηηη is similarly designed as MLP with 2 hidden
layers, while on SVHN and CIFAR-10 datasets the convolutional neural network (CNN) of 9
hidden layers is employed as a classifier with the DCGAN [17] generator. The networks are
trained by Adam optimizer [8] over 600 epochs through gradually increasing the balancing
weight w=min[1, 0.01(t−1)] where the epoch index is denoted by t ∈ {1, · · · ,600}.

In each dataset, the classifier φθθθ is learned in a semi-supervised manner on the training
set where the labeled samples L are randomly drawn and the others are regarded as the
unlabeled ones U . The random split for picking up the labeled samples is repeated five times
on MNIST and three times on the other datasets. We report the averaged error rate on the
provided test set. For fairly comparing the performance of semi-supervised learning, we use
only the training samples provided in the datasets without augmentation.

4.1 Performance Analysis

We first analyze performance of the proposed method on MNIST dataset. The class labels
are assigned only to 1, 3 and 5 training samples per class.

The proposed method mixes the two types of models; the quasi-max based discriminator
(11) with feature-matching loss for generator and the mean based discriminator (7) with its
adversarial generator loss, which are mixed by a balancing weight w as shown in (15,16).
We compared the proposed mixed model with the other configurations in our framework; ac-
tually, various types of configurations can be realized by controlling the weight w separately
in the discriminator loss (15) and the generator loss (16). The performance results of various
models are shown in Table 1.

By comparing two methods without mixing (Table 1i), the previous method (i-1, Sec. 2)
in which the parameter updates are affected by immature classifier predictions degrades per-
formance on the smaller number of labeled samples, as described in Sec. 2.1. In contrast,
our model (i-2, Sec. 3.1) effectively works by excluding its effect from the update formula
through the averaged feature representation in the mean-based discriminator (7). Then, as
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Table 1: Performance analysis (error rate, %) regarding configurations of discriminator and
generator on MNIST. We configure various models (i∼iii) by setting the balancing weight
such as to w = 0 or 1 in the discriminator loss (15) and the generator loss (16), separately,
while the mixed models (iv,v) simultaneously increase the weight w from 0 to 1.

number of labeled samples per class
Discriminator (15) Generator (16) 1 3 5

i-1) quasi-max (w = 1) feat.-match (w = 1) 64.42 ± 2.95 32.08 ± 7.95 7.26 ± 2.22
i-2) mean (w = 0) adv. loss (w = 0) 27.58 ± 3.22 7.71 ± 2.49 4.85 ± 1.41
ii-1) mix feat.-match (w = 1) 46.10 ± 11.19 14.28 ± 15.70 1.76 ± 1.50
ii-2) mix adv. loss (w = 0) 41.34 ± 4.58 13.59 ± 5.85 2.33 ± 0.60
iii-1) quasi-max (w = 1) mix 66.59 ± 4.15 28.50 ± 6.38 7.75 ± 1.49
iii-2) mean (w = 0) mix 25.01 ± 3.08 6.31 ± 4.92 2.47 ± 1.30
iv) simple mix (10) mix 76.79 ± 2.69 68.80 ± 1.99 54.20 ± 6.23
v) mix mix 36.92 ± 3.88 9.02 ± 4.63 1.52 ± 0.62

Table 2: Performance comparison (error rate, %) on MNIST. The supervised methods (i,ii)
are trained only on the labeled samples, while the others are semi-supervised methods.

number of labeled samples per class
Method 1 3 5

i) supervised NN 54.46 ± 5.16 43.39 ± 3.07 31.87 ± 2.81
ii) HOG [4] + SVM [22] 38.47 ± 3.36 20.89 ± 1.96 13.06 ± 1.50
iii) HOG [4] + TSVM [7] 46.12 ± 3.92 11.52 ± 4.87 3.54 ± 0.84
iv) improved GAN-SS[19] 60.74 ± 4.02 22.24 ± 3.99 5.34 ± 2.66
v) LadderNet [18] 34.10 ± 16.91 5.19 ± 4.65 1.48 ± 0.44
vi) VAE-SS [9] 14.17 ± 4.61 5.95 ± 0.89 5.05 ± 1.10
vii-1) Ours (mixed model) 36.92 ± 3.88 9.02 ± 4.63 1.52 ± 0.62
vii-2) Ours + SVM [22] 15.40 ± 2.61 4.19 ± 2.47 1.29 ± 0.21
vii-3) Ours + TSVM [7] 15.72 ± 3.33 3.76 ± 3.52 0.93 ± 0.07

to the generator loss, Table 1ii demonstrates that the adversarial loss (9) by the mean-based
representation contributes to performance improvement on fewer labeled samples, while the
feature-matching loss becomes effective as the more samples are labeled. This result im-
plies that the consistency across the generator and discriminator losses is useful for the less-
discriminative classifiers trained on the fewer labeled samples. As shown in Table 1iii com-
paring the discriminator models, the mean-based representation outperforms the quasi-max
based one. Those two models can be effectively mixed to improve performance especially on
the case of 5 labeled samples (Table 1v). In summary, by exploiting the mean-based discrim-
inator and its adversarial loss for the generator, the classification performance is improved
in the semi-supervised learning on the smaller number of labeled samples. We also show in
Table 1iv the result by simply mixing the discriminator models in terms of loss (10). Such
a simple mixing on top of the losses is significantly inferior to our mixing (Table 1v), even
though the difference between those two models is only in the discriminator loss. Thus, we
can conclude that it is important to mix the discriminator models (2,7) into the single model
(12) via a sigmoid function for retaining consistency in discriminating real and fake images.

4.2 Comparison to Other Methods
The proposed method is then compared with the other methods; for supervised learning, (i)
the classifier of the neural network φθθθ is trained only on the labeled samples and (ii) the hand-
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Table 3: Performance comparison (error rate, %) on SVHN.
number of labeled samples per class

Method 10 30 50
i) supervised CNN 81.87 ± 1.43 66.18 ± 3.47 44.59 ± 3.80
ii) HOG [4]+SVM [22] 36.32 ± 1.54 28.61 ± 1.36 26.41 ± 1.34
iii) HOG [4]+TSVM [7] 33.62 ± 2.86 22.88 ± 0.99 22.17 ± 0.61
iv) improved GAN-SS[19] 79.60 ± 2.23 29.62 ± 12.57 18.57 ± 2.51
v) TempEns [11] 75.00 ± 3.74 35.91 ± 3.21 16.87 ± 8.76
vi) VAT [14] 57.78 ± 5.47 15.70 ± 2.21 9.17 ± 0.94
vii-1) Ours (mixed model) 62.80 ± 8.55 11.45 ± 1.64 7.16 ± 0.63
vii-2) Ours + SVM [22] 47.54 ± 6.40 10.31 ± 0.81 7.75 ± 0.24
vii-3) Ours + TSVM [7] 51.85 ± 8.12 8.35 ± 0.26 7.05 ± 0.38

crafted HOG feature [4] is combined with linear SVM [22] classifier, while semi-supervised
methods include (iii) HOG feature with transductive SVM (TSVM) [7], (iv) GAN-based
semi-supervised method [19] and (v,vi) the other neural-network based methods [9, 11, 14,
18]; we used the codes provided by the authors for the methods [9, 11, 14, 18, 19]. In addi-
tion to our classifier (vii-1) trained in an end-to-end semi-supervised manner, the supervised
SVM (vii-2) and semi-supervised TSVM (vii-3) classifiers are also applied to the features
φ

L−1
θθθ
∗ of the neuron activations at the L−1-th layer in our trained network φθθθ

∗ . This can
be fairly compared to the hand-crafted HOG features from the viewpoint of feature extrac-
tion. Note again that all these methods are trained on the same set of labeled samples whose
number per class is varied over 1, 3 and 5 on MNIST dataset and 10, 30 and 50 on SVHN
and CIFAR-10 datasets. We apply the proposed method of mixed model (Table 1v) with
gradually increasing the balancing weight w = min[1, 0.01(t−1)].

The performance comparison results are shown in Table 2, Table 3 and Table 4 for
MNIST, SVHN and CIFAR-10 datasets, respectively. On MNIST (Table 2) of less com-
plex image patterns, i.e., hand-written digits, the simpler methods produce favorable per-
formance, such as hand-crafted HOG (iii) and VAE-SS (vi) which applies dimensionality
reduction via variational auto-encoder as pre-processing, while the supervised neural net-
work (i) deteriorates due to such a small amount of labeled training data. The proposed
method (vii-1) exhibits superior performance especially on 3 and 5 labeled samples, im-
proving the performance of the neural network (i). The features provided by our trained
network effectively work with the supervised SVM (vii-2) and the semi-supervised TSVM
(vii-3) classifiers, demonstrating that our semi-supervised learning endows the intermediate
(L−1-th) layer with the discriminative power; the maximum-margin criterion by SVMs en-
ables us to further boost the performance on the smaller number of labeled samples. We can
also observe the similar performance comparison on the other datasets (Table 3&4), where
although the supervised neural network (i) is inferior even to the HOG+SVM model (ii), it
is significantly improved by our method to produce favorable performance in comparison to
the other methods.

Our GAN-based method considers out-of-sample (fake) representation via GAN to make
the classifier concentrate on real samples, while the other methods operate within the training
(real) samples. Thus, it is noteworthy that our GAN-based method can compensate and work
together with the other semi-supervised methods such as [11, 14, 18] for further improving
performance, which is our future work.
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Table 4: Performance comparison (error rate, %) on CIFAR-10.
number of labeled samples per class

Method 10 30 50
i) supervised CNN 75.26 ± 1.67 68.89 ± 0.44 64.40 ± 0.61
ii) HOG [4]+SVM [22] 71.28 ± 0.29 65.49 ± 0.85 62.28 ± 0.40
iii) HOG [4]+TSVM [7] 72.26 ± 1.01 66.63 ± 0.93 63.06 ± 0.14
iv) improved GAN-SS[19] 42.00 ± 0.42 30.57 ± 2.12 24.70 ± 1.20
v) TempEns [11] 78.14 ± 0.79 55.15 ± 1.98 49.69 ± 5.21
vi) VAT [14] 51.89 ± 0.89 34.62 ± 2.82 27.77 ± 1.17
vii-1) Ours (mixed model) 27.66 ± 1.20 23.58 ± 0.81 21.92 ± 0.21
vii-2) Ours + SVM [22] 27.54 ± 0.49 22.77 ± 0.74 21.53 ± 0.12
vii-3) Ours + TSVM [7] 27.98 ± 0.91 22.65 ± 0.08 21.91 ± 0.41

5 Conclusion
In this paper, we have proposed a method to learn a classifier by exploiting GAN in the
framework of semi-supervised learning especially on the smaller number of labeled sam-
ples. Based on the analysis of the gradients in the discriminator model, we formulate an
effective discriminator model by leveraging the mean of neuron activations to cope with a
less-discriminative classifier trained on fewer labeled samples. The proposed model is then
mixed with the previous one via the sigmoid-based representation of discriminator to fur-
ther improve the discriminativity. In the experiments on semi-supervised classification tasks
using MNIST, SVHN and CIFAR-10 datasets, the proposed method exhibits favorable per-
formance compared to the other methods.

References
[1] M. Belkin and P. Niyogi. Manifold regularization: A geometric framework for learning

from labeled and unlabeled examples. Journal of Machine Learning Research, (48):
1–36, 2006.

[2] H. Cheng, Z. Liu, and J. Yang. Sparsity induced similarity measure for label propaga-
tion. In International Conference on Computer Vision, 2009.

[3] N. Cohen, O. Sharir, and A. Shashua. Deep simnets. In CVPR, pages 4782–4791, 2016.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 886–
893, 2005.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, pages –, 2014.

[6] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with condi-
tional adversarial networks. In CVPR, pages 5967–5976, 2017.

[7] T. Joachims. Transductive inference for text classification using support vector ma-
chines. In ICML, pages 200–209, 1999.

[8] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Vapnik} 1998

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Joachims} 1999

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen, and Chen} 2016

Citation
Citation
{Laine and Aila} 2017

Citation
Citation
{Miyato, Maeda, Koyama, and Ishii} 2017

Citation
Citation
{Vapnik} 1998

Citation
Citation
{Joachims} 1999



T. KOBAYASHI: GAN-BASED SEMI-SUPERVISED LEARNING 11

[9] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. Semi-supervised learning
with deep generative models. In NIPS, pages 3581–3589, 2014.

[10] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[11] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In ICLR,
2017.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[13] Y. Li, N. Wang, J. Liu, and X. Hou. Demystifying neural style transfer. In IJCAI, pages
2230–2236, 2017.

[14] T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: a reg-
ularization method for supervised and semi-supervised learning. arXiv, 1704.03976,
2017.

[15] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

[16] A. Odena. Semi-supervised learning with generative adversarial networks. In ICML
Workshop, 2016.

[17] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

[18] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised
learning with ladder networks. In NIPS, pages 3546–3554, 2015.

[19] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and
X. Chen. Improved techniques for training gans. In NIPS, pages 2234–2242, 2016.

[20] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning
from simulated and unsupervised images through adversarial training. In CVPR, pages
2242–2251, 2017.

[21] J. T. Springenberg. Unsupervised and semi-supervised learning with categorical gen-
erative adversarial networks. In ICLR, 2016.

[22] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[23] J. Wang, F. Wang, C. Zhang, H. C. Shen, and L. Quan. Linear neighborhood propaga-
tion and its applications. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(9):1600–1615, 2009.

[24] S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, pages 1395–1403, 2015.

[25] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph embedding and
extensions: A general framework for dimensionality reduction. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 29(1):40–51, 2007.



12 T. KOBAYASHI: GAN-BASED SEMI-SUPERVISED LEARNING

[26] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas. Stackgan:
Text to photo-realistic image synthesis with stacked generative adversarial networks.
In ICCV, pages 5908–5916, 2017.

[27] Z. Zheng, L. Zheng, and Y. Yang. Unlabeled samples generated by gan improve the
person re-identification baseline in vitro. In ICCV, pages 3774–3782, 2017.


