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Abstract

Dense motion estimation for dynamic natural phenomena (water, smoke, fire, etc.) is a
significant open problem. Current approaches tend to be either general, giving poor results, or
specialise in one phenomenon and fail to generalise. Segmentation of phenomena is also an open
problem. This paper describes an approach to estimate dense motion for dynamic phenomena
that is simple, general, and which yields state of the art results. We use our dense motion field
to segment phenomena to above state of the art levels. We demonstrate our contributions using
lab-based video, video from a public dataset, and from the internet.

1 Introduction

Accurate, dense motion estimation is a long-standing problem in Computer Vision. Several decades
of research have produced impressive results. Motion estimation over a wide variety of different
types of object is now possible: rigid bodies, articulated bodies, soft bodies. Yet a simple but general
motion estimator for natural phenomena (smoke, fire, etc) currently remains unavailable. Similar
remarks apply to segmentation where many problem have been solved but the segmentation of natural
phenomena remains difficult.

Simple but general solutions to these problems would benefit many diverse application areas. For
example Computer Graphics has applications in both post-production [16, 18, 26] and model acqui-
sition [22]. In atmospheric research, there are applications for storm identification and forecast [21],
forecast and tracking the evolution of convective systems [37] and rain cloud tracking [5]. Our motiva-
tion derives from model acqusition and editing in the creative sector. Our approach using “skeletons”
included a desire to provide entities to support editing, but a discussion of editing would take us well
beyond the focus of this paper: the computer vision problems of flow estimation and segmentation.

This contributions of this paper are as follows. First to describe a simple method using “skeletons”
for sparse flow estimation with an upgrade to dense flow estimation, and in particular to show that
it generalises to several phenomena. Skeletons are sparse topographical maps over the phenomena.
Empirical testing using laboratory based data, a public dataset for natural phenomena, and video from
the internet “in the wild") show our method significantly improve state-of-the-art accuracy above a rep-
resentative range of both well established and current methods. Second, we show how to use our dense
flow solution, including skeletons, to segment natural phenomena, exceeding state-of-the-art solutions.
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2 Related Work
Optical flow [19] describes dense motion. Significant effort has been expended on real-world chal-
lenges e.g. large pixel displacement [7], non-rigid deformation [15] and rapid optimization [9, 14, 29],
etc.

Most optical flow estimation approaches are based on a variational model which combines a data
term with a regularising term. The former encodes a brightness constancy assumption while the
latter constraints how the motion field can vary over space. Fluid motion is non-rigid and violates
the brightness constancy assumption; but careful choice of the regularising term boosts performance.
Example appraaches include Auroux et al. [3] who utilise a group-wise appearance prior to regularize
the flow; also Corpetti et al. [11] who impose divergence and curl smoothness to constraint fluid
motion. Stronger physical models appeal to the Navier-Stokes (NS) equations to design a regulariser.
Doshi et al. [13] replace the normal smoothness term with Navier-Stokes (NS) equation, which
preserves general motion behaviour but often over-smooths details. To further smooth the motion,
Anumolu et al. [2] propose vorticity confinement which blurs the internal boundaries. Li et al.. [23]
claim that NS equations can be applied together with 3D flow prediction in order to improve precision.

Others have used physical properties more directly. Sakaino [30] generates the properties of
wave using sinusoidal functions to achieve dense fluid motion. Refractive properties are used in
[20, 42]. These approaches give high performance in the laboratory environments but lead to errors
on real-world cases.

Recent work has proven the importance of high-quality sparse flow estimations to initiate upgrades
to dense flow. Revaud et al. [29] propose a novel sparse to dense interpolation to post-process the
matching result of DeepMatch [39] and use it as an initial input for standard optical flow energy
minimization process. Chen et al. [9] further improve the sparse match result and got state-of-the-art
result using the same framework as EpicFlow [29]. Such work is of relevance here because we too
begin with a sparse estimate, which is then upgraded to a dense estimate.

Segmentation of natural phenomena is difficult because they are diffuse, translucent, often have ill
defined borders, and usually form part of a complex scene. There are some works in the literature on
the subject. Xu et al. [40], and later, Ochs et al. [24] use multiple frames. Papazoglou and Ferrari [27]
use optical flow to track superpixels over time to establish temporal coherence and further achieve
the fast foreground segmentation. Teney et al. [34, 35] propose custom spatio-temporal filters, over
a time window of about 7 or 8 frames, to separate spatial and temporal patterns – a learnable metric
improves their segmentation on highly dynamic objects. Most recently, Cheng et al. [10] integrate
segmentation and motion estimation by proposing an end-to-end trainable network; they provide
good results in both segmentation and motion estimation. Due to the lack of ground-truth data, we
cannot train this network on natural phenomena sequences, hence during experiments we applied
the model provided by the authors to obtain test results.

Our flow estimator differs from all of the above. Its aims to be less specific than approaches
premised on fluids, so we cannot appeal to Navier-Stokes or similar physical equations. As explained
next, we use a two-stage approach, the first of which completely abandons the brightness constacy
assumption to produce a sparse but global flow. This global flow then provides a starting point for
a dense estimation that does use brightness constancy. Our algorithm for segmentation is also unique:
it re-purposes the “skeletons” from the flow estimate, and requires only a pair of frames to exceed
state of the art results.

3 Flow Estimation
As observed in Section 2, current motion estimation methods for natural phenomena either make weak
but (in this case) invalid assumptions such as brightness constancy, or else make strong assumptions
regarding the behaviour of fluids. We adopt neither of these to estimate a global flow. Instead, our
method assumes that the global shape of the phenomena under observation changes little between
frames. Specifically, we assume topographical maps, here called skeletons, in adjacent frames are
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Figure 1: Given an input frame, a weighted skeleton is aggregated from binary skeletons generated
different filtering scales. Although we use the as example to explain skeleton generation, the same
applies to other natural phenomena.

similar. Our skeletons are maps of local intensity maxima, because this typically corresponds the
the densest region of smoke / steam / fire etc. These skeletons do not change much between frames
even if brightness changes it is likley to remain locally maximaly, and being sparse makes skeletons
easy to use to construct a sparse flow.

Our approach has three main steps: (1) construct a skeleton for each of two frames; (2) estimate a
sparse flow; (3) upgrade sparse flow to dense flow (at which point we do allow brightness constancy
to influence the solution). For segmentation, we segment with the aid of the skeleton. As results
show, we obtain excellent results over a range of phenomena and videos from different sources.

3.1 Skeleton Construction
Constructing a skeleton is straightforward. Given a gray scale image, we blur it with a Gaussian
kernel of scale σ , to obtain f (.). Next, we mark local horizontal maxima. There is horizontal maxima
at pixel (x,y) if f (x−1,y)≤ f (x,y)≥ f (x+1,y). Similarly, mark local vertical maxima over pixel
columns. Finally, we combine these maps of maxima to make a binary skeleton by combining them
with an ‘or’ operator. We construct a weighted multi-scale skeleton by the aggregation of binary
skeletons at different scales:

h(x)=
1
N

N

∑
j=1

h j(x), (1)

with h j being a binary skeleton image under blurring kernel σ j, and x is a point in the image. The
result of this is a multi-scale skeleton that tends to emphasise stable structures within the phenomenon:
higher values of the mutli-scale skeleton indicate locations that are more stable over scale. Figure 1
illustrates the skeleton building process.

3.2 Sparse Flow Estimation
We begin flow estimation by assuming that the motion of observed phenomena is subject to a very
general transfer of mass ρt+dt(y)=

∫
x∈ℜ3φ(y,x)ρt(x)dx in which ρ(.) is local density, ρt(x)dx is

local mass, and φ is a mass transfer function that includes systematic motion, diffusion, etc. This
is at best very hard to solve. Instead, we further assume points x and y lie in the plane ℜ2, that local
density is proportional to observed pixel brightness, and we consider only points on one multi-scale
skeleton. Specifically, we estimate the expected location of each point x on a topographic skeleton
S1⊂ℜ2 when attracted by all points y on a topographic skeleton S2⊂ℜ2:

E[y|x]= ∑
y∈S2

yp(y|x). (2)

The expected point E[y|x] is not constrained to lie on skeleton S2, but it is global in the sense that
it takes all S2 points into account. It does not rely on brightness, nor does it require any optimisation,
so is very fast to compute.

The definition of p(y|x) is important. It is defined using spatial distance and intensity of the
skeletal pixels, similar to a bilateral filter [36]

p(y|x)∝N (x|y,Cy)N (h(x)|h(y),σv). (3)
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in which h(.) is the value at a point in a multi-valued skeletal image (Eqn. 1). The term using them
encourages a match between skeletal parts of about equal stability; the variance σv matters little;
we set σv = 1. The spatial part of the attraction depends on a covariance C. For this we use a
non-isotropic Gaussian that is aligned so that its longest principle axis is normal to the skeleton S2
at y. The covariance matrix Cy=ULUT is specified by:

U = [n̂, t̂], (4)
L = σdiag([s, 1]). (5)

The value of σ determines the effective range of the attraction, we set σ =1, but a wide range of
values suffice. The scale s determines the weight of the axis normal to the skeleton relative to the
tangential axis. An isotropic Gaussian tends to attract points more strongly to the centre of skeletal
lines, a tendency we wish to avoid. Therefore, we adopt an elliptical covariance with long-axis normal
to the local skeleton mitigates against a build-up of probability density towards the centre of skeletal
lines. A wide range of s value works well, in our experiments we set s=10.

3.2.1 Improving the sparse estimate

We improve on the sparse estimate by also considering the ‘backward’ process (similar to [25]).
That is, we also consider E[x|y]. In particular, we assume that the underlying physics governing
the phenomenon are symmetric in time. Therefore, we estimate both sparse motion both forward
and backward in time, and maintain only consistent results. In a little more detail, we consider sets
with ‘forward elements’ (x∈S1,E[y|x]) and ‘backward elements’ (x′∈S2,E[y′|x′]). To check the
consistency, we use ∥∥x−E[y′|x′]

∥∥2
+
∥∥E[y|x]−x′

∥∥2
<δ . (6)

This is equivalent to use KNN clustering to locate consistent forward and backward pairs. This
process solves problems such as the appearance and/or disappearance of topographical features.

3.3 Dense Flow Estimation

We now upgrade a sparse flow to a dense flow. At this stage, we do use brightness constancy, along
with other terms. The reason is that the sparse estimation is a global estimate which provides a
sufficient prior constraint on the dense solution to make such assumptions reasonable. We want to
estimate a vector field v(x) for all points x in some segment of frame one, given a sparse estimate
v(x)=E(y|x)−x. We use a two-step approach that is explained briefly here.

We first interpolate our sparse flow into a dense flow using a method proposed by Garcia at al [38],
which is designed for natural phenomena. Setting u=[u1,u2]

T and v=[v1,v2]
T the interpolation

process yields a new field vk from sparse field uk by the following energy minimization problem:

argmin
vk

‖(vk−uk)‖2+λ
∥∥52vk

∥∥2
(7)

in which λ is a regularisation parameter that controls smoothness. We used a value for λ directly
from the original paper.

Step two ‘polishes’ the new dense motion estimation by smoothing
it using variational optical flow energy [8] and a smoothness term [41], which requires us to solve:

H(v)=
∫

Ω

φ(‖ f1(x+v)− f2(x)‖2)︸ ︷︷ ︸
Brightness Constancy

+αφ(‖∇ f1(x+v)−∇ f2(x)‖2)︸ ︷︷ ︸
Gradient Constancy

dx

+γ

∫
Ω

φ(‖∇v1‖2+‖∇v2‖2)︸ ︷︷ ︸
Smoothness Constraint

dx (8)
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Original Frame Final SegmentationsSuperPixel (SP) SP on L*A*B Color SP Merged on Motion

Figure 2: Steps in frame segmentation, each step uses agglomerative clustering to merge super-pixels
into image segments; colour, motion and skeletal density are used respectively.

where f∗ denotes the input images and v represents the smoothed flow field in between; ∇ =
(∂xx,∂yy)

T is a spatial gradient and φ(s)=ε2log(1+s2/ε2) with ε=2 penalizes the flow gradient
norm. The energy function was defined as a combination of a data term (brightness constancy and
gradient constancy). We used parameter values for α and γ quoted in the original paper. See our
supplementary material for a more in-depth explanation of our dense upgrade.

4 Segmentation
Our algorithm for segmentation is outlined in Figure 2. The general idea is to merge superpixels [1]
using a sequence of criteria, as explained next, there are three steps to the algorithm.

First, superpixels are merged into segments using spatial distance, which uses the Euclidean
distance in the image plane, and colour similarity, which uses the mean colour in each superpixel. We
specify it to be the Euclidean distance in CIE L*a*b* colour space. Superpixels are thereby clustered
into larger superpixels.

Second, dense motion similarity is used next. We use only the direction of flow because we want
to encourage grouping of super-pixels that move in a globally similar direction, regardless of speed.
Therefore, we group on the basis of min(dθ ,2π−dθ) with the angle between flow vectors, e.g.
dθ = tan−1u2− tan−1u1. The result is mid-sized areas, larger than super-pixels but smaller than
region segments.

Finally we make use of the skeletal density. Skeletal density tends to be much lower than in the
general background. This is especially marked in diffuse phenomena of interest here exhibit little
surface texture, which can make them difficult for matching algorithms (and optical flow). We take
advanatge of this charactersitic by defining skeletal density as the number of skeletal pixels per unit
area, and continue to cluster on the basis of skeletal density similarity.

Despite the simplicty of this approach, experiments show it produces execellent results.

5 Empirical Evaluation
This section provides quantitative and qualitative evidence that our motion estimation and segmenta-
tion exceed state of the art for natural phenomena. Further evidence can be found in the supplementary
material. Here we use videos of fire, steam, smoke, avalanches, landslides, boiling water, waterfalls,
and volcanic eruptions. We used three classes of videos representing a progression from controlled
conditions to “in the wild”: (i) High resolution video captured in our laboratory at a frame rate of
100 fps. (ii) Lower resolution video from established databases: Moving Vistas [32], Dyntex [17]
and YUPENN DynSce datset [12]. (iii) Video taken directly from the internet, of varying spatial
resolution and a low frame rate typically. The “internet” videos include background motion clutter,
and a computer graphic simulation. All experiments were run on consumer level laptops, using code
written in a mixture of MATLAB and C++.

5.1 Dense Flow
We compare our approach to eight alternatives, using two different measures. We follow Li et al. [23]
in comparing our method with general optical flow methods. FullFlow [31] and EpicFlow [29] are
recent state-of-the-art algorithms that share a framework similar to our method. Classic+NL [33]
provides robustness to motion discontinuity. HS [19] and BA [6] are classical optical flow methods
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Ours FullFlow EpicFlow Class+NL HS BA LDOF MDP FlowNet
O

ur
D

at
ab

as
e Thick_rise 61.60 128.12 166.78 100.03 93.48 100.15 160.14 136.48 135.9

Thin_from_bottom 37.89 43.39 43.37 42.44 42.91 42.98 44.08 45.43 39.59
Thin_drops_multi 58.25 73.32 68.12 65.76 67.16 68.33 64.59 68.14 67.03

Orange_white_meet 37.89 46.56 41.21 42.14 44.94 43.66 41.75 42.79 42.64
Slanted_surface_pour 41.00 59.63 57.73 57.18 56.8 59.58 55.61 56.75 80.11
Flat_surface_waves 47.63 48.90 52.17 46.21 44.29 45.30 49.99 50.66 43.37

Pu
bl

ic
D

at
as

et
s[

12
,1

7,
32

]

Steam 7.38 8.84 8.27 12.55 12.52 13.01 12.4 13.57 15.47
Avalanche01 10.43 12.29 12.26 12.12 12.57 12.24 12.78 12.64 17.76
Boil (water) 13.27 48.61 18.72 13.91 26.26 25.83 13.94 20.96 42.3
Fountain01 19.69 26.52 18.8 23.67 20.2 20.18 21.39 27.48 22.25
Fountain02 30.67 61.72 31.72 26.93 34.66 25.72 31.3 33.56 27.64
Forest_fire 8.37 8.84 8.39 8.61 10.59 10.45 10.61 9.1 18.85

Landslide01 86.08 87.72 84.94 87.06 89.67 87.82 87.24 86.31 120.2
Landslide02 88.13 86.96 89.43 91.74 89.04 87.49 91.12 91.17 117.7

Volcano_eruption01 5.63 5.82 5.99 5.92 6.89 5.98 5.69 5.97 5.63
Volcano_eruption02 6.96 7.22 7.41 7.24 7.54 7.47 7.34 7.58 7.5

Waterfall01 17.86 19.1 18.97 21.45 20.8 19.89 19.3 17.9 18.33
Waterfall02 15.8 17.76 18 20.02 17.6 18.32 18.14 18.42 18.89
Waterfall03 13.97 15.06 14.91 18.06 18.14 17.88 16.68 14.82 16.00

In
te

rn
et

Car_smoke 8.85 10.3 10.69 10.64 10.57 10.66 10.58 9.01 10.79
Fire_smoke 12.49 13.21 13.17 12.64 12.81 12.61 12.91 12.68 16.49
Avalanche02 12.34 13.36 13.65 13.38 14.05 13.98 14.24 13.95 15.82

Train 11.2 14.13 14.31 14.28 14.18 14.3 14.08 33.44 16.11
Fireman 18.86 19.42 19.42 19.66 19.52 19.56 19.29 20.72 19.04

Match_cube 72.53 74.65 72.93 80.50 87.40 84.32 77.22 87.88 85.09

Table 1: Low Rate Distance (Equation 9) designed for low frame rate video (Public Database
and Internet). We compare our method to eight state-of-the-art algorithms using videos from our
laboratory, from public datasets, and from the Internet; “Train” is a computer graphic simulation.
Bold figures indicate the best performance in each row, we come first in most cases. Data shown
×100 for easy reading. Note that the lower readings show higher accuracy.

used to benchmark general methods. Brox et al. (LDOF) [7] address large motion displacement
issues using feature matching. Xu et al. (MDP) [41] show excellent performance on the Middleburry
benchmark [4]. FlowNet [14] uses a deep neural network and achieves good results. Since the ground
truth motion for natural phenomenon is unavailable we keep the original FlowNet parameters.

There is no ground truth for any of our video, so we use two measures adapted from the literature.
One measure is similar to in Li et al. [23] who warp frame 1 using the flow, v12, from frame 1 to
frame 2. The warped image is compared to the second frame using mean RMS error. This measure
is suitable for low video frame rates, so we call it the low rate distance (LRD):

LRD= ||I2−warp(I1,v12)||22 (9)
The second measure we used is an adapted version of the Interpolation Error(IE) suggested in [4],

which is better for high frame rate video because it uses frames 1 and 3, tacitly assuming constant
velocity. We compute a forward flow (frame 1 to 3) and a backward flow (frame 3 to 1), then warp
frames 1 and 3, taking the average wherever the flow is consistent, and the forward flow elsewhere.
Again, we use RMS error but now call it high rate distance (HRD):

HRD= ||I2−merge[warp(I1,v13),warp(I3,v31)]||22 (10)

Results for all videos are shown in Table 1 for LRD, and Table 2 for HRD. The tables show that
our approach consistently outperforms other methods: we come first in most cases. In fact, due to
space limitations, we removed many cases in which were we first; full tables can be found in the
supplementary material. These larger tables show that, on average, our method outperforms all others
by at least 17% when using LRD and 31% when using HRD.

Figure 3 shows qualitative results which uses a colour wheel to visualise flow. The waterfall
provides a useful example. Our result shows a predominantly downward fall (orange colour), but
captures flow into and away from the fall (cyan) at the top and bottom; these are the cyan regions. All
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Ours FullFlow EpicFlow Class+NL HS BA LDOF MDP FlowNet
O

ur
D

at
ab

as
e Thick_rise 26.74 69.43 72.92 58.54 64.5 53.29 69.16 65.36 61.64

Thin_from_bottom 28.03 40.01 41.28 41.32 38.03 40.6 38.95 38.24 30.99
Thin_drops_multi 32.52 44.01 51.35 40.41 43.17 36.3 46.06 40.15 34.37

Orange_white_meet 21.63 34 37.13 37.85 36.88 36.2 33.54 34.98 35.28
Slanted_surface_pour 20.26 44.19 41.94 37.41 34.65 34.75 41.92 41.57 39.81
Flat_surface_waves 16.87 31.55 31.14 30.2 27.96 27.33 30.74 30.88 25.49

Pu
bl

ic
D

at
as

et
s[

12
,1

7,
32

]

Steam 12.51 16.01 15.33 17.40 17.86 16.75 16.36 18.01 18.95
Avalanche01 15.33 28.00 28.53 30.33 27.39 27.58 29.14 28.55 19.75
Boil_water 35.87 40.37 40.95 36.57 36.62 36.45 39.80 28.55 48.15
Fountain01 36.67 61.69 61.56 50.54 47.68 48.99 50.93 50.68 54.53
Fountain02 137.1 165.4 164.5 235.3 177.1 201.0 164.7 164.7 160.9
Forest_fire 29.81 29.74 31.00 28.27 67.03 78.26 28.66 31.56 26.24

Landslide01 98.01 138.9 142.8 127.2 127.2 129.3 139.1 129.7 142.8
Landslide02 63.17 56.99 66.95 78.93 80.47 57.29 77.23 57.94 58.45

Volcano_eruption01 15.87 21.53 21.43 22.70 21.86 21.69 20.96 21.32 20.65
Volcano_eruption02 13.79 20.23 20.40 20.05 19.50 19.86 19.81 19.32 16.16

Waterfall01 30.78 39.96 40.02 41.38 42.12 45.76 38.76 39.87 42.12
Waterfall02 39.32 35.74 41.78 36.70 37.02 40.39 41.92 39.1 39.69
Waterfall03 34.19 43.06 47.58 42.31 43.80 41.65 42.69 43.08 41.40

In
te

rn
et

Car_smoke 45.26 49.62 50.17 129.6 116.5 114.3 113.6 98.56 101.4
Fire_smoke 60.74 120.5 108.2 52.04 60.98 51.90 53.84 60.56 46.36
Avalanche02 20.56 29.22 30.98 32.20 23.84 23.48 20.99 20.80 30.45

Train 35.76 83.44 72.45 92.24 91.68 82.13 66.76 150.3 47.11
Fireman 59.84 155.1 167.3 180.8 143.4 180.9 164.9 174.7 124.0

Match_cube 57.59 70.57 71.26 72.75 73.07 72.94 65.23 73.21 73.17

Table 2: High Rate Distance (Equation 10) designed for high frame rate video (our database). We
compare our method to eight state-of-the-art algorithms using videos from our laboratory, from public
datasets, and from the Internet; “Train” is a computer graphic simulation. Bold figures indicate the
best performance in each row, we come first in most cases. Data shown×100 for easy reading. Note
that the lower readings show higher accuracy.

the alternatives show little other than a strong downward fall. Similar analysis can be applied to the
remaining examples. This paper has space only for qualitative comparison with selected alternatives,
but, our supplementary material holds more sets, where the reader can see the trend persists.
5.2 Segmentation

We compared our results with three segmentation methods. Teney et al. [35] has been designed
expressly to segment dynamic texture and gives excellent results. Papazoglou and Ferrari [27]
is chosen because their approach is fully automatic, and enables to handle unconstrained video.
Segflow[10] provides a very recent comparator.

To obtain a quantitative measure we used a hand-segmented frame as ground truth to compute the
Rand Index [28], which is commonly used for segmentation. We also applied the default parameter
settings for all the baselines and manually select the best result from their outcomes. The reader in
invited to ‘zoom in’ to see details. Results are shown in Table 3. Looking at the results, we see our
method outperforms the state-of-the-art alternatives.

Qualitative results, including the hand-segmentations are shown in 4. These results confirm that
our segmentations are meaningful, but also show that more work is necessary in this problem. Note
that SegFlow [10] proved unable to segment the some phenomena, in those cases we present the
original image.
6 Conclusion and Discussion

We have described a motion estimation algorithm that is robust to a wide range of diverse natural
phenomena, different input video classes at different resolutions and frame rates. Our approach
outperforms state-of-the art methods in most cases. On average, the proposed method is at least 17%
and 31% better than other alternatives based on two evaluation methods. The key to the performance
is that we assume global shape changes only a little, which motivates our use of a skeleton as a spatial

Citation
Citation
{Derpanis, Lecce, Daniilidis, and Wildes} 2012

Citation
Citation
{Ghanem and Ahuja} 2010

Citation
Citation
{Shroff, Turaga, and Chellappa} 2010

Citation
Citation
{Teney, Brown, Kit, and Hall} 2015

Citation
Citation
{Papazoglou and Ferrari} 2013

Citation
Citation
{Cheng, Tsai, Wang, and Yang} 2017

Citation
Citation
{Rand} 1971

Citation
Citation
{Cheng, Tsai, Wang, and Yang} 2017



8 CHEN, LI, HALL: MOTION ESTIMATION AND SEGMENTATION OF NATURAL PHENOMENA

Figure 3: Qualitative results for selected phenomena: Left two columns show input frames,
subsequent columns show dense flow visualizations for selected contemporary alternatives. From
left to right: Ours, FullFlow [31], EpicFlow [29], MDP) [41]. We use colour to indicate direction
and magnitude of the flow, see top right for key.

Figure 4: Qualitative comparison of segmentations. Left to right: original image; hand drawn ground
truth (green); our approach (blue); Teney et al. [35] (cyan); Papazoglou et al.(FS) [27] (magenta);
and SegFlow [10] (yellow). Our segmentation yields better representative for the natural phenomena
given either clean or complex background. Segflow is able to segment some but not all cases, so
some images have no segmentations shown.
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Ours Teney [35] FS [27] SegFlow [10]

Car_smoke 77.78 76.76 68.10 69.11
Fire_smoke 89.75 85.46 59.91 51.27

Train 94.21 86.41 50.01 56.06
Avalanche02 79.49 68.10 57.76 50.20
Waterfall03 89.10 86.35 80.72 68.73
Forest_fire 82.44 67.10 66.27 57.39
Fireman 92.35 89.98 56.64 87.01

Match_cube 95.40 81.90 87.89 58.38

Table 3: Average Rand Index (%) evaluation on segmentations for our method and three other
state-of-the-art unsupervised algorithms.

map of topographical features to capture the ‘gist’ of shape, and therefore the ‘gist’ of global flow.
We explain our flow results by posultating that our global, sparse flow we obtain provides a strong
prior constraint for dense, local flow, in the sense of “picking” a useful stating point for search. We
explain our segmentation results by appeal to the diffuse nature of the phenomena we deal with –
particles move freely so that features are highly blurred and transient – our skeleton is robust to such
movements because they change overall shape only a little.

Like any method, ours has its limitations, each of which provide interesting avenues for future
work. Our motion estimator is designed for natural phenomena rather than, say, articulated objects,
so more general applicability is an open question. A perhaps subtle problem is that we tacitly assume
the spatial distance between skeletal limbs in a single frame exceeds the distance moved by a single
skeletal limb between frames. We have yet to conduct a detailed analysis of this, but preliminary
studies suggest to us there is Nyquist-like problem here that might be solved using a coarse-to-fine
approach over different scales of skeleton. Although we achieve excellent segmentation results, above
state-of-the-art alternatives, it is clear more work needs to be done. We favour an iterative scheme
in which segmentation and motion are jointly estimated. Finally, we have only just begun to explore
the possibilities of using a skeleton for Computer Graphics. Motion editing being the motivation
application is a particular application that would benefit from having a skeleton at hand provides
a mid-level model that could be built into an interactive tool in which users drag skeletons, or even
draw them – but such work is for another paper.

Our general conclusions from this work are: (i) brightness constancy can and should be replaced
by more appropriate assumptions when needed; (ii) assumptions regarding physical behaviour do not
have to be strong assumptions; and (iii) global behaviour is useful for constraining local behaviour.
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