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Abstract

We present a new technique for learning visual-semantic embeddings for cross-modal
retrieval. Inspired by hard negative mining, the use of hard negatives in structured pre-
diction, and ranking loss functions, we introduce a simple change to common loss func-
tions used for multi-modal embeddings. That, combined with fine-tuning and use of
augmented data, yields significant gains in retrieval performance. We showcase our
approach, VSE++, on MS-COCO and Flickr30K datasets, using ablation studies and
comparisons with existing methods. On MS-COCO our approach outperforms state-of-
the-art methods by 8.8% in caption retrieval and 11.3% in image retrieval (at R@1).

1 Introduction
Joint embeddings enable a wide range of tasks in image, video and language understanding.
Examples include shape-image embeddings ([20]) for shape inference, bilingual word em-
beddings ([38]), human pose-image embeddings for 3D pose inference ([19]), fine-grained
recognition ([25]), zero-shot learning ([9]), and modality conversion via synthesis ([25, 26]).
Such embeddings entail mappings from two (or more) domains into a common vector space
in which semantically associated inputs (e.g., text and images) are mapped to similar loca-
tions. The embedding space thus represents the underlying domain structure, where location
and often direction are semantically meaningful.

Visual-semantic embeddings have been central to image-caption retrieval and genera-
tion [13, 15], and visual question-answering [22]. One approach to visual question-answering,
for example, is to first describe an image by a set of captions, and then to find the nearest
caption in response to a question ([1, 37]). For image synthesis from text, one could map
from text to the joint embedding space, and then back to image space ([25, 26]).

Here we focus on visual-semantic embeddings for cross-modal retrieval; i.e. the retrieval
of images given captions, or of captions for a query image. As is common in retrieval, we
measure performance by R@K, i.e., recall at K – the fraction of queries for which the correct
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item is retrieved in the closest K points to the query in the embedding space (K is usually a
small integer, often 1). More generally, retrieval is a natural way to assess the quality of joint
embeddings for image and language data ([11]).

The basic problem is one of ranking; the correct target(s) should be closer to the query
than other items in the corpus, not unlike learning to rank problems (e.g., [18]), and max-
margin structured prediction [3, 17]. The formulation and model architecture in this paper
are most closely related to those of [15], learned with a triplet ranking loss. In contrast to that
work, we advocate a novel loss, the use of augmented data, and fine-tuning, which, together,
produce a significant increase in caption retrieval performance over the baseline ranking loss
on well-known benchmark data. We outperform the best reported result on MS-COCO by
almost 9%. We also show that the benefit of a more powerful image encoder, with fine-
tuning, is amplified with the use of our stronger loss function. We refer to our model as
VSE++. To ensure reproducibility, our code is publicly available 1.

Our main contribution is to incorporate hard negatives in the loss function. This was
inspired by the use of hard negative mining in classification tasks ([5, 7, 23]), and by the
use of hard negatives for improving image embeddings for face recognition ([27, 33]). Min-
imizing a loss function using hard negative mining is equivalent to minimizing a modified
non-transparent loss function with uniform sampling. We extend the idea with the explicit in-
troduction of hard negatives in the loss for multi-modal embeddings, without any additional
cost of mining.

We also note that our formulation complements other recent articles that propose new
architectures or similarity functions for this problem. To this end, we demonstrate improve-
ments to [31]. Among other methods that could be improved with a modified loss, [32]
propose an embedding network to fully replace the similarity function used for the ranking
loss. An attention mechanism on both images and captions is used by [24], where the au-
thors sequentially and selectively focus on a subset of words and image regions to compute
the similarity. In [12], the authors use a multi-modal context-modulated attention mecha-
nism to compute the similarity between images and captions. Our proposed loss function
and triplet sampling could be extended and applied to other such problems.

2 Learning Visual-Semantic Embeddings

For image-caption retrieval the query is a caption and the task is to retrieve the most relevant
image(s) from a database. Alternatively, the query may be an image, and the task is to
retrieves relevant captions. The goal is to maximize recall at K (R@K), i.e., the fraction of
queries for which the most relevant item is ranked among the top K items returned.

Let S = {(in,cn)}N
n=1 be a training set of image-caption pairs. We refer to (in,cn) as

positive pairs and (in,cm 6=n) as negative pairs; i.e., the most relevant caption to the image in is
cn and for caption cn, it is the image in. We define a similarity function s(i,c)∈R that should,
ideally, give higher similarity scores to positive pairs than negatives. In caption retrieval, the
query is an image and we rank a database of captions based on the similarity function; i.e.,
R@K is the percentage of queries for which the positive caption is ranked among the top K
captions using s(i,c). Likewise for image retrieval. In what follows the similarity function
is defined on the joint embedding space. This differs from other formulations, such as [32],
which use a similarity network to directly classify an image-caption pair as matching or
non-matching.

1https://github.com/fartashf/vsepp
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2.1 Visual-Semantic Embedding
Let φ(i;θφ ) ∈RDφ be a feature-based representation computed from image i (e.g. the repre-
sentation before logits in VGG19 ([28]) or ResNet152 ([10])). Similarly, let ψ(c;θψ) ∈RDψ

be a representation of caption c in a caption embedding space (e.g. a GRU-based text en-
coder). Here, θφ and θψ denote model parameters for the respective mappings to these
initial image and caption representations.

Then, let the mappings into the joint embedding space be defined by linear projections:

f (i;Wf ,θφ ) = W T
f φ(i;θφ ) (1)

g(c;Wg,θψ) = W T
g ψ(c;θψ) (2)

where Wf ∈RDφ×D and Wg ∈RDψ×D. We further normalize f (i;Wf ,θφ ), and g(c;Wg,θψ), to
lie on the unit hypersphere. Finally, we define the similarity function in the joint embedding
space to be the usual inner product:

s(i,c) = f (i;Wf ,θφ ) ·g(c;Wg,θψ) . (3)

Let θ = {Wf ,Wg,θψ} be the model parameters. If we also fine-tune the image encoder, then
we would also include θφ in θ .

Training entails the minimization of empirical loss with respect to θ , i.e., the cumulative
loss over training data S = {(in,cn)}N

n=1:

e(θ ,S) = 1
N

N

∑
n=1

`(in,cn) (4)

where `(in,cn) is a suitable loss function for a single training exemplar. Inspired by the use
of a triplet loss for image retrieval (e.g., [4, 8]), recent approaches to joint visual-semantic
embeddings have used a hinge-based triplet ranking loss [13, 15, 29, 36]:

`SH(i,c) = ∑
ĉ
[α− s(i,c)+ s(i, ĉ)]+ + ∑

î

[α− s(i,c)+ s(î,c)]+ , (5)

where α serves as a margin parameter, and [x]+ ≡max(x,0). This hinge loss comprises two
symmetric terms. The first sum is taken over all negative captions ĉ, given query i. The
second is taken over all negative images î, given caption c. Each term is proportional to the
expected loss (or violation) over sets of negative samples. If i and c are closer to one another
in the joint embedding space than to any negative, by the margin α , the hinge loss is zero. In
practice, for computational efficiency, rather than summing over all negatives in the training
set, it is common to only sum over (or randomly sample) the negatives in a mini-batch of
stochastic gradient descent [13, 15, 29]. The runtime complexity of computing this loss
approximation is quadratic in the number of image-caption pairs in a mini-batch.

Of course there are other loss functions that one might consider. One is a pairwise hinge
loss in which elements of positive pairs are encouraged to lie within a hypersphere of radius
ρ1 in the joint embedding space, while negative pairs should be no closer than ρ2 > ρ1. This
is problematic as it constrains the structure of the latent space more than does the ranking
loss, and it entails the use of two hyper-parameters which can be very difficult to set. Another
possible approach is to use Canonical Correlation Analysis to learn Wf and Wg, thereby trying
to preserve correlation between the text and images in the joint embedding (e.g., [6, 16]). By
comparison, when measuring performance as R@K, for small K, a correlation-based loss
will not give sufficient influence to the embedding of negative items in the local vicinity of
positive pairs, which is critical for R@K.
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Figure 1: An illustration of typical positive pairs and the nearest negative samples. Here assume
similarity score is the negative distance. Filled circles show a positive pair (i,c), while empty circles
are negative samples for the query i. The dashed circles on the two sides are drawn at the same radii.
Notice that the hardest negative sample c′ is closer to i in (a). Assuming a zero margin, (b) has a higher
loss with the SH loss compared to (a). The MH loss assigns a higher loss to (a).

2.2 Emphasis on Hard Negatives
Inspired by common loss functions used in structured prediction ([7, 30, 35]), we focus
on hard negatives for training, i.e., the negatives closest to each training query. This is
particularly relevant for retrieval since it is the hardest negative that determines success or
failure as measured by R@1.

Given a positive pair (i,c), the hardest negatives are given by i′ = argmax j 6=i s( j,c) and
c′ = argmaxd 6=c s(i,d). To emphasize hard negatives we define our loss as

`MH(i,c) = max
c′

[
α + s(i,c′)− s(i,c)

]
+
+ max

i′

[
α + s(i′,c)− s(i,c)

]
+
. (6)

Like Eq. 5, this loss comprises two terms, one with i and one with c as queries. Unlike Eq. 5,
this loss is specified in terms of the hardest negatives, c′ and i′. We refer to the loss in Eq. 6
as Max of Hinges (MH) loss, and the loss in Eq. 5 as Sum of Hinges (SH) loss. There is
a spectrum of loss functions from the SH loss to the MH loss. In the MH loss, the winner
takes all the gradients, where instead we use re-weighted gradients of all the triplets. We
only discuss the MH loss as it was empirically found to perform the best.

One case in which the MH loss is superior to SH is when multiple negatives with small
violations combine to dominate the SH loss. For example, Fig. 1 depicts a positive pair
together with two sets of negatives. In Fig. 1(a), a single negative is too close to the query,
which may require a significant change to the mapping. However, any training step that
pushes the hard negative away, might cause a number of small violating negatives, as in
Fig. 1(b). Using the SH loss, these ‘new’ negatives may dominate the loss, so the model is
pushed back to the first example in Fig. 1(a). This may create local minima in the SH loss
that may not be as problematic for the MH loss, which focuses on the hardest negative.

For computational efficiency, instead of finding the hardest negatives in the entire training
set, we find them within each mini-batch. This has the same quadratic complexity as the
complexity of the SH loss. With random sampling of the mini-batches, this approximation
yields other advantages. One is that there is a high probability of getting hard negatives that
are harder than at least 90% of the entire training set. Moreover, the loss is potentially robust
to label errors in the training data because the probability of sampling the hardest negative
over the entire training set is somewhat low.
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# Model Trainset Caption Retrieval Image Retrieval
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

1K Test Images
1.1 UVS ([15], GitHub) 1C (1 fold) 43.4 75.7 85.8 2 31.0 66.7 79.9 3
1.2 Order ([31]) 10C+rV 46.7 - 88.9 2.0 37.9 - 85.9 2.0
1.3 Embedding Net ([32]) 10C+rV 50.4 79.3 69.4 - 39.8 75.3 86.6 -
1.4 sm-LSTM ([12]) ? 53.2 83.1 91.5 1 40.7 75.8 87.4 2
1.5 2WayNet ([6]) 10C+rV 55.8 75.2 - - 39.7 63.3 - -
1.6 VSE++ 1C (1 fold) 43.6 74.8 84.6 2.0 33.7 68.8 81.0 3.0
1.7 VSE++ RC 49.0 79.8 88.4 1.8 37.1 72.2 83.8 2.0
1.8 VSE++ RC+rV 51.9 81.5 90.4 1.0 39.5 74.1 85.6 2.0
1.9 VSE++ (FT) RC+rV 57.2 86.0 93.3 1.0 45.9 79.4 89.1 2.0

1.10 VSE++ (ResNet) RC+rV 58.3 86.1 93.3 1.0 43.6 77.6 87.8 2.0
1.11 VSE++ (ResNet, FT) RC+rV 64.6 90.0 95.7 1.0 52.0 84.3 92.0 1.0

5K Test Images
1.12 Order ([31]) 10C+rV 23.3 - 65.0 5.0 18.0 - 57.6 7.0
1.13 VSE++ (FT) RC+rV 32.9 61.7 74.7 3.0 24.1 52.8 66.2 5.0
1.14 VSE++ (ResNet, FT) RC+rV 41.3 71.1 81.2 2.0 30.3 59.4 72.4 4.0

Table 1: Results of experiments on MS-COCO.

2.3 Probability of Sampling the Hardest Negative

Let S = {(in,cn)}N
n=1 denote a training set of image-caption pairs, and let C = {cn} denote

the set of captions. Suppose we draw M samples in a mini-batch, Q = {(im,cm)}M
m=1, from

S. Let the permutation, πm, on C refer to the rankings of captions according to the similarity
function s(im,cn) for cn ∈ S\{cm}. We can assume permutations, πm, are uncorrelated.

Given a query image, im, we are interested in the probability of getting no captions from
the 90th percentile of πm in the mini-batch. Assuming IID samples, this probability is simply
.9(M−1), the probability that no sample in the mini-batch is from the 90th percentile. This
probability tends to zero exponentially fast, falling below 1% for M ≥ 44. Hence, for large
enough mini-batchs, with high probability we sample negative captions that are harder than
90% of the entire training set. The probability for the 99.9th percentile of πm tends to zero
more slowly; it falls below 1% for M ≥ 6905, which is a relatively large mini-batch.

While we get strong signals by randomly sampling negatives within mini-batches, such
sampling also provides some robustness to outliers, such as negative captions that better
describe an image compared to the ground-truth caption. Mini-batches as small as 128 can
provide strong enough training signal and robustness to label errors. Of course by increasing
the mini-batch size, we get harder negative examples and possibly a stronger training signal.
However, by increasing the mini-batch size, we lose the benefit of SGD in finding good
optima and exploiting the gradient noise. This can lead to getting stuck in local optima or as
observed by [27], extremely long training time.

3 Experiments

Below we perform experiments with our approach, VSE++, comparing it to a baseline for-
mulation with SH loss, denoted VSE0, and other state-of-the-art approaches. Essentially, the
baseline formulation, VSE0, is similar to that in [15], denoted UVS.

We experiment with two image encoders: VGG19 by [28] and ResNet152 by [10]. In
what follows, we use VGG19 unless specified otherwise. As in previous work we extract
image features directly from FC7, the penultimate fully connected layer. The dimensionality
of the image embedding, Dφ , is 4096 for VGG19 and 2048 for ResNet152.
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In more detail, we first resize the image to 256× 256, and then use either a single crop
of size 224× 224 or the mean of feature vectors for multiple crops of similar size. We
refer to training with one center crop as 1C, and training with 10 crops at fixed locations as
10C. These image features can be pre-computed once and reused. We also experiment with
using a single random crop, denoted by RC. For RC, image features are computed on the fly.
Recent works have mostly used RC/10C. In our preliminary experiments, we did not observe
significant differences between RC/10C. As such, we perform most experiments with RC.

For the caption encoder, we use a GRU similar to the one used in [15]. We set the dimen-
sionality of the GRU, Dψ , and the joint embedding space, D, to 1024. The dimensionality of
the word embeddings that are input to the GRU is set to 300.

We further note that in [15], the caption embedding is normalized, while the image em-
bedding is not. Normalization of both vectors means that the similarity function is cosine
similarity. In VSE++ we normalize both vectors. Not normalizing the image embedding
changes the importance of samples. In our experiments, not normalizing the image embed-
ding helped the baseline, VSE0, to find a better solution. However, VSE++ is not signifi-
cantly affected by this normalization.

3.1 Datasets
We evaluate our method on the Microsoft COCO dataset ([21]) and the Flickr30K dataset
([34]). Flickr30K has a standard 30,000 images for training. Following [13], we use 1000
images for validation and 1000 images for testing. We also use the splits of [13] for MS-
COCO. In this split, the training set contains 82,783 images, 5000 validation and 5000 test
images. However, there are also 30,504 images that were originally in the validation set of
MS-COCO but have been left out in this split. We refer to this set as rV . Some papers use
rV for training (113,287 training images in total) to further improve accuracy. We report
results using both training sets. Each image comes with 5 captions. The results are reported
by either averaging over 5 folds of 1K test images or testing on the full 5K test images.

3.2 Details of Training
We use the Adam optimizer [14]. Models are trained for at most 30 epochs. Except for
fine-tuned models, we start training with learning rate 0.0002 for 15 epochs, and then lower
the learning rate to 0.00002 for another 15 epochs. The fine-tuned models are trained by
taking a model trained for 30 epochs with a fixed image encoder, and then training it for 15
epochs with a learning rate of 0.00002. We set the margin to 0.2 for most experiments. We
use a mini-batch size of 128 in all experiments. Notice that since the size of the training set
for different models is different, the actual number of iterations in each epoch can vary. For
evaluation on the test set, we tackle over-fitting by choosing the snapshot of the model that
performs best on the validation set. The best snapshot is selected based on the sum of the
recalls on the validation set.

3.3 Results on MS-COCO
The results on the MS-COCO dataset are presented in Table 1. To understand the effect
of training and algorithmic variations we report ablation studies for the baseline VSE0 (see
Table 2). Our best result with VSE++ is achieved by using ResNet152 and fine-tuning the
image encoder (row 1.11), where we see 21.2% improvement in R@1 for caption retrieval
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# Model Trainset Caption Retrieval Image Retrieval
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

2.1 VSE0 1C (1 fold) 43.2 73.9 85.0 2.0 33.0 67.4 80.7 3.0
1.6 VSE++ 1C (1 fold) 43.6 74.8 84.6 2.0 33.7 68.8 81.0 3.0
2.2 VSE0 RC 43.1 77.0 87.1 2.0 32.5 68.3 82.1 3.0
1.7 VSE++ RC 49.0 79.8 88.4 1.8 37.1 72.2 83.8 2.0
2.3 VSE0 RC+rV 46.8 78.8 89.0 1.8 34.2 70.4 83.6 2.6
1.8 VSE++ RC+rV 51.9 81.5 90.4 1.0 39.5 74.1 85.6 2.0
2.4 VSE0 (FT) RC+rV 50.1 81.5 90.5 1.6 39.7 75.4 87.2 2.0
1.9 VSE++ (FT) RC+rV 57.2 86.0 93.3 1.0 45.9 79.4 89.1 2.0
2.5 VSE0 (ResNet) RC+rV 52.7 83.0 91.8 1.0 36.0 72.6 85.5 2.2

1.10 VSE++ (ResNet) RC+rV 58.3 86.1 93.3 1.0 43.6 77.6 87.8 2.0
2.6 VSE0 (ResNet, FT) RC+rV 56.0 85.8 93.5 1.0 43.7 79.4 89.7 2.0

1.11 VSE++ (ResNet, FT) RC+rV 64.6 90.0 95.7 1.0 52.0 84.3 92.0 1.0

Table 2: The effect of data augmentation and fine-tuning. We copy the relevant results for VSE++
from Table 1 to enable an easier comparison. Notice that after applying all the modifications, VSE0
model reaches 56.0% for R@1, while VSE++ achieves 64.6%.

and 21% improvement in R@1 for image retrieval compared to UVS (rows 1.1 and 1.11).
Notice that using ResNet152 and fine-tuning can only lead to 12.6% improvement using the
VSE0 formulation (rows 2.6 and 1.1), while our MH loss function brings a significant gain
of 8.6% (rows 1.11 and 2.6).

Comparing VSE++ (ResNet, FT) to the current state-of-the-art on MS-COCO, 2WayNet
(row 1.11 and row 1.5), we see 8.8% improvement in R@1 for caption retrieval and com-
pared to sm-LSTM (row 1.11 and row 1.4), 11.3% improvement in image retrieval. We also
report results on the full 5K test set of MS-COCO in rows 1.13 and 1.14.

Effect of the training set. We compare VSE0 and VSE++ by incrementally improving the
training data. Comparing the models trained on 1C (rows 1.1 and 1.6), we only see 2.7% im-
provement in R@1 for image retrieval but no improvement in caption retrieval performance.
However, when we train using RC (rows 1.7 and 2.2) or RC+rV (rows 1.8 and 2.3), we
see that VSE++ gains an improvement of 5.9% and 5.1%, respectively, in R@1 for caption
retrieval compared to VSE0. This shows that VSE++ can better exploit the additional data.

Effect of a better image encoding. We also investigate the effect of a better image en-
coder on the models. Row 1.9 and row 2.4 show the effect of fine-tuning the VGG19 image
encoder. We see that the gap between VSE0 and VSE++ increases to 6.1%. If we use
ResNet152 instead of VGG19 (row 1.10 and row 2.5), the gap is 5.6%. As for our best re-
sult, if we use ResNet152 and also fine-tune the image encoder (row 1.11 and row 2.6) the
gap becomes 8.6%. The increase in the performance gap shows that the improved loss of
VSE++ can better guide the optimization when a more powerful image encoder is used.

3.4 Results on Flickr30K

Tables 3 summarizes the performance on Flickr30K. We obtain 23.1% improvement in R@1
for caption retrieval and 17.6% improvement in R@1 for image retrieval (rows 3.1 and 3.17).
We observed that VSE++ over-fits when trained with the pre-computed features of 1C. The
reason is potentially the limited size of the Flickr30K training set. As explained in Sec. 3.2,
we select a snapshot of the model before over-fitting occurs, based on performance with the
validation set. Over-fitting does not occur when the model is trained using the RC training
data. Our results show the improvements incurred by our MH loss persist across datasets, as
well as across models.
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# Model Trainset Caption Retrieval Image Retrieval
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

3.1 UVS ([15]) 1C 23.0 50.7 62.9 5 16.8 42.0 56.5 8
3.2 UVS (GitHub) 1C 29.8 58.4 70.5 4 22.0 47.9 59.3 6
3.3 Embedding Net ([32]) 10C 40.7 69.7 79.2 - 29.2 59.6 71.7 -
3.4 DAN ([24]) ? 41.4 73.5 82.5 2 31.8 61.7 72.5 3
3.5 sm-LSTM ([12]) ? 42.5 71.9 81.5 2 30.2 60.4 72.3 3
3.6 2WayNet ([6]) 10C 49.8 67.5 - - 36.0 55.6 - -
3.7 DAN (ResNet) ([24]) ? 55.0 81.8 89.0 1 39.4 69.2 79.1 2
3.8 VSE0 1C 29.8 59.8 71.9 3.0 23.0 48.8 61.0 6.0
3.9 VSE0 RC 31.6 59.3 71.7 4.0 21.6 50.7 63.8 5.0

3.10 VSE++ 1C 31.9 58.4 68.0 4.0 23.1 49.2 60.7 6.0
3.11 VSE++ RC 38.6 64.6 74.6 2.0 26.8 54.9 66.8 4.0
3.12 VSE0 (FT) RC 37.4 65.4 77.2 3.0 26.8 57.6 69.5 4.0
3.13 VSE++ (FT) RC 41.3 69.1 77.9 2.0 31.4 60.0 71.2 3.0
3.14 VSE0 (ResNet) RC 36.6 67.3 78.4 3.0 23.3 52.6 66.0 5.0
3.15 VSE++ (ResNet) RC 43.7 71.9 82.1 2.0 32.3 60.9 72.1 3.0
3.16 VSE0 (ResNet, FT) RC 42.1 73.2 84.0 2.0 31.8 62.6 74.1 3.0
3.17 VSE++ (ResNet, FT) RC 52.9 80.5 87.2 1.0 39.6 70.1 79.5 2.0

Table 3: Results on the Flickr30K dataset.

3.5 Improving Order Embeddings

Given the simplicity of our approach, our proposed loss function can complement the re-
cent approaches that use more sophisticated model architectures or similarity functions.
Here we demonstrate the benefits of the MH loss by applying it to another approach to
joint embeddings called order-embeddings [31]. The main difference with the formulation
above is the use of an asymmetric similarity function, i.e., s(i,c) =−‖max(0,g(c;Wg,θψ)−
f (i;Wf ,θφ ))‖2. Again, we simply replace their use of the SH loss by our MH loss.

Like their experimental setting, we use the training set 10C+rV . For our Order++, we
use the same learning schedule and margin as our other experiments. However, we use their
training settings to train Order0. We start training with a learning rate of 0.001 for 15 epochs
and lower the learning rate to 0.0001 for another 15 epochs. Like [31] we use a margin
of 0.05. Additionally, [31] takes the absolute value of embeddings before computing the
similarity function which we replicate only for Order0.

Table 4 reports the results when the SH loss is replaced by the MH loss. We replicate their
results using our Order0 formulation and get slightly better results (row 4.1 and row 4.3). We
observe 4.5% improvement from Order0 to Order++ in R@1 for caption retrieval (row 4.3
and row 4.5). Compared to the improvement from VSE0 to VSE++, where the improvement
on the 10C+rV training set is 1.8%, we gain an even higher improvement here. This shows
that the MH loss can potentially improve numerous similar loss functions used in retrieval
and ranking tasks.

# Model Caption Retrieval Image Retrieval
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

1K Test Images
4.1 Order ([31]) 46.7 - 88.9 2.0 37.9 - 85.9 2.0
4.2 VSE0 49.5 81.0 90.0 1.8 38.1 73.3 85.1 2.0
4.3 Order0 48.5 80.9 90.3 1.8 39.6 75.3 86.7 2.0
4.4 VSE++ 51.3 82.2 91.0 1.2 40.1 75.3 86.1 2.0
4.5 Order++ 53.0 83.4 91.9 1.0 42.3 77.4 88.1 2.0

Table 4: Comparison on MS-COCO. Training set for all the rows is 10C+rV .
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3.6 Behavior of Loss Functions
We observe that the MH loss can take a few epochs to ‘warm-up’ during training. Fig. 2
depicts such behavior on the Flickr30K dataset using RC. Notice that the SH loss starts off
faster, but after approximately 5 epochs MH loss surpasses SH loss. To explain this, the
MH loss depends on a smaller set of triplets compared to the SH loss. Early in training the
gradient of the MH loss is influenced by a relatively small set of triples. As such, it can take
more iterations to train a model with the MH loss. We explored a simple form of curriculum
learning ([2]) to speed-up the training. We start training with the SH loss for a few epochs,
then switch to the MH loss for the rest of the training. However, it did not perform much
better than training solely with the MH loss.

Figure 2: Analysis of the behavior of the MH loss on the Flickr30K dataset training with RC.
This figure compares the SH loss to the MH loss (Table 3, row 3.9 and row 3.11). Notice
that, in the first 5 epochs the SH loss achieves a better performance, however, from there-on
the MH loss leads to much higher recall rates.

In [27], it is reported that with a mini-batch size of 1800, training is extremely slow. We
experienced similar behavior with large mini-batches up to 512. However, mini-batches of
size 128 or 256 exceeded the performance of the SH loss within the same training time.

3.7 Examples of Hard Negatives
Fig. 3 shows the hard negatives in a random mini-batch. These examples illustrate that hard
negatives from a mini-batch can provide useful gradient information.

4 Conclusion
This paper focused on learning visual-semantic embeddings for cross-modal, image-caption
retrieval. Inspired by structured prediction, we proposed a new loss based on violations
incurred by relatively hard negatives compared to current methods that used expected errors
([15, 31]). We performed experiments on the MS-COCO and Flickr30K datasets and showed
that our proposed loss significntly improves performance on these datasets. We observed
that the improved loss can better guide a more powerful image encoder, ResNet152, and also
guide better when fine-tuning an image encoder. With all modifications, our VSE++ model
achieves state-of-the-art performance on the MS-COCO dataset, and is slightly below the
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GT: A little girl wearing
pink pants, pink and white
tennis shoes and a white shirt
with a little girl on it puts her
face in a blue Talking Tube.

HN: [0.26] Blond boy jump-
ing onto deck.

GT: A teal-haired woman
in a very short black dress,
pantyhose, and boots stand-
ing with right arm raised
and left hand obstructing
her mouth in microphone-
singing fashion is standing.

HN: [0.08] Two dancers in
azure appear to be perform-
ing in an alleyway.

GT: Two men, one in a
dark blue button-down and
the other in a light blue tee,
are chatting as they walk by
a small restaurant.

HN: [0.41] Two men with
guitars strapped to their back
stand on the street corner
with two other people behind
them.

GT: A man wearing a black
jacket and gray slacks,
stands on the sidewalk hold-
ing a sheet with something
printed on it in his hand.

HN: [0.26] Two men with
guitars strapped to their back
stand on the street corner
with two other people behind
them.

GT: There is a wall of a
building with several dif-
ferent colors painted on it
and in the distance one per-
son sitting down and another
walking.

HN: [0.06] A woman with
luggage walks along a street
in front of a large advertise-
ment.

GT: A man is laying on a
girl’s lap, she is looking at
him, she also has her hand on
her notebook computer.

HN: [0.18] A woman sits on
a carpeted floor with a baby.

GT: A young blond girl in a
pink sweater, blue skirt, and
brown boots is jumping over
a puddle on a cloudy day.

HN: [0.51] An Indian
woman is sitting on the
ground, amongst drawings,
rocks and shrubbery.

GT: One man dressed in
black is stretching his leg up
in the air, behind him is a
massive cruise ship in the
water.

HN: [0.24] A topless man
straps surfboards on top of
his blue car.

Figure 3: Examples from the Flickr30K training set along with their hard negatives in a
random mini-batch according to the loss of a trained VSE++ model. The value in brackets
is the cost of the hard negative and is in the range [0,2] in our implementation. HN is the
hardest negative in a random sample of size 128. GT is the positive caption used to compute
the cost of NG.

best recent model on the Flickr30K dataset. Our proposed loss function can be used to train
more sophisticated models that have been using a similar ranking loss for training.
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