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Abstract

Overhead imageries play a crucial role in many applications such as urban planning,
crop yield forecasting, mapping, and policy making. Semantic segmentation could en-
able automatic, efficient, and large-scale understanding of overhead imageries for these
applications. However, semantic segmentation of overhead imageries is a challenging
task, primarily due to the large domain gap from existing research in ground imageries,
unavailability of large-scale dataset with pixel-level annotations, and inherent complex-
ity in the task. Readily available vast amount of unlabeled overhead imageries share
more common structures and patterns compared to the ground imageries, therefore, its
large-scale analysis could benefit from unsupervised feature learning techniques.

In this work, we study various self-supervised feature learning techniques for se-
mantic segmentation of overhead imageries. We choose image semantic inpainting as
a self-supervised task [36] for our experiments due to its proximity to the semantic seg-
mentation task. We (i) show that existing approaches are inefficient for semantic segmen-
tation, (ii) propose architectural changes towards self-supervised learning for semantic
segmentation, (iii) propose an adversarial training scheme for self-supervised learning by
increasing the pretext task’s difficulty gradually and show that it leads to learning better
features, and (iv) propose a unified approach for overhead scene parsing, road network
extraction, and land cover estimation. Our approach improves over training from scratch
by more than 10% and ImageNet pre-trained network by more than 5% mIOU.

1 Introduction
Overhead imageries are images captured by imaging satellites, aeroplanes, drones, etc. They
can be updated easily as well as frequently [29]. In contrast to ground imageries which are
often captured with digital, portable, or surveillance cameras, overhead imageries present a
unique and occlusion-free view of a large geographical area (see Figure 1 (a)). Due to this,
they are extensively used for land cover classification [15, 24], scene parsing [1, 20, 35], road
network extraction [3, 4, 28, 29, 30, 31, 32, 43], etc. However, the focus has been towards
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Figure 1: (a) There exist a large domain gap between ground and overhead imageries due to the
perspective* . (b) Overhead imageries exhibit rich context information making it suitable for unsuper-
vised feature learning with inpainting. Semantic segmentation of overhead imagery enables a variety
of tasks: (c) scene parsing of a city, (d) road network extraction, and (e) land cover estimation.

a specific narrow area of application. In this work, we present a unified approach, based on
semantic segmentation, towards a variety of overhead imagery tasks — (i) scene parsing of
a city, (ii) road network extraction in urban and remote areas, and (iii) land cover estimation
in diverse geographical terrains.

Overhead imagery captures a vast geographical area with diverse landscapes, objects
and extreme variations in their count, size, and aspect-ratio. Moreover, significant diversity
arises due to illumination, region’s geography, weather conditions, etc. Undoubtedly, there is
a large domain gap from existing research in ground imageries primarily due to the overhead
perspective. Transfer learning between these domains is, therefore, unsuitable. Overhead
view-point of objects and scenes are highly ambiguous and their annotations require domain
expertise due to the uncommon appearance. Unavailability of large-scale dataset with pixel-
level annotations for different overhead imagery tasks further limits the utility of current
semantic segmentation techniques [2, 25, 26, 33].

In this work, we exploit the strong context information and spatial relationship present
in overhead imageries to learn useful features at the pre-training stage with self-supervised
technique. We employ semantic inpainting as the self-supervised task [36] (Figure 1 (b)) due
to its proximity to the semantic segmentation task. We propose architectural changes (3.1)
enabling the pre-training of encoder network which preserves the spatial context of features
as well as the decoder network which learns to upsample the features with respect to the
semantic boundary of entities, an essential ingredient for semantic segmentation.

Semantic inpainting as self-supervised task leads to learning useful features only when
the region filling task is non-trivial. Curated object-centric datasets (ImageNet [7], Pascal
VOC [9], etc.) are inherently diverse and objects occupy a significant portion of the image.
Erasing fixed or random regions from object centric images, therefore, is adequately difficult.
On the contrary, overhead imageries with much wider world-view lacks specific subject in
the images. To ensure the pretext task’s difficulty, instead of inpainting random regions
[36] (Figure 1 (b) left), we propose to inpaint difficult and semantically meaningful regions
(Figure 1 (b) right) with an adversarial training scheme consisting of coach and inpainting
networks (3.2). The coach network see an entire image and predicts an increasingly difficult

* Image source: http://visions-of-earth.com/satellite-image-of-paris-france-the-city-of-love-and-romance/
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Figure 2: An overview of our approach: self-supervised pre-training (left) and task specific supervised
training (right). We use semantic inpainting as self-supervised pre-training [36] to exploit the freely
available large amount of unlabeled overhead imageries. To ensure the pretext task’s difficulty we train
the inpainting network with an adversarial mask prediction scheme. The pre-trained encoder-decoder
inpainting network is then fine-tuned for a variety of overhead imagery tasks: scene parsing, road
network extraction, and land cover estimation.

mask which is used to erase the corresponding regions of the image. The inpainting network
then tries to fill-in the erased regions with the help of available contexts. At the end of the
pre-training stage, the inpainting network learn to efficiently encode the available contexts
and upsample the activation maps for overhead imageries. The pre-trained model is further
used as initialization for different overhead imagery tasks. Figure 2 shows the overview of
our approach.
Contributions

1. We show that existing self-supervised techniques focusing on the encoder network
alone are inefficient for semantic segmentation. We propose architectural changes
towards self-supervised pre-training of encoder as well as decoder networks.

2. We propose an adversarial training scheme for self-supervised learning by increasing
the pretext task difficulty gradually and show that it leads to superior performance.

3. We also propose a unified segmentation based approach for scene parsing, road net-
work extraction, and land cover estimation in overhead imageries. Our technique im-
proves over training from scratch by more than 10% and ImageNet pre-trained network
by more than 5% mIOU.

2 Related Works
Overhead Imagery Understanding The overhead imagery community, in the past, has
mostly focused on specific task and application individually. The prominent tasks in this
domain are land cover classification [15, 24], scene parsing [1, 20, 35], and road network
extraction [3, 4, 28, 29, 30, 31, 32, 43]. Readers are suggested to see [46] for a compre-
hensive survey on recent developments in overhead imagery analysis. Unsupervised input
reconstruction [30, 31], supervised pre-training on natural images [1], and data augmenta-
tions with balancing class population [20] have been explored to overcome the data scarcity.
In contrast to these works, we perform pre-training with self-supervision from the same do-
main and show its efficacy in a unified semantic segmentation approach for scene parsing,
road network estimation, and land cover estimation.
Unsupervised and Self-Supervised Feature Learning Deep learning models require a
large amount of annotated data to train from scratch. RBMs [16], Autoencoders [17], and its
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variants [37, 40, 41] have been popular choice for unsupervised pre-training where labeled
data is scarce [30, 31]. Recently, self-supervised learning techniques [8, 11, 34, 36, 42, 45]
using freely available pseudo labels have emerged as a superior technique due to stronger
self-supervision. Doersch et al. [8] proposed to learn representations by predicting relative
position of two patches in an image. Noroozi et al. [34] extended this idea further to train the
network for solving jigsaw puzzles. Zhang et al. [45] proposed Split-Brain Autoencoders,
two disjoint sub-networks each trained to predict the missing image channel(s). Pathak et
al. [36] proposed Context Encoders to predict the contents of missing regions in the image
using the available contexts. Note that, [8, 11, 34, 36, 45] focus on pre-training the encoder
networks alone, and therefore, are inefficient for semantic segmentation. Furthermore, diffi-
culty level of the hand-crafted self-supervised tasks are fixed across examples depending on
the nature of the task itself. In this work, we propose an adversarial training scheme capable
of generating increasingly difficult examples for pre-training based on content of the image.

Semantic Segmentation Recent semantic segmentation [2, 25, 26, 33] techniques rely on
backbone model pre-trained on related task such as supervised image classification. Self-
supervised pre-training have also shown promising results on popular benchmarks [36, 45].
In both supervised [2, 25, 26, 33] and self-supervised pre-training [36, 45], the decoder
network is trained from scratch for semantic segmentation. In contrast to this, we propose
pre-training of the encoder as well as the decoder networks with semantic inpainting task.

3 Method

3.1 Semantic Inpainting as Self-supervision
Image semantic inpainting refers to predicting the actual image x from its corrupted version
x̂. The inpainting model learns from the available contexts in x̂ to reconstruct x. Pathak et
al. [36] proposed semantic inpainting as self-supervision to learn visual representation of
the image. In [36], a random binary mask M is generated for each image such that the pixels
with corresponding mask value 0 are erased from the image, and 1 are kept intact.

x̂ = M� x (1)

where � is the element-wise product operation. The inpainting model F learns to inpaint
images by minimizing the masked L2 distance as reconstruction loss, Lrec. We add additional
loss term for context regions, Lcon, to allow the network to reconstruct the entire image and
learn to upsample activation maps effectively.

Lrec(x̂) =
1

∑(1−M)
||(1−M)� (x−F(M� x))||22 (2)

Lcon(x̂) =
1

∑M
||M� (x−F((1−M)� x))||22 (3)

The final loss Linpainting is the weighted sum of reconstruction and context losses.

Linpainting = wrecLrec +wconLcon (4)

Architectural Improvements We propose architectural changes to the semantic inpaint-
ing encoder-decoder architecture used in [36]. We use (a) a more powerful ResNet-18 [13]
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Figure 3: The coach network (top) take the image as input and outputs a semantically meaningful bi-
nary mask. The mask is used to erase parts of the image which then is used as input to the inpainting
network (bottom). The inpainting network learns to encode visual representations as well as upsam-
pling by trying to fill-in the image regions erased by the coach. The coach is trained with loss adversary
to the inpainting network making it capable of generating increasingly difficult examples (see 3.2).

as the backbone encoder network, (b) do away with the channel-wise fully-connected bot-
tleneck layer, and (c) exploit the pre-trained encoder as well as decoder for the segmentation
task. ResNet [13], compared to AlexNet [23] equivalent used in [36], have the potential to
learn better representations, is more efficient as well as easier and faster to train [14]. Fur-
thermore, BatchNorm [18] helps in reducing the domain gap between semantic inpainting
of corrupted images and semantic segmentation of natural images since the input to convo-
lutional layers follow the same distribution during both stages.

Fully-connected bottleneck layer in an encoder-decoder network connects all spatial
locations together, however, also results in losing the vital spatial context. Deep CNNs’
(AlexNet [23], VGG [39], ResNet [13]) convolutional filters possess large enough field-of-
view (FOV) to see the spatial extent of 195×195 pixels (or more) of input [27]. We use the
input size 128×128 for inpainting which is well within reach of the encoder network’s FOV.
By not employing the fully-connected bottleneck layer in our architecture, the resulting net-
work is fully convolutional, able to preserve the spatial context, and has fewer parameters.

Lastly, while learning to inpaint, the decoder network tries to push the low resolution
feature up to the semantic boundary of the entities at input resolution. The decoder network
learns non-linear weighted upsampling of the low resolution feature maps which we show
is useful for the target segmentation task. To the best of our knowledge, ours is the first
architecture that re-uses the encoder as well as the decoder network for the target task.

3.2 Coach Network

Pathak et al. [36] inpaints the image erased by a randomly generated binary mask. The mask
dictates the regions used to learn context, the regions to inpaint, the difficulty of the task, and
in turn the quality of the learned features. Overhead imageries with much wider world-view
lacks specific subject in the images, therefore to learn useful representations, its inpainting
task need masks that can erase semantically meaningful and difficult regions. Identifying
meaningful regions or difficult examples without labeled data is extremely difficult. Similar
ideas have recently been proposed by Gao et al. [10] and Wei et al. [44] to identify and use
masks with different difficult levels for training, however, with a focus on handling arbitrary
levels of corruption in semantic inpainting and weakly-supervised semantic segmentation
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Figure 4: Coach model predicts an increasingly difficult masks for semantic inpainting. For each row,
from left to right: Input image (512×512) for the coach network, masks predicted at iterations 0, 1, 6,
and 8 with corresponding inpainting output. Note that at iteration 0 the coach predicts random masks.

with a pre-trained model, respectively. In contrast to using random mask from pre-defined
distributions in [10], the coach network learns to score the regions based on difficulty in its
inpainting. The coach is trained with loss adversarial to the reconstruction loss. In this way,
the coach learns to create increasingly difficult examples for the inpainting network.

We propose coach network that learns a semantically meaningful mask M for the given
image x (see Figure 3). The coach model C learns to assign meaningful score to the regions
in image x by maximizing the reconstruction loss.

Lcoach(x) = 1−Lrec(x�M) = 1−Lrec(x�C(x)) (5)

However, applying this loss naïvely would result in the masks having 0 value at all regions
because then no context information is present for the inpainting model and maximum re-
construction loss is achieved. Therefore, we apply constraints on outputs of the coach model
to ensure a constant fraction of the images is always available as context for inpainting.

B̂(x) = B(x)−SORT(B(x))k|B(x)| (6)

M =C(x) = σ(αB̂(x)) (7)

The backbone network B of the coach model C has the same architecture as the encoder
network of inpainting model. This gives the coach approximately similar representation
power as the encoder network. SORT(B(x)) represents the sorting operation in descending
order over all values in the activation map. |B(x)| denotes the spatial size of activation map,
k represents the kth element in the sorted list of scores and controls the fraction of image
to be erased. B̂(x) gives the relative difficulty score for each region with respect to the kth

element. The regions with score lesser than the kth element are erased from the image while
the other regions are kept intact. For example, k = 0.75 would erase 1

4 area of the image. We
scale the scores to the range [0, 1] using point-wise sigmoid function σ(αx), where α is a
scalar that controls the steepness of σ . High α value results in discrete masks value {0, 1}
(for inpainting mask), whereas low α results in continuous mask values [0,1] (for training
coach model). We use α = 1 while training the coach network, and step-function (α → ∞)
while training the inpainting network.

3.3 Training
We train coach and inpainting networks in an alternate fashion creating a competition be-
tween the models. The coach model learns to create increasingly difficult examples for the
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inpainting model while the inpainting model learns superior feature with more difficult ex-
amples. The overall training objective (ignoring Lcon for simplicity) is given by

L(x) = min
θF

max
θC

||x−F(x�C(x,θC),θF)||22 (8)

where θF and θC are the parameters of the inpainting network and coach network, respec-
tively. To introduce diversity and stochasticity in mask prediction, we inject noise sam-
pled from a standard normal distribution to the coach’s penultimate activation maps with
the help of reparameterization [22]. In the first iteration of training inpainting model, we
fill the mask (output of the coach network) with values drawn from a uniform distribution,
B(x) j,k ∼U [0,1]. We use this random mask as a starting point, instead of random patch mask
as used in [36], to keep the nature of corruption same across iterations as semantic inpaint-
ing tends to overfit to the type of corruption it has been trained for [10]. Figure 4 shows few
examples of meaningful and increasingly difficult masks predicted by the coach network.

4 Experiments and Results

4.1 Implementation Details

Semantic Inpainting We use input size of 128× 128, batch size of 128 and employ ran-
dom crops, mirroring, resizing, horizontal flip, and rotations for data augmentation. We em-
pirically set wrec = 0.99 and wcon = 0.01 in all experiments and find it to be a good balance
between inpainting and learned feature quality. We use MSE loss clipped at 2 and observe
that it allows the network to converge faster, predict pixel intensities far from the mean of the
distribution. We use SGD optimizer with 0.9 momentum and 0.0005 weight decay to train
the inpainting network for 100 epochs and step LR starting at 0.1 with step size 0.1.

Coach Networks Inputs, data augmentation, and batch size for this network is kept same
as inpainting network. We remove the maxpool layer from ResNet-18 to predict the mask
at a resolution of 8× 8 and then apply 16× nearest neighbor upsampling to scale the mask
to 128×128. We erase 25% of the patches or 16 patches (k = 0.75) based on the predicted
difficulty score. For Context Encoders [36], we remove 16 random patches of size 16× 16
from the image. We train the coach network with Adam optimizer [21] at a fixed learning
rate of 10−5 for 30 epochs at a time. This is followed by training of inpainting network for
30 epochs at a fixed learning rate of 10−5. We repeat this procedure for 10 iterations.

Semantic Segmentation We adapt the inpainting network for semantic segmentation by
removing the pixel-wise regressors. For the variant of inpainting network with bottleneck,
following Long et al. [26], we apply a pixel-wise classifier at 3 scales: 1

8 , 1
16 , and 1

32 . For the
variant of inpainting network without the bottleneck, we apply a pixel-wise classifier at all
5 scales. We train all segmentation networks for 100 epochs and step learning rate starting
at 0.001 with step size 0.1. We use input size of 256×256, batch size of 64 and employ the
same data augmentation used for the training inpainting network. We observe that training
segmentation network using small amount of data with cross-entropy loss leads to variations
in segmentation results between re-runs. We train the segmentation network with soft-IOU
loss [29] which leads to more stable and reproducible results. Readers are suggested to refer
to the supplementary materials for additional implementation details.
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Dataset Resolution Ground Resolution Train Validation Crop Size Stride Task

Potsdam [19] 6000×6000 5 cm 20 4 600×600 200×200 Scene Parsing
SpaceNet Road [38] 1300×1300 30 cm 2000 567 650×650 250×250 Road network
DeepGlobe Lands [6] 2448×2448 50 cm 803 171 612×612 228×228 Land cover
DeepGlobe Roads [6] 1024×1024 50 cm 6226 1243 512×512 256×256 Road network

fMoW [5] variable 50 cm 100000 2000 512×512 non-overlapping Pre-training

Table 1: Statistics and other details for the datasets used in our experiments. We use non-overlapping
crops for validation images for all datasets.

4.2 Datasets

We validate our ideas by performing experiments on four disparate datasets of overhead
imageries with variations in the task, dataset size, and image ground resolutions. Note that,
we use only 3 band RGB images in our experiments. The statistics of these datasets are given
in Table 1. Readers are requested to see the the supplementary materials for examples and
additional details of these datasets.

Potsdam [19] This dataset is used for scene parsing of the Potsdam city with 6 classes:
impervious surface, building, tree, low vegetation, car, and BG.

SpaceNet Road [38] This dataset is used for road network estimation. The annotations are
in the form of line-strings of roads. We obtain the binary masks by dilating the foreground
to 40 pixels, resulting in road masks of roughly 12 meters width.

DeepGlobe Lands [6] This dataset is used for land cover estimation with 7 classes: urban,
agriculture, range, forest, water, barren, and unknown (ignore class).

DeepGlobe Roads [6] This dataset is used for road network estimation. Pixel-level anno-
tations are provided for road and background classes.

Functional Map of the World [5] We use only the images from the train split of this
dataset to study the feature quality learned with respect to the number of unlabeled examples.

4.3 Results

We initialize all parameters with the technique proposed by He et al. [12]. We use mean
Intersection-Over-Union (mIOU) as the metric at different amount of labeled and unlabeled
data used for training. We do not apply weights to loss with respect to class population in
any experiment and found that pre-training helps in alleviating the effect of class imbalance
which is a prominent issue in overhead imagery tasks. Table 2 shows the performance of
the baselines and our method while using all training images for the self-supervised pipeline
and 10% labeled images of respective training set for fine-tuning the segmentation network.
Figure 5 shows qualitative segmentation results of prediction from a model trained from
scratch and a model pre-trained with our method.

Self-supervised Baselines We compare our results with three competitive self-supervised
feature learning techniques: (a) Context Prediction [8], (b) Context Encoders [36], and (c)
Splitbrain Autoencoders [45]. To evaluate their relative performance, we keep the AlexNet
[23] architecture same for all the methods (see supplementary materials). Context Predic-
tion and Context Encoders both tasks try to learn the structural information in the image,
however, Context Encoders perform better in all cases, confirming semantic inpainting task
being relatively closer to semantic segmentation task. Splitbrain AE outperforms Context
Prediction and Context Encoders, confirming the findings of [45].
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Method Encoder Bottleneck Decoder Results

Potsdam SpaceNet DG Roads DG Lands

Context Prediction [8]
AlexNet

7 7 0.273 0.593 0.478 0.257
Context Encoders [36] 3 7 0.298 0.610 0.478 0.339
Splitbrain AE [45] 3 7 0.265 0.641 0.482 0.411

ImageNet ResNet-18 7 7 0.493 0.701 0.669 0.575

Scratch

ResNet-18

7 7 0.414 0.657 0.643 0.495
Scratch 7 3 0.418 0.661 0.607 0.507
Autoencoder 3 3 0.502 0.748 0.749 0.515
Autoencoder 7 3 0.499 0.742 0.742 0.499

Context Encoders (Ours) ResNet-18 3 7 0.540 0.730 0.478 0.501
7 3 0.562 0.762 0.759 0.503

Coach Mask (Ours) ResNet-18 7 3 0.568 0.770 0.768 0.529

Table 2: Semantic segmentation results (mIOU) while using full training set for the self-supervised
pipeline and 10% of labeled images of respective datasets for training the segmentation network.

Architectural improvement ResNet-18 pre-trained on ImageNet performs better than
training from scratch (see Table 2). This can be explained with the fact that the weights
of earlier layers are generic and rarely change across domains. However, pre-training on
ImageNet performs worse than simple autoencoder pre-training suggesting the large gaps
between ground and overhead imageries. Table 2 also shows that having no bottleneck and
re-using the pre-trained decoder network along with the encoder significantly improves the
results, specially for road network extraction.

Interestingly, for DG Lands, pre-training on ImageNet performs better than unsupervised
and self-supervised pre-training. We hypothesize that this is because image reconstruction
and inpainting of the images used for land cover classification is inherently equivalent to
texture completion leading to inferior self-supervision. Superior results with Splitbrain Au-
toencoders [45] cross channel prediction, among the baseline methods, further confirms that
color and texture plays a major role in this task.

Learned masks Adversarial inpainting with increasingly difficult masks outperforms the
baselines in all the tasks simultaneously (see Table 2 and 3). These improvements against
the strong baselines, although seems small, is significant primarily because performance
gain over sophisticated data augmentation is difficult. Note that, the domain gap in inputs
between inpainting and segmentation is similar in cases of random and adversarial masks
since an equal amount of region is erased from the input image.

Dataset Method (a) Labeled (b) Unlabeled

10% 25% 50% 100% 1K 2K 5K 10K 50K 100K

Potsdam
Scratch 0.418 0.502 0.544 0.582 NA NA NA NA NA NA
Context Encoders (Ours) 0.562 0.628 0.668 0.698 0.432 0.453 0.537 0.561 0.548 0.562
Coach Mask (Ours) 0.568 0.637 0.674 0.705 0.446 0.469 0.541 0.563 0.566 0.565

SpaceNet
Scratch 0.661 0.720 0.748 0.766 NA NA NA NA NA NA
Context Encoders (Ours) 0.762 0.781 0.795 0.804 0.696 0.731 0.754 0.759 0.763 0.765
Coach Mask (Ours) 0.770 0.786 0.797 0.806 0.709 0.731 0.757 0.770 0.774 0.774

Table 3: Segmentation performance (mIOU) using the proposed architecture (ResNet-18 encoder, no
bottleneck, and decoder) with respect to the (a) fraction of labeled images used for fine-tuning and (b)
number of unlabeled images used for self-supervised training with 10% labeled data for fine-tuning.
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Figure 5: Qualitative semantic segmentation results for Potsdam (a) and SpaceNet Road (b), from left
to right: input image, ground truth, prediction with model trained from scratch, and prediction with
model pre-trained using our approach. 10% of labeled data is used for fine-tuning in all cases.

Number of labeled and unlabeled samples used As expected, there is a consistent im-
provement for all methods when the number of labeled images is increased (see Table 3).
Our adversarial training strategy consistently outperforms others with respect to different
amounts of labeled images used for fine-tuning.

Surprisingly, the performance of self-supervised pre-training remains mostly the same
despite a significant increase in number of unlabeled images used for pre-training (see Table
3). This behavior is most likely due to domain gap between semantic inpainting and semantic
segmentation task. Furthermore, the random mask based inpainting technique suffer more
than our proposed technique when the number of unlabeled images used for pre-training is
drastically reduced. These results also conclude that our adversarial training have similar
advantages and disadvantages when compared to the Context Encoders [36], however, it
performs better in all scenarios we tested.

5 Conclusions
In this work, we propose a unified semantic segmentation approach towards a variety of over-
head imagery tasks. We employ self-supervised techniques for pre-training due to scarcity
of labeled data and availability of a large number of unlabeled data. Experiments show that
existing self-supervised techniques, focusing primarily on classification, are inefficient for
semantic segmentation. Our proposed architectural changes (3.1) leads to significant im-
provements in various diverse overhead imagery tasks. This is largely due to the use of high
capacity ResNet-18 [13] as the backbone network and the re-use of pre-trained decoder net-
works. Additional improvements over strong baselines are observed on training the inpaint-
ing network with an adversarial coach network (3.2). The coach model is able to predict an
increasingly difficult mask leading to a more difficult self-supervised task. However, existing
self-supervised techniques as well as our proposed method do not exploit the availability of
large unlabeled images. These insights motivate us to further probe self-supervised learning
techniques to unlock the true potential of self-supervision in our future works.
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