
KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 1

Few-shot learning of neural networks from
scratch by pseudo example optimization

Akisato Kimura1,2

akisato@ieee.org

Zoubin Ghahramani1,3

zoubin@eng.cam.ac.uk

Koh Takeuchi2

koh.t@acm.org

Tomoharu Iwata2

iwata.tomoharu@lab.ntt.co.jp

Naonori Ueda2

ueda.naonori@lab.ntt.co.jp

1 Department of Engineering
University of Cambridge
Cambridge, UK.

2 NTT Communication Science
Laboratories
Keihanna Science City, Japan.

3 Uber AI Labs
California, USA.

Abstract

In this paper, we propose a simple but effective method for training neural networks
with a limited amount of training data. Our approach inherits the idea of knowledge
distillation that transfers knowledge from a deep or wide reference model to a shallow
or narrow target model. The proposed method employs this idea to mimic predictions of
reference estimators that are more robust against overfitting than the network we want
to train. Different from almost all the previous work for knowledge distillation that
requires a large amount of labeled training data, the proposed method requires only a
small amount of training data. Instead, we introduce pseudo training examples that are
optimized as a part of model parameters. Experimental results for several benchmark
datasets demonstrate that the proposed method outperformed all the other baselines, such
as naive training of the target model and standard knowledge distillation.

1 Introduction

The current state-of-the-art in computer vision heavily relies on the supervised learning of
deep neural networks with large-scale datasets. However, constructing such large-scale
datasets generally requires painstaking effort, and in many real-world applications, only a
limited number of training examples can be obtained. Deep neural networks easily overfit
the training data, especially when only a small amount of training data is available. Sev-
eral techniques for alleviating overfitting in deep learning have been proposed so far, e.g.
semi-supervised learning [11], transfer learning [5] and few-shot learning [19]. However, all
the above approaches require either a large number of unsupervised training examples or a
pre-trained model trained with a large amount of supervised training data, and thus learning
neural networks from only a few examples remains a key challenge.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Caruana} 1994

Citation
Citation
{Koch, Zemel, and Salakhutdinov} 2015

2 KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH

Figure 1: Basic idea of the proposed method

Meanwhile, several other estimators such as linear support vector machines (SVMs)
and Gaussian processes (GPs) can ease the adverse effect of overfitting by making use of
Bayesian principle or maximum margin. The universal approximator theorem [16] guar-
antees that an infinitely wide neural network with at least one hidden layer can represent
any Lipschitz continuous function to an arbitrary degree of accuracy. This theorem implies
that there exists a neural network that well imitates the behavior of other estimators, while
keeping a great representation power of neural networks.

In this paper, we propose a novel method for training neural networks with a small
amount of supervised training data. Figure 1 shows the basic idea of our proposed method
named imitation networks. The proposed method first trains a reference model with a given
small amount of supervised training data, and then transfers knowledge from the refer-
ence model to a target neural network model in a similar manner to knowledge distillation
[1, 4, 15]. Although any types of black-box estimators can be applied as a reference model
in our method in principle, we particularly select GPs as reference models that can provide
local smoothness of predictions. Different from almost all the previous work for knowl-
edge distillation that employs a large number of supervised training examples, our proposed
method requires only a few supervised training examples for knowledge transfer. To aug-
ment training examples, we introduce inducing points [30] that are pseudo training examples
helping the model training tractable or much easier. In the original inducing point methods
used for scalable GP inference, both inducing points and model parameters are updated to
increase the objective function that is actually a lower bound (ELBO) on the marginalized
likelihood. In our proposed method, however, parameters of the target model are updated to
decrease a training loss, but pseudo training examples are updated to increase the training
loss. By doing this, we can move pseudo training examples toward areas where the current
target model has not been well trained. We also introduce fidelity weighting [6] for elimi-
nating harmful pseudo training example based on uncertainty in predictions obtained from
reference models.

Our main contributions of this paper can be summarized as follows:

Citation
Citation
{Hornik, Stinchcombe, and White} 1989

Citation
Citation
{Ba and Caruana} 2014

Citation
Citation
{Buciluunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {aglobal mathchardef accent@spacefactor spacefactor }accent 7 aegroup spacefactor accent@spacefactor , Caruana, and Niculescu-Mizil} 2006

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Snelson and Ghahramani} 2006

Citation
Citation
{{Dehghani}, {Mehrjou}, {Gouws}, {Kamps}, and {Sch{ö}lkopf}} 2017

KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 3

1. Presenting a novel framework for few-shot training of neural networks from scratch,
meaning that neither additional examples nor reference models trained with a large
amount of supervised examples are required..

2. Applying the idea of inducing points into the training of neural networks, which can
be optimized in almost the same way as model parameters of neural networks.

2 Related work
Techniques for avoiding overfitting: Several techniques have already been proposed for
alleviating overfitting in neural network training. Widely used techniques include data aug-
mentation, model regularization, early stopping, dropout and weight decay, all of which
have already been implemented into almost all the deep learning libraries. Semi-supervised
learning is also a major approach when a large amount of unsupervised training examples
are available. Recently, generative models such as generative adversarial networks (GAN)
[11] have become one of the most popular approaches for semi-supervised learning as they
can disentangle the supervised information from many other latent factors of variation in a
principled way [18]. Transfer learning [5] is also widely used for neural network training
when a base model trained with a large amount of training data for related tasks is available.
One-shot or few-shot learning [2, 19, 34] is a problem of learning a classifier from only a
few supervised examples per class. As with transfer learning, few-shot learning relies on
reference models pre-trained with a large amount of labeled training examples whose class
labels are different from target class labels, and captures the characteristics of the target
classes from relationships among other reference classes and a single target example. Com-
pared with those approaches, our method (1) requires no additional training examples unlike
semi-supervised learning, and (2) achieves few-shot learning from scratch, meaning that the
reference model is trained with a few training examples, and neither additional examples nor
reference models trained with a large amount of supervised training examples are required.

Knowledge distillation: Knowledge distillation is a class of techniques for training a
shallow and/or narrow network, and it is also called model distillation or model compres-
sion. More specifically, knowledge distillation learns a small student network by transferring
knowledge from large teacher networks, mainly for implementing the network onto devices
with limited computational power. Bucilua et al. [4] pioneered this approach, and Ba and
Caruana [1] extended this idea to deep learning. Hinton et al. [15] generalized the previous
methods by introducing a new metric between the output distribution of teacher and stu-
dent predictions. Other previous researches demonstrates that knowledge can be transferred
from either intermediate layers of a teacher model [28, 37], from multiple teacher models
[38], mismatched unsupervised stimuli [20] or examples reconstructed from meta-data [10].
Recent papers [8, 26, 32] showed that the knowledge distillation framework is applicable
to learn a student network from a teacher network with completely the same structure with
the student network. Meanwhile, our method (1) inherits the idea of knowledge distillation,
however, (2) exploits an arbitrary black-box estimator as a teacher, in contrast to standard
knowledge distillation 1, and (3) does not require a large amount of real training data, and
instead employs pseudo training data that is optimized during the model training.

Inducing point methods: Inducing point methods [30] have been originally developed
for scalable GP inference. Inducing points are pseudo training examples that can help the

1However, this has already been acknowledged in the context of black-box adversarial attacks [25]

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Kingma, Mohamed, Jimenezprotect unhbox voidb@x penalty @M {}Rezende, and Welling} 2014

Citation
Citation
{Caruana} 1994

Citation
Citation
{Bertinetto, Henriques, Valmadre, Torr, and Vedaldi} 2016

Citation
Citation
{Koch, Zemel, and Salakhutdinov} 2015

Citation
Citation
{Vinyals, Blundell, Lillicrap, kavukcuoglu, and Wierstra} 2016

Citation
Citation
{Buciluunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {aglobal mathchardef accent@spacefactor spacefactor }accent 7 aegroup spacefactor accent@spacefactor , Caruana, and Niculescu-Mizil} 2006

Citation
Citation
{Ba and Caruana} 2014

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Romero, Ballas, Kahou, Chassang, Gatta, and Bengio} 2015

Citation
Citation
{Yim, Joo, Bae, and Kim} 2017

Citation
Citation
{You, Xu, Xu, and Tao} 2017

Citation
Citation
{Kulkarni, Patil, and Karande} 2017

Citation
Citation
{{Gontijo Lopes}, {Fenu}, and {Starner}} 2017

Citation
Citation
{Furlanello, Lipton, Itti, and Anandkumar} 2017

Citation
Citation
{Papernot, McDaniel, Wu, Jha, and Swami} 2016

Citation
Citation
{Tarvainen and Valpola} 2017

Citation
Citation
{Snelson and Ghahramani} 2006

Citation
Citation
{{Papernot}, {McDaniel}, and {Goodfellow}} 2016

4 KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH

model training tractable or much easier. Candela and Rasmussen [27] implies that initial
inducing points can be selected from supervised training examples. Titsias [33] suggests a
variational approach which provides an objective function for optimizing inducing points. In
this method, both inducing points and covariate function parameters are updated to increase
the objective function that is actually the evidence lower bound (ELBO) on the marginalized
likelihood. Hensman et al. [13, 14] introduced stochastic variational inference for improving
scalability, where inducing points are regarded as latent variables and marginalized out in the
model inference. Meanwhile, our method (1) first introduces inducing points into supervised
neural network training, and (2) updates pseudo training examples to increase a training loss
but updates model parameters to decrease the loss, in an adversarial manner.

3 Model optimization

3.1 Knowledge distillation

Before introducing the framework of our proposed method, we first describe knowledge dis-
tillation that is the source of our main idea. Knowledge distillation is a family of methods
that transfer the generalization ability of a pre-trained reference model g(xxx;θθθ g) to a target
model f (xxx;θθθ f), where xxx is an input example, and θθθ g and θθθ f are model parameters of the ref-
erence and target models, respectively. In the following, we will omit the model parameters
θθθ f and θθθ g for simplicity unless we explicitly state. Recent knowledge distillation meth-
ods are mainly focused on the training of a shallow or narrow neural network as the target
model with the help of reference models that are much deeper or wider neural networks, by
minimizing the following distillation loss Ldis with respect to the target model f (·):

Ldis(XXXL,YYY L) =
λ1

NL

NL

∑
n=1

D1(yyyL
n , f (xxxL

n))+
λ2

NL

NL

∑
n=1

D2(g(xxxL
n), f (xxxL

n)), (1)

where XXXL = {xxxL
1 , . . . ,xxx

L
NL
} is a set of supervised training examples, YYY L = {yyyL

1 , . . . ,yyy
L
NL
} is a

set of the corresponding supervisors, D1(yyy, ŷyy) is a supervised loss comparing a supervisor yyy
and a prediction ŷyy, D2(ŷyy1, ŷyy2) is an unsupervised loss computing a loss between two different
predictions ŷyy1 and ŷyy2, and λ1 and λ2 are constants balancing two different losses. Knowledge
distillation usually deals with classification problems, where each supervisor yyyL

n is a one-hot
vector, however, it can be directly applied to regression or other machine learning problems
by replacing the supervisors into the shapes appropriate for the problem to be solved.

3.2 Proposed loss function

As shown in Eq. (1), almost all the formulations of the previous knowledge distillation work
employ supervised training examples (XXXL,YYY L) to train a target model f (·). However, you
may notice that minimizing the distillation loss with a limited supervised examples causes
overfitting, and true supervisions YYY L are not required for computing the unsupervised loss
D2. Based on this observation, our proposed method called imitation networks newly in-
troduces pseudo training examples XXXP = (xxxP

1 , . . . ,xxx
P
NP
) to train a target model f (·) from a

reference model g(·), and minimizes the following loss function Limi that we call the imita-

Citation
Citation
{Quinoneroprotect unhbox voidb@x penalty @M {}Candela and Rasmussen} 2006

Citation
Citation
{Titsias} 2009

Citation
Citation
{Hensman, Fusi, and Lawrence} 2013

Citation
Citation
{Hensman, Matthews, and Ghahramani} 2015

KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 5

tion loss:

Limi(XXXL,YYY L,XXXP) =
λ1

NL

NL

∑
n=1

D1(yyyL
n , f (xxxL

n))+
λ2

NP

NP

∑
n=1

D2(g(xxxP
n), f (xxxP

n)). (2)

In the same way as knowledge distillation, a reference model g(·) is first pre-trained with
supervised training examples (XXXL,YYY L). However, we have to note that only a few number
of supervised examples are available in our problem setting. A reference model g(·) can be
a single estimator or an ensemble of multiple estimators. We can build multiple estimators
from a single model by changing hyper-parameters, such as a variance and a length scale in
RBF kernels for GPs. When introducing an ensemble of multiple estimators, we choose to
average their predictions in a similar manner to the previous work [15].

The above formulation indicates that the target model tries to imitate predictions of the
reference model for pseudo examples and at the same time it tries to return predictions for
supervised examples as accurately as possible. Therefore, the resulting target model is not a
copy of the reference model and can inherit two different properties coming from the refer-
ence model and neural networks. In particular for the use of Gaussian processes as referencd
models, they introduce local smoothness of predictions into neural networks, which is lacked
in standard neural networks [3] and is proved to be effective for overfitting [23].

3.3 Fidelity weighting
We note that all the pseudo training examples are not always useful for knowledge transfer.
Examples yielding unreliable predictions from the reference model are more likely harmful
and should be discarded in the model training. For this purpose, we introduce the idea of
fidelity weighting [6], which adaptively weighs training examples based on uncertainty of
predictions obtained from the reference model. With the introduction of fidelity weighting,
the imitation loss Eq. (2) can be replaced by the following equation.

Limi(XXXL,YYY L,XXXP) =
λ1

NL

NL

∑
n=1

D1(yyyL
n , f (xxxL

n))+
1

NP

NP

∑
n=1

λ2(g,xxxP
n)D2(g(xxxP

n), f (xxxP
n)). (3)

where λ2(g,xxxP
n) is a new example-wise weight for a pseudo example xxxP

n , which is computed
from uncertainty σg(xxxP

n) of the reference prediction g(xxxP
n), as follows:

λ2(g,xxxP
n) = λ̂2 exp(− log(λ̂2/λ 2)σg(xxxP

n)/σg), (4)

where λ̂2 is an upper bound of weights, σg is a mean uncertainty over all the pseudo ex-
amples and λ 2 is a weight for the mean uncertainty. Fidelity weighting is valid for various
kinds of reference estimators, unless Bayesian treatments cannot be applied to the reference
estimators in principle. For example, the original work [6] utilized GP classifiers. Bayesian
variants of SVMs [39] and Bayesian neural networks [9] can be employed for this purpose.

4 Pseudo example optimization
When transferring knowledge useful for improving performance, the selection of pseudo
examples plays a significant role. We describe this step in the this section.

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{{Bradshaw}, {Matthews}, and {Ghahramani}} 2017

Citation
Citation
{Miyato, Maeda, Koyama, Nakae, and Ishii} 2016

Citation
Citation
{{Dehghani}, {Mehrjou}, {Gouws}, {Kamps}, and {Sch{ö}lkopf}} 2017

Citation
Citation
{{Dehghani}, {Mehrjou}, {Gouws}, {Kamps}, and {Sch{ö}lkopf}} 2017

Citation
Citation
{Zhang and Jordan} 2006

Citation
Citation
{Gal and Ghahramani} 2016

6 KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH

4.1 Inducing point method
As described in Section 2, the inducing point method has been originally developed for scal-
able GP inference, and in this method both inducing points and model parameters are up-
dated to increase the objective function. On the other hand, in our method, updates of model
parameters and pseudo training examples are going off in completely different directions.
Namely, model parameters are updated to decrease the imitation loss, meanwhile pseudo
examples are updated to increase the loss. By doing this, we can move pseudo examples
towards areas where the current target model has not been well trained.

Our proposed technique for updating pseudo examples is inspired by adversarial training
[31], which increases the robustness of neural networks to adversarial examples, formed
by applying small but intentionally worst-case perturbations to examples from the dataset.
The most popular technique for generating an adversarial example xxxAT(xxxL,yyyL) from a given
supervised example (xxxL,yyyL) is a fast gradient sign method [12].

xxxAT(xxxL,yyyL) = xxxL + ε sign{∇xxxL D1(yyyL, f (xxxL))}, (5)

where ∇xxx is a partial derivative with respect to xxx and ε ≥ 0 is a small constant.
You may notice that the adversarial example xxxAT(xxx,yyy) can be seen as a stochastic update

of the original example xxx to increase the loss and a small constant ε can be seen as a learning
rate, if the gradient sign part sign{∇xxxD1(yyy, f (xxx))} is replaced by a standard stochastic gra-
dient ∇xxxD1(yyy, f (xxx)). Also, the ground-truth supervisor yyy can be removed from the update,
since every pseudo training example xxxP has a soft supervision g(xxxP) instead. Based on the
above discussion, the update of a pseudo training example xxxP can be obtained as

xxximi(xxxP) = xxxP + ε∇xxxP D2(g(xxxP), f (xxxP)). (6)

Instead of the direct use of this stochastic gradient update, we can introduce the recent ad-
vances of stochastic optimization such as Adam [17] and Nadam [7] for faster optimization.
In addition, the stochastic gradient part can be replaced by other types of adversarial exam-
ples, such as natural [40] and spatially transformed adversary [35].

We can build an adversarial training procedure that alternatively updates parameters θθθ f
of the target model to decrease the imitation loss and pseudo examples XXXP to increase the
loss. However, such an adversarial training procedure is well known to be unstable [29].
Instead, we adopt another approach that augments pseudo examples. We employ a fixed
set XXXP(t) of pseudo examples for the t-th step of model training, and update another set
XXXP(t+1) of pseudo examples that is originally a carbon copy of the current set XXXP(t). After
the convergence of the t-th training step, the current set XXXP(t) is merged into the next set
XXXP(t+1). Holding pseudo examples on fixed positions will make the model training more
stable, and augmenting pseudo examples whose predictions are distant from those of the
reference model makes the target model to be closer to the reference model.

4.2 Algorithm
Summarizing the above discussion, the training procedure of our proposed imitation net-
works can be described as follows:

1. A reference model g(·) is trained with (a few) labeled examples (XXXL,YYY L).

2. An initial set XXXP(0) of pseudo examples is generated, a carbon copy XXXP(1) of the initial
set XXXP(0) is created and the index t representing the current training step is set to 0.

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Dozat} 2016

Citation
Citation
{{Zhao}, {Dua}, and {Singh}} 2017

Citation
Citation
{{Xiao}, {Zhu}, {Li}, {He}, {Liu}, and {Song}} 2018

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen, and Chen} 2016

KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 7

Figure 2: Visualizations of predictions, where orange & blue crosses = supervised examples,
orange & blue dots = other unused examples in the dataset, green dots = pseudo examples,
and black lines = classification boundaries. From the top left to the bottom right, a) a dis-
tribution of examples, b) densely distributed pseudo examples, c) a reference model trained
with supervised examples, d) a target model trained with densely distributed pseudo exam-
ples, e) initial pseudo examples generated from supervised examples as seeds, f) a target
model trained with generated pseudo examples, g) a target model trained with supervised
and pseudo examples. h) a target model trained with supervised and pseudo examples +
fidelity weighting.

3. Model parameters θθθ f of a target model f (·) are updated by using the current pseudo
examples XXXP(t) and their outputs of the reference model g(·) so as to decrease the
imitation loss Eq. (3).

4. Every pseudo example in the next set XXXP(t+1) is updated with Eq. (6) and the current
target model f (·).

5. Repeat 3.-4. until a pre-defined number of training epochs are completed.

6. A carbon copy XXXP(t+2) of the next set XXXP(t+1) is newly created for further updates
(i.e. XXXP(t+2)← XXXP(t+1)), the current set XXXP(t) is included into the next set XXXP(t+1) (i.e.
XXXP(t+1)← XXXP(t)∪XXXP(t+1)), and the time index t is incremented as t← t +1.

7. Repeat 3.-6. until a pre-defined number of training steps are completed.

5 Experiments

5.1 Qualitative analysis
To check the behavior of the proposed method qualitatively, we first turned to the Banana
dataset 2 [14] for binary classification with 400 two-dimensional examples. We embedded

2https://github.com/GPflow/GPflow/tree/master/doc/source/notebooks/data

Citation
Citation
{Hensman, Matthews, and Ghahramani} 2015

https://github.com/GPflow/GPflow/tree/master/doc/source/notebooks/data

8 KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH

each of two-dimensional examples onto a 100-dimensional vector space by a linear transfor-
mation, where a transformation matrix was randomly determined in advance, and we selected
five supervised training examples per class randomly. The selected supervised examples and
other unused examples are shown in Figure 2 a), where crosses are supervised examples, dots
are unused examples in the dataset and a color corresponds to its class label. We employed
a GP classifier with an RBF kernel as a reference model, and built an ensemble of multiple
reference models trained with different initial kernel parameters. We used GPflow [22] with
variational Gaussian approximation [24] and L-BFGS-B optimization [41] for GP inference,
and utilized mean predictions as pseudo supervisions. The target model we selected was a
7-layer fully-connected neural network where each of the intermediate layers has 1000 units.
We used Nadam [7] for model parameter optimization and Adam [17] for pseudo example
optimization, and their initial learning rates were set to 0.001 and 0.05, respectively. The
batch size was 100, and the number of training epochs was 200.

First, we examined an extreme case where 2500 pseudo examples are densely distributed
onto whole the feature space. Although this is not realistic especially for high-dimensional
spaces, it is useful to check whether or not our proposed method can imitate the behavior of
the reference model precisely. Figure 2 b) shows its distribution, where green dots are pseudo
examples. In this case, we did not optimize pseudo examples, and we did not employ fidelity
weighting shown in Section 3.3, which means that we utilized the original imitation loss
shown in Eq. (2). We utilized Kullback-Leibler divergence for the unsupervised loss D2 and
ignored the supervised loss D1 (i.e. λ1 = 0). Figure 2 c) and d) show decision boundaries of
the reference and target models, respectively. This result indicates that our method imitated
the predictions of the reference model almost completely, as expected.

Next, we considered a more realistic setup, where 250 initial pseudo examples are gener-
ated by a mixture of interpolation and Gaussian augmentation of supervised examples, and
augmented them to 1000 with our technique shown in the last part of Section 4.1, where the
number of pseudo examples is much smaller than the first setup. Thus, we had 4 training
steps each of which had 50 training epochs and employed 250, 500, 750 and 1000 pseudo ex-
amples, respectively. We utilized hinge loss for the supervised loss D1 and Kullback-Leibler
divergence for the unsupervised losses D2, and both of the weights λ1 and λ 2 were set to
1.0. Figure 2 e) shows an initial distribution of pseudo training examples, and f), g) and h)
indicate decision boundaries and optimized pseudo examples of the target models trained
with only soft supervisions, with soft and hard supervisions, and supervisions plus fidelity
weighting, respectively. The results indicate that the target model well imitated the reference
model even with sparsely distributed pseudo examples. Also, Figure 2 g) and h) indicate
that the introduction of hard supervisions yielded a better classification performance for su-
pervised examples (see the orange cross at the center bottom) while preserving the decision
boundary as much as possible. A distribution of optimized pseudo examples partly describes
properties of our proposed method. Optimized pseudo examples were distributed over whole
the feature space so as to decrease the difference between the target and reference models.

5.2 Quantitative evaluations
Next, we quantitatively evaluated classification performances of the proposed method for
several benchmark datasets. We used MNIST [21] and fashion MNIST [36] as the datasets
for this experiment. We again employed a GP classifier as a reference model, where all the
setups related to the reference models were the same as Section 5.1. The target model was a
3-layer CNN for both of the datasets, where the detailed configuration can be seen in Figure

Citation
Citation
{Matthews, {van der Wilk}, Nickson, Fujii, {Boukouvalas}, {Le{ó}n-Villagr{á}}, Ghahramani, and Hensman} 2017

Citation
Citation
{Opper and Archambeau} 2009

Citation
Citation
{Zhu, Byrd, Lu, and Nocedal} 1997

Citation
Citation
{Dozat} 2016

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Lecun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{{Xiao}, {Rasul}, and {Vollgraf}} 2017

KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 9

Table 1: Classification performances for MNIST (top) and fashion MNIST (bottom) datasets,
where “imitation”, “optimize” and “fidelity” stand for the use of the imitation loss, pseudo
example optimization, and fidelity weighting, respectively

#labeled 10 20 50 100 200
NN 37.9 46.0 66.0 78.3 86.7
GP 39.9 51.6 64.6 73.2 80.0
Imitation 43.5 51.2 67.7 78.1 86.1
Imitation, optimize 44.1 53.7 70.0 79.5 86.7
Imitation, optimize, fidelity 44.1 53.9 70.4 80.0 86.6

#labeled 10 20 50 100 200
NN 39.3 47.9 58.3 64.9 71.3
GP 44.6 52.4 59.9 65.7 71.4
Imitation 43.6 50.9 60.0 67.3 72.5
Imitation, optimize 41.2 49.7 60.1 67.3 72.2
Imitation, optimize, fidelity 44.8 52.7 62.1 68.0 72.5

3. Each convolution layer group has a convolution layer with 3×3 kernels, 1 or 2 strides and
16× (floor(l/2)+1) channels for the l-th layer group, batch normalization, pReLU activa-
tion and dropout with rate= 0.5. 2 fully-connected layers with batch normalization, pReLU
activation and dropout after the first FC layer are placed afterward. We again used Nadam
for model parameter optimization and Adam for pseudo example optimization, and both of
the initial learning rates were set to 0.02. We prepared 1.25K initial pseudo examples by
interpolating two different supervised examples, and augmented them to 10K by employing
our technique shown in Section 4.1. Thus, whole the training process contained 8 training
steps and each training step had 25 training epochs. The weight λ1 for the supervised loss
was set to 1.0, and the mean weight λ 2 for the unsupervised loss was decreased from 100 to
1 as the number of supervised examples increased. We trained the target model with 1 to 20
supervised examples per class that were randomly selected from the 50K training examples
in each of the datasets. Then, we tested the trained target model with the 10K test examples,
and compared classification accuracy averaged over 20 different selections of supervised ex-
amples. All the other experimental conditions were the same as the second case in Section
5.1. We compared the performance of the following 5 training strategies, namely (1) the ref-
erence estimator, (2) a naive training of the target neural network, (3) our method with only
the imitation loss (no pseudo example optimization and fidelity weighting), (4) our method
with the imitation loss and pseudo example optimization (no fidelity weighting), and (5) our
method with the imitation loss, pseudo example optimization and fidelity weighting.

Table 1 shows the experimental result. The result indicates that our proposed method out-
performed a naive training of the target neural network model. The result also indicates that
a naive training of the target neural network outperformed the reference model when a large
number of supervised examples of MNIST dataset were used. Even with this undesirable
setting, our proposed method transferring knowledge of a rather weak reference model to
the large target model was superior or comparable to the naive training. In addition, our pro-
posed method outperformed the reference models. This is because our imitation loss enables
us to inherit the properties of two different models, namely a Gaussian process classifier and
a neural network, and a Gaussian process classifier as a reference model introduces local
smoothness of predictions into neural networks. Our proposed method reasonably worked

10 KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH

Figure 3: Network configulations we used in the experiments. (Top) 3-layer convolutional
neural network (CNN), (bottom) 7-layer CNN. K: kernel size, C: number of channels, S:
width of strides, R: dropout rate, U: number of units.

well even without pseudo example optimization, however, the introduction of pseudo ex-
ample optimization improved the classification performance, especially for MNIST dataset.
Although fidelity weighting also improved the performance in some cases, the contribution
was minor compared with pseudo example optimization that is our main contribution of this
paper.

6 Conclusion
In this paper, we have proposed a simple but effective method for training neural networks
with a limited number of training examples. Our proposed method employed GP as a refer-
ence, and built a target neural network so as to imitate the behavior of the reference trained
with the limited examples. We introduced pseudo examples and optimized them through
the process of target model training. Since our proposed framework shown in Section 3.2 is
generic, it can be directly applied to other combinations of reference and target models. For
example, it is possible to train a deep target network with a pre-trained shallow reference
network trained on a small amount of data, which is the inverse of knowledge distillation.
This setup may provide a new way of pre-training of deep neural networks. Meanwhile, our
method for optimizing pseudo examples is rather specific, and sophisticated management of
pseudo examples remains largely to be investigated.

References
[1] J. Ba and R. Caruana. Do deep nets really need to be deep? In Advances in Neural

Information Processing Systems (NIPS), pages 2654–2662. 2014.

[2] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. Learning feed-
forward one-shot learners. In Advances in Neural Information Processing Systems
(NIPS), pages 523–531. 2016.

KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 11

[3] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani. Adversarial examples, uncer-
tainty, and transfer testing robustness in Gaussian process hybrid deep networks. ArXiv
e-prints: 1707.02476, 2017.

[4] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proc. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 535–541, 2006.

[5] R. Caruana. Learning many related tasks at the same time with backpropagation.
In Proc. International Conference on Neural Information Processing Systems (NIPS),
pages 657–664, 1994.

[6] M. Dehghani, A. Mehrjou, S. Gouws, J. Kamps, and B. Schölkopf. Fidelity-weighted
learning. ArXiv e-prints: 1711.02799, November 2017.

[7] T. Dozat. Incorporating Nesterov momentum into Adam. In Proc. ICLR Workshop,
2016.

[8] T. Furlanello, Z. C. Lipton, L. Itti, and A. Anandkumar. Born again neural networks.
In NIPS Workshop on Meta Learning, 2017.

[9] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In Proc. International Conference on Machine Learning
(ICML), pages 1050–1059, 2016.

[10] R. Gontijo Lopes, S. Fenu, and T. Starner. Data-free knowledge distillation for deep
neural networks. ArXiv e-prints: 1710.07535, October 2017.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural In-
formation Processing Systems (NIPS), pages 2672–2680, 2014.

[12] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial exam-
ples. In International Conference on Learning Representations (ICLR), 2015.

[13] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proc.
Conference on Uncertainty in Artificial Intelligence (UAI), pages 282–290, 2013.

[14] J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process
classification. In Proc. International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 351–360, 2015.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015.

[16] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359 – 366, 1989.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

[18] D. P Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling. Semi-supervised
learning with deep generative models. In Advances in Neural Information Processing
Systems (NIPS), pages 3581–3589, 2014.

12 KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH

[19] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image
recognition. In ICML Deep Learning Workshop, 2015.

[20] M. Kulkarni, K. Patil, and S. S. Karande. Knowledge distillation using unlabeled mis-
matched images. ArXiv e-prints: 1703.07131, March 2017.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[22] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-
Villagrá, Z. Ghahramani, and J. Hensman. GPflow: A Gaussian process library using
TensorFlow. Journal of Machine Learning Research, 18(40):1–6, apr 2017.

[23] T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing by
virtual adversarial examples. In Proc. International Conference on Learning Represen-
tations (ICLR), 2016.

[24] M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neu-
ral Computation, pages 786–792, 2009.

[25] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in Machine Learning:
from Phenomena to Black-Box Attacks using Adversarial Samples. ArXiv e-prints:
1605.07277, May 2016.

[26] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to
adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 582–597, May 2016.

[27] J. Quinonero Candela and C. E. Rasmussen. A unifying view of sparse approximate
gaussian process regression. Journal of Machine Learning Research, 7(40):1935–1959,
January 2006.

[28] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets:
Hints for thin deep nets. In International Conference on Learning Representations
(ICLR), 2015.

[29] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X.
Chen. Improved techniques for training GANs. In Advances in Neural Information
Processing Systems (NIPS), pages 2234–2242, 2016.

[30] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems (NIPS), pages 1257–1264. 2006.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Proc. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[32] A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in
Neural Information Processing Systems (NIPS), pages 1195–1204, 2017.

KIMURA ET AL.: FEW-SHOT LEARNING OF NEURAL NETWORKS FROM SCRATCH 13

[33] M. Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 567–574, 2009.

[34] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching
networks for one shot learning. In Advances in Neural Information Processing Systems
(NIPS), pages 3630–3638, 2016.

[35] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song. Spatially transformed adversar-
ial examples. ArXiv e-prints: 1801.02612, January 2018.

[36] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for bench-
marking machine learning algorithms. ArXiv e-prints: 1708.07747, August 2017.

[37] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast optimiza-
tion, network minimization and transfer learning. In Proc. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[38] S. You, C. Xu, C. Xu, and D. Tao. Learning from multiple teacher networks. In Proc.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 1285–1294, 2017.

[39] Z. Zhang and M. Jordan. Bayesian multicategory support vector machines. In Proc.
Conference on Uncertainty in Artificial Intelligence (UAI), pages 552–559, 2006.

[40] Z. Zhao, D. Dua, and S. Singh. Generating natural adversarial examples. ArXiv e-
prints: 1710.11342, October 2017.

[41] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: Fortran subrou-
tines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23(4):
550–560, December 1997.

