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Abstract

Pipeline approaches that interpolate and refine an initial set of point correspondences
have recently shown a good performance in the field of optical flow estimation. However,
so far, these methods are typically restricted to two frames which makes exploiting tem-
poral information difficult. In this paper, we show how such pipeline approaches can be
extended to the temporal domain and how directional constraints can be incorporated to
further improve the estimation. To this end, we not only suggest to exploit temporal infor-
mation in the prefiltering step, we also propose a trajectorial refinement method that lifts
successful concepts of recent variational two-frame methods to the multi-frame domain.
Experiments demonstrate the usefulness of our pipeline approach. They do not only show
good results in general, they also demonstrate the clear benefits of using multiple frames
and of imposing directional constraints on the prefiltering step and the refinement.

1 Introduction
Driven by numerous applications such as video editing [31], object tracking [36], action
recognition [38] or driver assistance [28], there has been an enormous progress in the field of
optical flow estimation within the last years. One class of methods that has recently enjoyed
large popularity are pipeline approaches; see e.g. [21, 24, 30]. Combining the large displace-
ment capabilities of feature matching techniques with the regularization properties of varia-
tional methods such approaches achieve a remarkable accuracy in the meantime [21, 24].

Following the EpicFlow framework of Revaud et al. [30] such pipeline approaches pro-
ceed in four steps. In a first step, they calculate initial matches by a nearest neighbor search
of feature descriptors. While this allows to handle large displacements, the resulting matches
typically contain outliers due to occlusions and ambiguous data. These outliers are then re-
moved in a second step using some kind of consistency check. Since the remaining matches
after filtering are non-dense, the missing locations are then inpainted in a third step. Finally,
the resulting flow field is refined using a continuous variational method. This not only yields
sub-pixel accurate results but also introduces some form of spatial regularization.

As such pipeline approaches are very modular, there has been lots of progress regarding
all four steps since the introduction of EpicFlow [30]. Instead of relying on DeepMatch-
ing [39], recent approaches are based on Coarse-to-fine PatchMatch [20] or dense results
from discrete energy-based methods [27]. Moreover, the original foward-backward filtering
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has been complemented by additional concepts such as eliminating small regions [27] or
using combinatorial regularization [12]. Furthermore, also the edge-preserving inpainting
method has been replaced by a robust RANSAC-based variant relying on affine SLIC super-
pixels [1, 21]. And finally, methods are used for the refinement that can handle affine illumi-
nation changes and adapt the order of the regularization to the underlying type of motion [24].

However, despite of all this progress, existing pipeline approaches only use two input
frames so far. This is surprising, since at least some works from the literature have been able
to report improvements by using multiple frames [23, 33, 35, 37, 41]. Most promising are
explicit motion models in terms of hard [40, 41] or soft constraints [2, 14, 37]. Evidently,
such models could also be valuable for pipeline approaches, since they may help to identify
erroneous matches in the initial filtering or to improve the quality in the final refinement.
However, as observed in [37, 40] employing such models is not straightforward. In partic-
ular, results may deteriorate if the chosen model does not fit the actual motion. Hence, less
restrictive contraints may be worthwhile – especially in the context of real-world data.
Contributions. We address the aforementioned problem by proposing a three-frame pipeline
approach based on directional constraints. Thereby, we contribute in three ways: (i) We
suggest to filter the initial set of point correspondences based on checking directional con-
sistency. By preferring short time trajectories with small directional changes, we are able to
discard erroneous matches while not constraining the velocity. (ii) Moreover, we propose a
novel variational refinement method that lifts successful concepts of recent two-frame meth-
ods to the multi-frame domain. By combining a three-frame illumination compensated data
term with a joint anisotropic order-adaptive regularizer, we obtain an accurate refinement
method that is robust under illumination changes. (iii) Finally, inspired by our filtering step,
we extend our three-frame model by a directional consistency term. Compared to approaches
that employ an explicit motion model, this constraint is much less restrictive and hence more
useful in typical real-world scenarios. Experiments on all major benchmarks give evidence
that using multiple frames in pipeline approaches is indeed beneficial.
Related Work. Despite no multi-frame pipeline approach has been proposed in the literature
so far, there are various works on how to integrate temporal information into the estimation.
These approaches can be divided into four classes with decreasingly restrictive assumptions:
Hard Motion Constraints. Those constraints parametrize the estimation in such a way that
an underlying motion model is enforced by construction. While Werlberger et al. [40], Janai
et al. [22] and Kennedy et al. [23] use a constant motion model, Garg et al. [13] learn their
model from training data. Moreover, Wulff et al. [41] consider a rigid motion model that
relies on semantic scene information. Although hard constraints can be beneficial if they fit
the actual motion, they typically generalize poorly if not integrated adaptively.
Soft Motion Constraints. Instead of strictly enforcing a motion model, one may only penalize
deviations from it. Such soft constraints comprise coupling the estimation to a given model as
done by Garg et al. [14] or modeling trajetorial smoothness as proposed by Salgado et al. [32]
and Volz et al. [37]. Evidently, soft constraints are less restrictive than their hard analogues.
Yet, complex model selection strategies may be required to avoid a loss of quality [37].
Directional Constraints. Instead of relying on an explicit motion model that imposes con-
straints on both the velocity and the direction, directional constraints do not restrict the actual
velocity. For instance, Chaudhury et al. in [9] propose a method that makes use of curvature-
based trajectorial regularization. While their approach is similar to ours in the sense that
it prefers straight trajectories, the regularizer is rather complex. Moreover, the remaining
model is directly based on Horn and Schunck [19] and hence not competitive at all.
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Figure 1: Left: Forward and backward correspondences w.r.t. a reference frame f t . The
locations pt−1, pt and pt+1 denote the projections of a single 3D point at time step t− 1, t
and t+1. Right: The 3D point P is visible during the time step t−1 and t, but moves outside
the scene within time step t +1. The cross (orange vector) depicts a possible false match.

Structural Constraints. Finally, structural constraints only restrict the shape of objects over
time. For instance, Volz et al. [37] propose a joint spatial regularization that couples the dis-
continuities of all flow fields along the trajectory. A similar contraint is also imposed by Sun
et al. [35] in the context of layered motion. While structural constraints are beneficial in most
scenarios, they typically give the smallest benefits, since they carry the least information.

2 Trajectorial Outlier Filtering
Our approach follows the EpicFlow pipeline [30] as described in the introduction. It consists
of four subsequent steps: matching, filtering, inpainting and refinement. Since matching
approaches applied in the first step of the pipeline often do not contain explicit regulariza-
tion, computing matches can be quite error prone, especially in low textured or occluded
regions. Therefore, it is important to remove erroneous matches by performing some kind
of outlier filtering. A common strategy in this context is the bidirectional consistency check.
It computes matches between both frames in forward and backward direction and verifies
that both directions are consistent. In our work, we seek to leverage additional temporal in-
formation to improve the estimation. Hence, we introduce an additional trajectorial1 outlier
filtering step. This step is based on the observation, that fast moving objects typically do
not exhibit an abrupt change in direction. While this assumption holds for a broad variety of
scenarios, a few rare cases may lead to violations (e.g. circular moving objects).

Directional Consistency. To check if the directional consistency is fulfilled, we additionally
need the backward correspondences w.r.t. the previous frame, see Fig. 1 (left, green arrow).
The corresponding backward and forward correspondences then form a short term trajectory.
We neglect those trajectories for which the angle between both motion vectors exceeds a
certain threshold. A scenario, where this turns out to be very beneficial is the case where
objects move outside the scene; see Fig. 1 (right). In this case, it is impossible to find the
correct forward pointing outwards the image (green vector) and hence one will typically
obtain some false match pointing inwards the image (e.g. the orange vector).

Magnitude Check. It is important to note that it only makes sense to evaluate the directional
consistency criterion in case of fast moving objects, i.e. large motion vectors. In our case, we
define large motion vectors as vectors with a magnitude greater than three pixels. Choosing
the threshold not too small is important because many feature matching approaches only
operate with pixel precision and are hence likely introduce large directional errors in case of
slowly moving objects (while the actual Euclidean error is still small).

1Please note that in case of optical flow the term trajectory refers to trajectories of points on the image plane.
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Figure 2: KITTI 2012 sequence [15] showing the benefit of the trajectorial outlier filtering.
From left to right: Ground truth, inpainted matches without and with filtering.

3 Multi-Frame Variational Refinement
After discussing the trajectorial outlier filtering, we now turn towards the refinement of the
inpainted matches. Here, likewise, we aim at exploiting temporal information. Moreover, we
lift successful concepts of recent two-frame approaches to the multi-frame domain.

Let us consider three consecutive frames f t−1, f t and f t+1 of an image sequence f k(x) :
Ω→R2 where k ∈ [0, ...,T ] is the time and x = (x,y)> denotes the location within an rectan-
gular image domain Ω⊂ R2. Moreover, let w = (wt ,wt−1)> describe the two optical fields
wt = (ut ,vt)> : Ω→ R2 and wt−1 =

(
ut−1,vt−1

)> : Ω→ R2 between frames f t and f t+1

(forward) and frames f t and f t−1 (backward), respectively. Furthermore, let c = (ct ,ct−1)>

denote two sets of coefficient fields ct =(ct
1, . . . ,c

t
n)
> : Ω→Rn and ct−1 =

(
ct−1

1 , . . . ,ct−1
n
) >

: Ω→Rn that describe the local illumination changes related to the corresponding flows. Fi-
nally, let o : Ω→ [0,1] be a spatially varying weighting function that locally selects between
first- and second-order regularization. Then our novel variational refinement model reads

EMF(w,c,o) =
∫

Ω

D(w,c)+β ·Rillum(c)+α ·Roar(w,o)+ γ ·Soar (o)+λ ·Rtraj(w) dx . (1)

It is composed of an illumination compensated three-frame data term D, a spatial illumina-
tion regularizer Rillum, an order-adaptive spatial flow regularizer Roar, a selection term Soar,
and a directional flow regularizer Rtraj.

Data Term. Rather than relying purely on invariant image features w.r.t. illumination, we
pursue the idea of change estimation. This allows our approach to keep up with more pow-
erful descriptors that are typically used during the preceding matching step. Hence, we
extend the concept of explicitly modeling illumination changes on a per-pixel level via lo-
cally parametrized brightness transfer functions Φ( f t ,ct) from [11] to a three-frame setting.
To this end, we resort to a general trajectorial parametrization, i.e. we parametrize both flow
fields wt , wt−1 as well as the coefficient fields ct , ct−1 w.r.t. the reference frame f t . As a re-
sult, all unknowns share the same coordinate system. This not only simplifies the modeling
of the trajectorial regularization but also leads to a temporal alignment of flow discontinu-
ities [37]. Combining illumination compensation with brightness and gradient constancy
assumption [4] balanced by a global weight µ , we obtain the following three-frame data
term:

D(w,c) = Ψc

((
f t+1(x+wt)−Φ( f t ,ct)

)2
)
+µ ·Ψc

(∣∣∇( f t+1(x+wt)−∇Φ( f t ,ct)
)∣∣2)

+Ψc

((
f t−1(x−wt−1)−Φ( f t ,ct−1)

)2
)
+µ ·Ψc

(∣∣∇( f t−1(x−wt−1)−∇Φ( f t ,ct−1)
)∣∣2) .

Here, each constraint is robustified separately [5] using the Charbonnier function Ψc(s2) =
2ε2
√

1+ s2/ε2 [8] with ε = 0.01. Regarding the illumination compensation applied to the
reference frame f t via the the brightness transfer function Φ, we intenionally use a different
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set of coefficients, i.e. ct and ct−1, for the forward and the backward flow. This allows
good results even in case the illumination varies differently between all three frames. Also,
in contrast to [11] where the employed basis functions φ̄ and φi of the brightness transfer
function are learned, however, we resort to a more general solution. More precisely, we use
the normalized affine function

Φ( f ,c) = φ̄( f )+
2

∑
k=1

ck ·φk( f ) with φ̄( f ) = f , φ1( f ) =
f

n1
, φ2( f ) =

1
n2

, (2)

where n1 and n2 are normalization factors such that ‖φk( f t)‖2 = 1. Being able to repre-
sent multiplicative and additive illumination changes, this choice of the brightness transfer
function typically constitutes a good trade-off between complexity and quality [26].

Spatial Illumination Regularizer. Due to the explicit modeling of illumination changes on
a per-pixel level, regularization must be applied to the coefficient fields ct and ct−1. To this
end, we consider an anisotropic first-order regularizer that adapts to the underlying image
structure by incorporating local directional information [11]:

Rillum(c) =
1

∑
i=0

2

∑
m=1

Ψm

(
2

∑
k=1

(
r>m∇ct−i

k

)2
)

. (3)

Here, the directions r1, r2 are obtained as eigenvectors of the regularization tensor – a gen-
eralization of the structure tensor based on the constancy assumptions of the data term [43].
Moreover, to allow edge-enhancement in the dominant direction and edge-preservation in
the orthogonal direction, we follow [11] and choose Ψ1(s2) = ε2 log

(
1+ s2/ε2

)
to be the

Perona-Malik penalizer [29] and Ψ2(s2) = 2ε2
√

1+ s2/ε2 to be the Charbonnier penal-
izer [8], each with ε = 0.01. Please note that we penalize both sets ct−1 and ct separately,
since illumination changes between the three frames are not necessarily correlated.

Spatial Flow Regularizer. In case of the spatial flow regularizer we build upon an order
selection strategy that has been recently proposed for two-frame optical flow methods [25].
Instead of relying on a smoothness term with fixed regularization order, it locally switches
between a first-order smoothness term that allows to model piecewise constant flow fields
(e.g. fronto-parallel-motion) and a second-order smoothness term that models piecewise
affine flow fields (e.g. the ego-motion of the camera). In practice, this is realized by jointly
estimating the optical flow and a continous spatially varying selection function o(x) ∈ [0,1]
that locally determines the order of the regularization. The corresponding regularizer reads

Roar (w,o) = inf
a,b

{
ō ·S1 (w)+(1− ō) · (S2 (w,a,b)+T )+δ ·S3 (a,b)

}
, (4)

which is a combination of a first-order regularizer S1 and an indirect second-order regularizer,
that is composed of a coupling term S2 and a smoothness term S3 weighted by a parameter δ .
The parameter T = 10−5 denotes an activation cost for second-order smoothness that avoids
overfitting to small fluctuations. Moreover, the selection process is rendered more robust by
averaging the order weighting function o within a small rectangular neighborhoodN (x) via

ō(x) =
1

|N (x)|

∫
N (x)

o(y)dy , (5)
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where |N (x)| is the size of the neighborhood. While the basic order selection strategy can
be readily applied in the three-frame case, we have to replace the corresponding spatial
regularizers in [24] by suitable three-frame counterparts.

As first-order regularizer we use the same anisotropic model as for the illumination co-
efficients. However, in contrast to Eq. (3) where we apply a separate penalization of the
coefficient fields, we now employ a joint penalization of all flows. This can be seen as a
structural constraint, since the parametrization w.r.t. the reference frame leads to an align-
ment of flow discontinuities along trajectories [43]. The corresponding regularizer reads

S1(w) =
2

∑
m=1

Ψm

(
1

∑
i=0

(
r>m∇ut−i

)2
+
(

r>m∇vt−i
)2
)

, (6)

where Ψ1(s2) and Ψ2(s2) are again chosen as the Perona-Malik and the Charbonnier penal-
izer, respectively, with ε = 0.01. Also the directions r1 and r2 are the same as before.

As second-order regularizer we employ a three-frame variant of the anisotropic coupling
model from [17]. Again, we use a joint penalization for the flow fields which imposes
a structural constraint. The resulting coupling term that couples the flow gradients to the
auxiliary functions a = (at ,at−1)> and b = (bt ,bt−1)> reads

S2(w,a,b) =
2

∑
m=1

Ψm

( 1

∑
i=0

(
r>m
(
∇ut−i−at−i))2

+
(

r>m
(
∇vt−i−bt−i))2)

, (7)

while the corresponding smoothness term on the auxiliary variables is given by

S3(a,b) =
2

∑
m=1

Ψm
( 2

∑
l=1

1

∑
i=0

(
r>l J at−i rm

)2
+
(

r>l J bt−i rm

)2 )
. (8)

The latter one enforces smoothness on the auxiliary functions via penalizing their Jacobians
J a∗ and J b∗. In this context, a weight δ determines the amount of smoothness; cf. Eq. (4).
Again, the directions r1, r2 and the penalizer functions Ψ1, Ψ2 are defined as before.

Selection Term. The selection term Soar, associated with our novel three-frame order-
adaptive regularizer reads

Soar (o) = (1−o) · ln(1−o)+o · ln(o) . (9)

As shown in [25] such a choice leads to an order-adaptive selection behavior based on the
energy difference of S1 and S2 within the neighborhood region N . Please note that we use
the same selection function o for all flow fields. This implies the temporal assumptions that
the order of the spatial regularization does not change along the trajectory.

Directional Regularizer. Beyond the structural constraints that our model already imposes,
there is the possibility to also impose soft motion constraints like e.g. the ones in [37] that ap-
proximate first- and second-order derivatives in trajectorial direction. Apart from the fact that
the underlying motion models are typically not very realistic in practice, they also unneces-
sarily constrain the velocity of moving objects. Hence, in our approach, we will refrain from
using such soft motion constraints and we resort to less restrictive directional constraints. To
this end, we propose a novel regularizer that is in accordance with our assumptions from the
filtering step. As before, we assume that fast moving objects do not exhibit abrupt changes
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Figure 3: Left: Illustration showing the projection of a 3D point moving along a straight line
with constant velocity. The projection also lies on a straight line, but the projected spacing
varies. Right: Illustration showing the forward and backward flow as well as the vector s
that is orthogonal to the direction prior p.

in direction, i.e. they approximately move on a straight line in 3D space; see Fig. 3. Since
this does not impose any assumptions on the actual velocity, the corresponding constraint is
much more likely to be fulfilled in real-world scenarios than traditional soft constraints.

In general, given a spatially varying prior direction p and its associated orthogonal di-
rection s = p⊥ as shown in Fig. 3 (right), the corresponding directional regularizer reads

Rtraj(w) = Ψc

((
cos(ϕ t−1)

)2
+
(
cos(ϕ t)

)2
)
= Ψc

((
s>

wt−1

|wt−1|

)2

+

(
s>

wt

|wt |

)2
)

, (10)

where the robust Charbonnier penalizer Ψc with ε = 0.01 renders the constraint more robust
against violations of the underlying assumption. In our particular case, we choose the prior
direction p by averaging the direction of the forward and backward flow, i.e. wt and wt−1.

4 Minimization
After introducing our novel variational refinement model let us provide a brief summary
of the corresponding minimization strategy. Like similar refinement approaches [24, 30]
we resort to the well-known warping strategy [4]. This strategy is based on solving a
discretized version of the associated Euler-Lagrange equations by means of two nested
fixed point iterations. Traditionally, the outer fixed point iteration that introduces and in-
cremental computation of the unknowns is embedded into a coarse-to-fine scheme with
downsampling factor η , in order to avoid local minima during an estimation from scratch
[4, 11, 25, 39]. Due to the good initialization with the inpainted initial matches, how-
ever, in case of pipeline approaches, such a hierarchical scheme can either be omitted [30]
or used with a reduced pyramid size [24]. We opt for the second strategy, since using
a reduced coarse-to-fine scheme allows to benefit from good initial matches while still
offering some sort of error correction capability. We further apply constraint normalization
to each data constraint [43]. The inner fixed point iteration, in contrast, allows to compute
the resulting non-linear system of equations at each coarse-to-fine level as a series of linear
systems. To this end, we keep the non-linear expressions related to the outer derivatives of
the sub-quadratic penalizer functions of the terms D, Rillum, Roar, Rtraj as well as the prior
direction p of Rtraj fixed and solve the resulting linear system for the increments of the for-
ward and backward flow w, the illumination coefficients c and the auxiliary variables a,b by
means of a cascadic multicolor variant of the successive over-relaxation (SOR) method. In
case of the weighting function o the update can be computed explicitly as shown in [25].
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Figure 4: Impact of trajectorial filtering. Plot showing the bad pixel (BP) error of the in-
painted flow field (without variational refinement) using different angle thresholds for the
trajectorial outlier filtering on the KITTI training datasets [15, 28].

5 Evaluation
For all our experiments we computed two sets of matches, using Coarse-to-fine PatchMatch
(CPM) [20] and DiscreteFlow (DF) [27], respectively, and performed the respective inpaint-
ing by means of edge-preserving interpolation [30]. To this end, we used the available code
with the default parameters provided by the respective authors. In case of our refinement
model we set µ = 5, γ = 10−5, η = 0.9 fixed and learned the remaining weighting parame-
ters α , β , δ and λ (Tab. 1) from the training data by minimizing the bad pixel error (BP). The
learning is performed using the framework of [34] based on the the downhill simplex method.
To evaluate the performance of our method, we used the KITTI 2012 [15] benchmark and
the KITTI 2015 [28] benchmark. The runtime of the entire method is 52s (CPM) and 104s
(DF) for an image sequence of size 1242×375 (KITTI 2015) using two cores on an Intel R©

CoreTM i7-7820X CPU running at 3.60GHz. Hereof the variational refinement takes 44s.

Table 1: Learned parameter settings.
CPM Matches [20] DF Matches [27]

KITTI 2012 α = 12.44 β = 0.07 δ = 10.44 λ = 0.18 α = 13.44 β = 0.06 δ = 10.70 λ = 0.20
KITTI 2015 α = 15.56 β = 0.04 δ = 4.75 λ = 2.25 α = 15.85 β = 0.08 δ = 6.32 λ = 2.83

Trajectorial Outlier Filtering. In our first experiment we investigate the impact of our novel
trajectorial outlier filtering. Therefore, we evaluated error measures on the inpainted CPM
matches and compared the outcome with and without trajectorial filtering. As one can see in
Fig. 4, the BP error significantly decreases for both KITTI benchmarks. This holds as long
as the threshold on the angle is not chosen too small. This, however, is not surprising, since
small thresholds discard too many matches by allowing only completely straight trajectories.

Multi-frame Variational Refinement. In our second experiment we analyze the benefit of
our novel three-frame refinement model. To this end, we evaluated different configurations
of our model on the training datasets of both KITTI benchmarks. To investigate the impact
of the different multi-frame concepts, we thereby considered (i) a two-frame setting using
EpicFlow refinement [30], (ii) a two-frame setting using OIR refinement [24], (iii) a three-
frame setting with trajectorial filtering, (iv) a three-frame setting with trajectorial filtering
and three-frame refinement, and (v) our full model; see Tab. 2. Please note that the two-
frame setting with OIR refinement can be seen as a two-frame variant of our approach. By
comparing the results of the two-frame methods one already notices the benefit of a more
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Table 2: Results for the KITTI 2012 [15] and KITTI 2015 [28] training sequences in terms
of the average enpoint error (AEE) and bad pixel (BP) error with a threshold of 3px.

Method CPM Matches [20] DF Matches [27] runtime∗

KITTI 2012 KITTI 2015 KITTI 2012 KITTI 2015 KITTI 2015
# ^ R  AEE BP AEE BP AEE BP AEE BP seconds

EpicFlow refinement [30] 2 – – – 3.00 14.58 7.78 22.86 2.97 14.89 6.68 23.14 ~0.4
OIR refinement [24] 2 – – – 2.78 9.68 7.36 19.21 2.34 9.29 5.89 18.10 ~30

our method 3 X – – 2.24 9.20 6.36 18.30 2.09 9.07 5.76 17.42 ~30
our method 3 X X – 2.19 9.02 6.33 18.25 2.07 9.02 5.72 17.37 ~41
our method 3 X X X 2.19 8.98 6.31 18.14 2.07 8.99 5.72 17.23 ~44
#: number of frames, ^: trajectorial filtering, R: three-frame refinement,  : directional regularizer
∗: runtime of the variational refinement step measured on KITTI 2015 (excludes preceding steps)

Table 3: Results of the KITTI [15, 28] test sets. Top 10 non-anonymous methods and meth-
ods related to our approach, excluding stereo and scene flow approaches.

KITTI 2012 Out-Noc Out-All Avg-Noc Avg-All

SDF1 3.80 % 7.69 % 1.0 px 2.3 px
PWC-Net 4.22 % 8.27 % 0.9 px 1.7 px
UnFlow 4.28 % 8.42 % 0.9 px 1.7 px
MirrorFlow 4.38 % 8.20 % 1.2 px 2.6 px
ImpPB+SPCI 4.65 % 13.47 % 1.1 px 2.9 px
our method (CPM) 4.69 % 9.63 % 1.0 px 2.4 px
CNNF+PMBP 4.70 % 14.87% 1.1 px 3.3 px
FlowFieldCNN 4.89 % 13.01 % 1.2 px 3.0 px
IntrpNt-df 4.94 % 14.13 % 1.0 px 2.4 px
RicFlow 4.96 % 13.04 % 1.3 px 3.2 px

our method (DF) 4.97 % 10.02 % 1.1 px 2.6 px
DF+OIR 5.17 % 10.43 % 1.1 px 2.9 px
CPM-Flow 5.79 % 13.70 % 1.3 px 3.2 px
DiscreteFlow 6.23 % 16.63 % 1.3 px 3.6 px
EpicFlow 7.88 % 17.08 % 1.5 px 3.8 px

KITTI 2015 Fl-bg Fl-fg Fl-all

PWC-Net 9.66 % 9.31 % 9.60 %
MirrorFlow 8.93 % 17.07 % 10.29 %
SDF1 8.61 % 23.01 % 11.01 %
UnFlow 10.15 % 15.93 % 11.11 %
CNNF+PMBP 10.08 % 18.56 % 11.49 %
MR-Flow1 10.13 % 22.51 % 12.19 %
DCFlow 13.10 % 23.70 % 14.86 %
SOF1 14.63 % 22.83 % 15.99 %
our method (DF) 14.93 % 23.37 % 16.33 %
DF+OIR 15.11 % 23.45 % 16.50 %

our method (CPM) 15.57 % 23.84 % 16.95 %
RicFlow 18.73 % 19.09 % 18.79 %
DiscreteFlow 21.53 % 21.76 % 21.57 %
CPM-Flow 22.32 % 22.81 % 22.40 %
EpicFlow 25.81 % 28.69 % 26.29 %

1 exploits semantic information

sophisticated refinement approach. However, in terms of quality both methods are already
clearly outperformed by our three-frame method that relies on trajectorial filtering. Going
a step further to our approach with additional three-frame refinement, one can observe that
even without trajectorial regularization further improvements can be achieved due to the
structural constraint given by the joint penalization of the flow discontinuities. Finally, it be-
comes evident that the best results are obtained with our complete model that – apart from the
structural constraint – also imposes a directional constraint. An exemplary result of our full
model for the KITTI 2015 benchmark is given in Fig. 5. Please note that, in contrast to our
approach, applying a soft or hard motion constraint based on a widely used constant motion
model did not yield any improvements, since it is actually not valid for most of the scenes.

While the quality improves using our three-frame method, the computational complexity
becomes larger – in particular the one of the refinement step. Here, the runtime increases
from 30 seconds up to 44 seconds as shown in Tab. 2. Please note, that the large runtime of
the refinement step compared to the EpicFlow refinement is due to the illumination-aware
data term that allows to deal with affine illumination changes, the order-adaptive regularizer
that can deal with fronto-parallel and affine motion as well as the (reduced) coarse-to-fine
scheme that allows for an error correction. In contrast, the EpicFlow refinement uses a much
simpler model, works only on a single resolution level and only performs a few iterations,
since the underlying first-order regularizer is not able to handle affine motion.
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Figure 5: Exemplary result for a sequence of the KITTI 2015 [28] benchmark. First row:
Input frames f t−1, f t and f t+1. Second row: Ground truth forward flow, bad pixel visual-
ization and computed order selection map o (first-order: turquoise, second-order: brown).
Third row: Computed forward flow wt , coefficients ct

1 and ct
2 (shifted and rescaled, zero

maps to white). Fourth row: Computed backward flow wt−1, coefficients ct−1
1 and ct−1

2 .

Comparison to the Literature. In our final experiment we compare our method to the lit-
erature. To this end, we used the evaluation data sets of both KITTI benchmarks. The corre-
sponding results can be found in Tab. 3. Apart from the top 10 non-anonymous approaches –
excluding methods that make use of additional stereo constraints – we listed results of recent
two-frame pipeline approaches such as EpicFlow [30], CPM-Flow [20], RicFlow [21], and
DF+OIR [24]. Evidently, with Rank 6/11 and Rank 9/11 on the KITTI 2012 and the KITTI
2015 benchmark, respectively, our three-frame pipeline approach achieves highly competi-
tive results. In particular, it outperforms all other related two-frame pipeline approaches.

6 Conclusion and Outlook
In this paper, we addressed the problem of extending pipeline approaches for computing the
optical flow to the multi-frame domain. Thereby we focused on two of the four stages: the
prefiltering of the initial matches and the variational refinement of the final flow. For both
tasks, we proposed directional constraints that are less restrictive than explicit motion mod-
els and hence turned out to be quite useful in practice. While applying such constraints for
prefiltering enabled us to remove erroneous matches right at the beginning of the pipeline,
embedding them into a specifically tailored three-frame refinement method allowed us to
improve the accuracy at the very end. Experiments demonstrated the validity of our ap-
proach. They not only showed competitive results of our three-frame approach on the KITTI
benchmarks, they also demonstrated an increase in accuracy by using directional constraints.

While our method may serve as a starting point to develop further multiframe pipeline
approaches, it also shows that less strict constraint may be also an option for other tasks in
computer vision. In the future, we plan to extend our approach to more frames and higher
order directional constraints. This would allow us to model curved motion trajectories – still
without constraining the velocity. Furthermore, we plan to improve the runtime by using
more advanced optimization schemes [3, 6, 7, 10, 18] and parallel hardware [16, 42].

Acknowledgments. We thank the German Research Foundation (DFG) for financial support
within project B04 of SFB/Transregio 161.
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