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Abstract

Light field camera have been developed to capture spatial and angular information
of rays. But limited by the structure of micro-lens, it acts as a short-baseline multi-view
camera. Foreground objects have accurate depth map in light field while depth informa-
tion is missing in the background. To avoid such a drawback in the existing light field
depth estimation system, we propose a binocular light field camera and introduce long-
baseline stereo matching in it. The system can estimate wide range depth of scene by
merging complementary depth map of far scene into depth map from light field camera.
We firstly estimate an relative depth map from light field and stereo matching respec-
tively, and present calibration methods that normalize both depth maps to the real depth
space. Then we model depth fusion problem as Markov random field which can be solved
by graph cuts efficiently. Experiments show that our system have a wider depth sensing
ability than either single light field camera or traditional binocular camera.

1 Introduction
Depth map estimation from images is a long standing problem in computer vison, which
has usage in many applications. By providing angular and spatial information of light rays,
light field images offer an easy way for depth map estimation. Currently some algorithms
[15] [13] [14] have been proposed to estimate depth map from a single light field image by
leveraging the special structure of light field data. However because the effective baselines
of light field cameras are much small, these methods can only reconstruct high quality depth
map for near scene. If the scene is far from the light field cameras, the recovered depth map
has low accuracy.

In this paper, we estimate the depth map from a binocular light field camera system.
As depth map estimation from light field image performs well for near scene and stereo
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Figure 1: Pipeline of depth map fusion process.

matching performs well for far scene, our method fuses the depth maps from these two
methods. Thus our method inherits the advantages of both methods and can improve the
accuracy of the depth map. Specifically, our binocular camera system captures two light
field images that have large baseline. Then we estimate depth maps using the above two
methods. After calibrating the camera system, we transform the estimated depth maps into
those with real depth values. Finally we fuse the transformed depth maps using Markov
Random Field mehtod, which choses final result from different depth maps based on which
value is more confident. Experimental Result shows that the final depth map has high quality
for both near scene and far scene. The proposed method is more robust than either stereo
matching or depth estimation from single light field image.

2 Related Work

2.1 Light Field Camera Depth

The micro-lens structure of light field camera is first proposed by Ng Ren[10]. It can record
both spatial and angular information of light in a single shot. Disparity in light field can be
viewed as a special pattern in the epipolar plane images. Methods, like [18][15], calculate
depth based on epipolar plane images using line fitting or structure tensor. The advanced light
field depth methods will use either corresponding points or focal shifting, the characteristic
of light field[13][14]. For example, Wang’s algorithm[14] mainly deals with the occlusion
problem in light field and models it in angular space. In its implementation, it explicitly
detects edge in the center view of angular space and use a color consistency constraint to
filter the incorrect depth of occlusion. The algorithm also includes a regularization step,
which uses initial depth[13] as data term, correspondence cue and refocus cue as smooth
terms. Other works [16, 19] compute the angular super-resolution of light field images,
which can improve the quality of the output of light field depth estimation methods.

2.2 Stereo Matching

Various binocular systems have been proposed to for depth map refinement or image en-
hancement. General stereo matching is a pair of pin-hole cameras. It has a complete and
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effective taxonomy, including cost computation, cost aggregation, optimization and refine-
ment, proposed by Scharstein and Szeliski[11]. Semi-global matching[5] is one of effective
traditional method, which use mutual information to approximate global pixel matching.
Ensemble method, like [9], uses absolute differences and census[4] patch feature to mea-
sure cost jointly. The method also introduces a cross-based aggregation method[17] and
semi-global matching[5] is then used to optimize and propagate cost from high confidence
areas to noisy areas. Finally, some refinement tricks are introduced to enhance the quality of
disparity.

Currently there are many stereo matching methods using deep learning network to im-
prove the effect[7][12][6]. At first, [7] use convolutional neural network to generate pixel-
wise cost for traditional cost function substitution. Akihito and Marc propose a network for
predicting penalties in SGM framework to achieve better result[12]. Luo etc. use a siamese
architecture to model the stereo problem and merge features from left and right image by
inner product[8]. Kendall etc.[6] further develop [8] by concatenate features directly and
apply a regularization network at output.

2.3 Fusion Binocular Systems
There are also some special binocular systems consisting of heterogeneous cameras. Zhu[20]
and Gandhi[3] built depth fusion systems by combining a time-of-flight range sensor and two
pin-hole camera. Cameras in these systems estimate the same range of depth, so it aims at
improving quality of depth map. After they capture images and depth information of scene,
they merge two depth maps by seed-growing algorithm or graph optimization, respectively.
Alam[1] present a hybrid system including a light field camera and a regular camera. The
device can capture a light field image and a high-resolution image simultaneously. Then he
calculates the warping relation between regular image and all sub-aperture images. The light
field is up-sampled using these warping cues, which results in a high-resolution rays set and
accurate depth map in post light field process. Although it explores the warping information,
it is still a short-baseline camera and the sensing ability of depth range is not increased.
In summary, these binocular systems are designed for specific purposes, but none of them
consider the wide depth range application.

3 Wide Range Depth Estimation
We propose a binocular light field system for wide range depth estimation. In this section, we
introduce how to obtain a depth map by this system. Firstly we calculate a relative depth map
from light field and stereo matching respectively. Because the output of these two algorithms
may have different scales, we then propose a calibration method for obtaining camera pa-
rameters, and map both relative depth maps to real depth based on those parameters. Finally,
we fuse the two processed depth map together.

3.1 Light Field Camera Scene Depth
We extract relative depth by light field depth algorithm[14]1. To achieve an accurate map-
ping, we develop a procedure to calibrate the light field camera including a curve fitting step,
which actually convert the result of depth algorithm to real scene depth.

1Please note that although we use this specific light field estimation method, other methods can also be used.
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Figure 2: Set a new virtual image plane s in the proper position and render a refocused image
with rays from light field. Changing focal equals to change value α , the ratio of virtual image
plane s to real image plane S .

3.1.1 Real Depth from Light field Depth

We assume that every single view in a light field image is captured by a pin-hole camera
model which simply contains one convex lens. The imaging formula of this optic model is

1
u
+

1
v
=

1
f
, (1)

where u is object distance, v is image distance and f is focal of the convex lens.
In Ng’s paper[10], he proposed a ray selecting method to achieve digital refocusing. He

set a variable α to control the distance of virtual image plane.

v = αV. (2)

When rays from the same scene point add up together, the virtual image plane will have
sharp point rather than a blur blob. So α is actually a value indicating real depth in the scene.
From (1) and (2), we can get the formula of depth mapping.

u =
αV f

αV − f
. (3)

The result α in above calculation is a relative depth. To avoid the scale problem in fusion,
we develop a calibration method to map α to real depth. From the formula (3), the calculation
need at least the parameter V and f . However, for most cameras, manufacturer will not make
many key parameters of camera known to the public. And some key parameters may change
by users and affect the depth mapping. So we calibrate light field cameras by fitting the
camera model to ground truth and estimate the parameter in different camera setting.

3.1.2 Calibration and Depth dl f Calculation

To generate the ground truth, we place a chess board in front of a fixed light field camera.
Then we move it away from camera gradually and take a picture of chess board for every
10 cm. The distance between camera and the board is also recorded. We use algorithm[14]
to calculate depth of the board. Depth value within the chess board area will be cut out for
estimation. We then aggregate pixels in these areas and calculate an average as the estimation
at that certain distance. We plot these points in Fig.5 in our experiment. It is easy to find
that the result is not linear to the real depth. Inspired by the formula (3), we choose a similar
form to fitting the depth mapping function

dl f (α) =
α

aα +b
, (4)
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Figure 3: Conversion from disparity to depth.

where dl f is the final real depth, and α is the relative depth we estimated. Since light field
depth affects final real depth fusion directly, we use a robust and accurate light field depth
algorithm[14] in our method. And it finally outputs a continues value α of light field shear-
ing, see Fig.2. We apply the algorithm to both light field images directly and get a depth
observation α .

We use non-linear least square method to estimate the parameter in the mapping function.
The range of mapping function is only available within the distance we recorded. Depth
beyond the definition domain is incorrect because we have no data to calibrate it. One reason
is that the calibrated distant is limited, and the other reason is that the baseline of light field
camera is short and scene view far away have no disparity in light field. These two reasons
constrain the ability of light field depth estimation.

3.2 Stereo Matching Scene Depth
Depth from stereo matching can estimate scene information far from camera. We calculate
depth map from stereo matching. Then we derive a formula to convert relative depth to real
depth. We again propose a calibration method to obtain missing parameter of the camera in
the formula.

3.2.1 Real Depth from Stereo Matching

Light field camera outputs a set of multi-view images and we use center view in stereo
matching. We adopt method in [9] to calculate relative depth. In stereo matching, the result
is disparity between views in left camera and right camera. Disparity is not linear to the real
depth. So we derive a depth formula for this conversion.

In a binocular system, two cameras are displaced horizontally and set to face the same
direction, see Fig.3. Gap between cameras is set to L, which is the key parameter affecting
the ability of depth sensing. We assume two cameras have the same horizontal field of view
and the resolution in horizontal direction. The disparity of scene point P is the distance
between image point p and p′ in the same image space, d = xr− xl . Then we can derive the
real depth formula from triangle similarity as

L
dsm

=
L−d

dsm− f
, (5)

Citation
Citation
{Wang, Efros, and Ramamoorthi} 2016

Citation
Citation
{Mei, Sun, Zhou, Jiao, Wang, and Zhang} 2012



6DAI et al.: WIDE RANGE DEPTH ESTIMATION FROM BINOCULAR LIGHT FIELD CAMERA

O

O′

β

l2
l1

Figure 4: Estimating β to calculate focal.

where dsm is the real depth of the scene point P.

3.2.2 Depth dsm Calculation

Further, the equivalent focal f is sill unknown because of special structure of light field
camera. We develop a method to estimate the focal by measuring the horizontal field of view
β . We mount the light field camera on a camera slider and fix a ruler in front of the camera.
Camera will shot at various positions and the field of view will be recorded by the length l1
and l2 of ruler appeared in the images, see Fig.4. We can calculate the horizontal field of
view β as

β = 2tan−1(
l1− l2
2lOO′

). (6)

We calculate horizontal field of view β in such indirect way because we do not know exact
position of optic center in this camera. The relative distance help us figure out the horizontal
field of view β without knowing optic center.

And next, we can get the focal f in (5) using β ,

f =
r

tan β

2

. (7)

Based on (5) and (7), we get

dsm(d) =
rL

d tan β

2

, (8)

where d is the disparity between left and right images, which is calculated by [9], and r is
the resolution in horizontal direction.

3.3 Depth Fusion of Short and Wide Baseline camera
To merge depth from different algorithms smoothly, we need an algorithm that can globally
optimize the depth map. Besides, depth should not be modified during the optimization.
Otherwise, depth map will no longer guarantee the accuracy and continuity of depth value.
So we model the fusion problem as a label choice in Markov random field and solve it by
Graph Cut[2].

We have two depth maps after both light field depth conversion and stereo depth conver-
sion. For each pixel in the original scene, depth should be defined by one of these two maps.
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The selection of depth map of pixels depends on confidence of foreground and background.
As we mentioned in Section 3.1, depth which is out of calibration range or beyond the sense
ability of short baseline camera, is not trustworthy. Objects far from cameras will leave no
disparity in light field, but distinctive in stereo matching. Therefore, curve of the mapping
function (4) of light field depth to real depth slows down as real depth grows, see Fig.5.
We take the gradient of the mapping function (4) as observation of confidence of light field
depth. Depth gradient d(dl f ) = b/(aα +b)2 is along α in (4). And we define the confidence
function in MRF as

c = 1− tan−1(
kb

(aα +b)2 ), (9)

where k is a user setting scale factor, which is 0.001 in our experiment.
The data term in MRF model should be defined by confidence of light field depth because

of its limited definition domain.

Eunary(p) =

{
1− c if p is defined by dl f

c if p is defined by dsm
. (10)

The smooth term can constrain the propagation of depth between dissimilar pixels and
suppress depth noise within an object. We simply use color gradient of image in the smooth
term

Esmooth(p, p′) = ‖I(p)− I(p′)‖2, (11)

where I is image and p is label of depth of one pixel.
The final cost function is a standard MRF model. We will minimize the cost function

using graph cut [2] to get a final label.

E(I) = ∑
p∈I

Eunary(p)+ ∑
p′∈Near{p}

Esmooth(p, p′). (12)

By picking out depth value from corresponding depth map, we will finally get a wide
range depth map.

4 Experiments

4.1 Experiment Data Introduction
In our practical installation, we mount a Lytro Illum camera on a slider rail and make sure
the direction of camera is perpendicular to slider. We restrict the gap between two captures
to 23 centimeters, which is essential for the ability to sense far scene. We use wide angle
setting in camera so that two views will have a larger overlap area. We also use the manual
mode to reduce influence of color difference.

Our algorithm performs well if scenes have both close and far objects. Considering there
is no existing dataset that has binocular light field images, we choose to take images by
our camera. Then we preprocess them using Lytro Power Tools to get multi views from
camera raw files. Our experiment data contains four pairs of light field image both indoor
and outdoor.

Besides, we also take images for light field calibration. It contains 50 images in which
distance between camera and chess board varies from 30 to 500 centimeters. The calibration
images should be unique to one single light field camera and one set of camera setting.
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Figure 5: Light field depth calibration and curve fitting for estimate the real depth from α .
The generation process is described in section 3.1.

.

4.2 Wide Range Scene Depth Result
We use our calibration images to obtain some key parameters for light field depth normal-
ization. After depth estimation, we fit formula (4) to the sampled calibration data. Both the
fitted curve and calibration data are plotted in Fig.5. The parameters in (4), a is −0.03487
and b is 0.01389. It is clear that the curve fits calibration data well. Also, as the chess board
moves away from camera, the value α gradually is getting indistinguishable and depth of
this area is not trustworthy.

Our lens focal are set to wide angle. In our measurement, horizontal field of view β

under our camera experiment setting is 60 degrees and horizontal resolution is 541 pixels.
So the available depth estimation range is from 18.5 centimeters to 100.3 meters. As Fig. 6
shows, some foreground objects have wrong depth because of lack of disparity in left and
right images. The missing depth values are filled with result from light depth map.

In Fig.6, we display results of each stages. Dark blue color means objects are very close
to scene point while light colors, yellow and light blue label far scenes. We can see that the
final depth map takes the content from that generated by light field depth estimation method
for nearby objects, while takes the content from that generated by stereo matching for far
away objects. This validates that the depth maps generated from different methods have
complementary depth-sensing ability. Light field depth method can detect occlusion in front
of the camera accurately. It will not be affected by the other camera at all. Especially, if
some objects move toward our binocular light field cameras, our system can still capture it
and calculate its distance.

5 Conclusion and Future Work
In this paper, we roughly explore depth map fusion of binocular light field, and we find
that it can really expand the range of depth calculation. A major obstacle of the fusion is the
calibration of light field camera and the binocular system. We may not have much knowledge
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(a) (b) (c) (d)

Figure 6: Outputs of different stages. Every two rows are pairs of stereo light field images.
Pixels of close scene points are darker than far ones. (a) Stereo images, (b) Light field depth
map[14], (c) Stereo matching[9], (d) Fusion map.
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of inside structure of the camera. So we use curve fitting to estimate the transform from light
field depth to real depth. Besides, we define a depth confidence of light field and model the
fusion process in Markov random field. The final map show that depth of close objects is
well measured.

In the future, we might study how to integrate fusion procedure into light field depth
calculation and develop a more intrinsic method. The quality of depth map can also be
improved further.
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