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Abstract

We propose a novel deep fusion architecture, CaloriNet, for the online estimation of
energy expenditure for free living monitoring in private environments, where RGB data is
discarded and replaced by silhouettes. Our fused convolutional neural network architec-
ture is trainable end-to-end, to estimate calorie expenditure, using temporal foreground
silhouettes alongside accelerometer data. The network is trained and cross-validated
based on a publicly available dataset, SPHERE-Calorie, linking RGB-D, inertial and
calorific measurements. Results show state-of-the-art minimum error on the estima-
tion of energy expenditure (calories per minute), outperforming alternative, standard and
single-modal techniques.

1 Introduction
Physical activity has been linked to general health [22] and has shown positive psycholog-
ical benefits [9] in clinical tests. Further, sedentary behaviour has consequences that may
impose many health risks, for example on musculoskeletal health. This is especially impor-
tant for older adults, for whom physical activity can counteract the detrimental effect on the
cardiovascular system and skeletal muscles associated with age [13]. Monitoring the extent
of physical activity via energy expenditure (EE) is therefore of valuable importance and dif-
ferent approaches have been proposed in the literature, from the use of questionnaires [14],
to metabolic lookup tables (METs) [1], to peak oxygen uptake estimations [5].

With the development of novel technologies, the Internet of Things (IoT) is playing an
important role in monitoring well being and health [28]. Accelerometers1 have often been
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1The terms accelerometers, inertial and wearable sensors are used indiscriminately throughout this paper.
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adopted for the estimation of EE [38], although video monitoring systems have recently
showed superior performances [32], especially when combined with inertial based measure-
ments [34]. However, recent works, such as from Birchley et al. [7], Ziefle et al. [40] and
Jancke et al. [19] have highlighted the important aspect of privacy concern in medical tech-
nologies for smart homes, showing a critical view of such systems expressed by participants.
Patients often fear misuse of their video recordings, data leakage or loss due to technical
issues. These concerns have been addressed in the work by Hall et al. [17] replacing the
RGB video stream with bounding boxes, skeletons and silhouettes, which not only address
the privacy issue to some extent, but also allow to scale the amount of data recorded to a size
which is more suitable for an IoT platform. This is particularly important in projects, such
as SPHERE [27], where the data may be shared for research purposes. In addition, replacing
recordings of RGB images with the storage of just silhouettes within an IoT platform also
reduces the risk of sensitive data leakage.

In this paper, we present a fused convolutional architecture, named CaloriNet, for the
online estimation of EE in private environments, where RGB images are discarded after the
generation of silhouettes. Our method uses a data-fusion approach by extracting features
from image silhouettes and accelerometer data using a convolutional neural net (CNN), and
combining them using fully connected layers to estimate the calorie expenditure. Our ap-
proach is based on the evaluation of buffers of data collected over a variable interval of time,
allowing an online estimation of calories, rendering the method suitable for energy expen-
diture monitoring applications. The method was trained and cross-validated on a publicly
available dataset [32]. Our results are compared against the latest and most accurate ac-
celerometer EE techniques, traditional vision pipelines and METs lookup tables, obtaining
state-of-the-art results.

To stress the importance of our data-fusion approach, we also study the contribution of
each modality when used exclusively, by assessing the sub-architectures or branches of our
CaloriNet. We name these branches SiluCalNet and AccuCalNet, respectively for the video
and the accelerometer modalities alone. While the fusion approach allows a reduction of
the overall error from the previous state-of-the-art of 1.21 to 0.88 calories/min, these two
modalities are independently able to achieve comparable performances with overall error
of 0.98 for AccuCalNet and 0.95 for SiluCalNet. These sub-architectures are available as
standalone alternatives to the fusion approach, making our framework suitable for a vision
only or wearable only solution.

2 Background and Related Works
The estimation of EE is a very complex problem, as it is not only related to the physical
movement of the subject, but also their metabolism, level of fitness, physiology and environ-
mental conditions, e.g. temperature, humidity and barometric pressure [12]. Considerable
effort has been invested in the past for characterizing EE using different types of data, includ-
ing biometric data (i.e. heart rate monitoring), accelerometers, shoe sensors and cameras. In
spite of this variability, EE is strongly correlated with the type of activity which is performed.
In 1993, the Compendium of Physical Activities [1] presented a table with different physi-
cal activities connected to EE, described as the ratio of working to resting metabolic rates,
i.e. METs. These data include detailed description of activities with their corresponding EE
values. While METs tables allow a very quick estimation of EE, the approach is based on
averages and is only reliable in a statistical sense. Precise measurements of EE are very in-
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dividual dependent, as different subjects perform activities in distinctive ways and therefore
consume a different amount of energy.

To allow an individual-dependent measurement, the work from Ceesay et al. [11] pro-
posed a heart rate monitoring method that models their EE. A large body of research has
focussed instead on the application of accelerometer data to estimate EE. Some works, such
as [2] and [3], make use of activity-dependent models to predict the EE of patients based on
the knowledge of the activity they are performing. For a complete review of accelerometer
based EE estimation, the reader is referred to Altini et al. [4], which investigates the method-
ologies, sensor numbers and locations to obtain the best EE model. Their work concludes
that one single accelerometer close to the subject’s centre of mass, combined with an activity-
specific estimation model allows for the most accurate and unobtrusive accelerometer-based
EE estimation.

One of the most important steps in the use of accelerometer data is the selection of the
features. The accelerometer signals are split into contiguous windows, for which a number
of frequency and time domain statistics are evaluated, including average, standard deviation,
max/min and correlation coefficients, among others [15]. The selection of such hand-crafted
features allows the application of standard machine learning algorithms like artificial neural
networks [30], random forests [15] and other regression models [26] - with performances
strongly dependent on those selected features. Zhu et al. [39] proposed the application of
CNNs where the raw accelerometer signal was directly fed into a CNN which automatically
learned the features that then allowed a multilayer perceptron to produce EE estimates with
errors up to 35% lower than methods previous to it. For this reason, Zhu et al. [39]’s method
was selected as the baseline for comparison with our results.

Computer vision has also been deployed to improve digital health monitoring systems.
For example, [20] and [24] attempted to estimate the calories in food by taking single images
or short videos of them, although they needed to interact with the user to allow continuous
monitoring. Closer to the topic of this paper, Tao et al. [34] proposed a vision-based sys-
tem which estimated calorie expenditure using features extracted from RGB-D image data
of humans in action. They showed that RGB-D data can be successfully adopted to estimate
EE instead of accelerometers. This work was later extended by replacing their hand-crafted
features with CNN-generated features [36], showing an overall reduction of the error. How-
ever, as already addressed earlier, it may be critical for healthcare and ambient assisted living
(AAL) systems to respect privacy conditions and only provide video sequences in the form
of silhouettes [37]. Under such conditions, methods such as [34] are not suitable as they
require full RGB-D data to estimate EE.

CNN regression has been successfully applied in computer vision, for example for 3D
pose [21], age estimation [25] and viewpoint evaluation [23]. For medical data, CNNs were
applied for the segmentation of the cardiac left ventricle, parametrised in terms of location
and radius [31]. More recently, a general framework for the analysis of medical images was
proposed by Gibson et al. [16], to provide a pipeline that allows segmentation, regression (i.e.
prediction of attenuation maps in brain scans) and image generation using deep learning.

In this paper, we propose a fused deep architecture which enables the online estimation
of EE in privacy-sensitive settings. The method is described in Section 3, including the
estimation of temporal silhouettes, the network architecture, and the data augmentation. The
dataset, our implementation, and our results are presented in Section 4.
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Figure 1: Examples of silhouettes - Colour and depth images were only used to generate
silhouettes and discarded after the process.

3 Proposed method
We propose CaloriNet for online EE estimation, based on the fusion of image silhouettes
and acceleration measurements. The proposal builds on the strengths of two modalities for
calorie estimation; (1) visual input that can better recognise the action undertaken [33], yet
is at times occluded and associated with privacy concerns, and (2) wearable accelerome-
ters that are light to carry and increasingly popular for healthcare monitoring, but require
subject cooperation in wearing and charging the sensors. Thus, we propose an architecture
that fuses both modalities, and importantly only uses the silhouette (i.e. foreground segmen-
tation) from the visual input, as this provides improved privacy for monitoring in private
environments [17].

Previous pioneering work towards visual, remote measurement of EE revealed that sig-
nificant complexity is associated with the task [32, 33, 34]. Comparing some of these tech-
niques against our results (see Figure 5), we generally found that traditional Histogram of
Gradients and non-linear SVM regression on the available silhouette data underperformed.
Inspired by the successful utilisation of deep features [36] close to the domain at hand, we
therefore opted for a streamed end-to-end deep CNN architecture here.

3.1 Temporal Silhouettes for Calorie Estimation
To support private environments, we propose to limit the visual input to foreground silhou-
ettes. The method we propose here could use silhouettes extracted from RGB foreground
segmentation, or depth-based segmentation as used in our experiments. We process the RGB
images using OpenPose [10] to detect people and extract the skeletons of the subjects and
then perform clustering on the RGB-D values within each detected bounding box. Among
all the clusters detected, the regions intersecting with the skeleton are kept and their union
is used to produce the final silhouette. Some generated silhouettes can be found in Figure 1.
The reader is reminded that RGB-D values are only used to generate the silhouettes and are
discarded after this process.

The estimation of EE has a strong dependency on monitoring duration, and in particular
on the past activities performed. In order to take this into account, temporal modelling
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and dependency must be included in the network architecture. A typical approach for this
problem is to feed a large buffer of images into the network as input, but this would demand a
large amount of memory. Since the silhouettes only contain binary information, we decided
to pursue a different approach and built an average silhouette using a variable number of
images. The idea of transforming a video sequence into a compact representation (to aid our
analysis with CNNs) is not new, and previous examples of similar propositions can be found
in works such as [8] and [6].

As calorie estimation can be better predicted at various temporal scales, we propose to
use a multi-scale temporal template for N time intervals ∆tN of decreasing length, so that:

∆t1 > ∆t2 > ... > ∆tN . (1)

For each ∆tk, the silhouettes in the interval [t −∆tk, t] were selected and averaged:

S̄k =
1

∆tk

t

∑
i=t−∆tk

S (i) . (2)

This process produces N multi-scale temporal silhouettes S̄k (one for each ∆t), which were
then stacked in a 3D tensor S∗, where the 3rd dimension is the stacked multi-scale temporal
silhouette:

S∗t ≡
{

S̄1, S̄2, ..., S̄N
}
. (3)

S∗t is then used for the estimation of the calories at time t. This operation allows us to reduce
any dependency of the network on the choice of the ∆t, facilitating the learning process to
pick the correct channels for the best EE estimation for the various daily actions.

3.2 Network architecture
The CaloriNet architecture is composed of two branches, one for the silhouette data and one
for the accelerometer data, as depicted in Figure 2. The network uses two distinct inputs
at time t to produce the calorie estimation Ct : the multi-channel average silhouette S∗t from
Eq. (3) and a buffer of accelerometer data in the same time interval [t −maxk(∆tk), t].

A shallow architecture composed of two stack of layers was adopted. The choice of
such a simple architecture was driven by the idea that silhouettes are very primitive forms
of information, for which the extraction of features through convolution is simpler than for
full colour images. Moreover, our tests did not show any gain in accuracy by implementing
deeper architectures with additional convolutional filters.

The features extracted from the silhouettes and acceleration were concatenated and fed
into one fully connected layer that performs a regression over the calories output. The ac-
celerometer branch was inspired by the work from Zhu et al. [39], although several modifi-
cations were performed to achieve better performances (see Section 4 for the implementation
details). The silhouettes branch also uses two stacks of layers only. In fact, due to the sim-
plistic nature of the data, being originated from binary foreground images and 6-dimensional
accelerometer data, any deeper architecture is likely to overfit the input. We empirically
found this depth to suffice for the task of the EE estimation.

The network is trained end-to-end using the squared error loss function between the
estimated calories Cp and the ground truth CGT over all times t:

Loss = ∑
t

(
Ct

p −Ct
GT

)2 (4)
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Figure 2: CaloriNet - our architecture combines silhouette data (upper branch, SiluCalNet)
and accelerometer data (lower branch, AccuCalNet) to produce calorie estimation.

3.3 Data augmentation

Due to the limited training data, as well as to remove any bias in the recording location, we
applied the following data augmentation techniques.
Silhouettes: The typical approach for dealing with subjects moving in a frame is to crop
the active area and resize it to a fixed size to use as input for the network [18]. However,
this is not suitable for temporal silhouettes as the size of the averaged image depends on the
motion of the person during the buffered time. To avoid learning specific positions where
actions were performed, data augmentation was implemented. During training, images were
randomly flipped (horizontally), tilted, and translated (horizontally/vertically).

The data augmentation parameters adopted were determined empirically (see next sec-
tion). Although the augmented data sometimes resulted in subjects being cropped, this
matched situations when subjects were only partially in view of the camera.
Accelerometers: For the accelerometer sensors, inspired by the work from Um et al. [35],
we randomly changed the magnitude of the sensors by multiplying it with a scalar drawn
from a Gaussian distribution with mean 1 and standard deviation 0.1. In addition, the x-y-z
channels of each accelerometer were swapped with random permutations.

4 Experiment Details
Dataset — We evaluate our method on the publicly available dataset originally used in [32],
namely SPHERE-Calorie2. This is the only dataset to include RGB-D and accelerome-
ter input with ground truth calorie measurements obtained from a clinical Calorimeter for

2The dataset SPHERE-Calorie is available at http://data.bris.ac.uk/data
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Figure 3: Sample frames from different subjects and for various activities in the dataset.

Figure 4: Our visual depiction of the SPHERE-Calorie dataset. The colour represents the amount
of calories/minute, with black areas indicating missing data.

daily activities. The dataset includes 10 participants, 7 males and 3 females aged between
27.2± 3.8 years, with average weight of 72.3± 15.0 kg and average height of 173.6± 9.8
cm, resulting in average BMI of 23.7± 2.8. Each participant was recorded with an RGB-
D sensor, two accelerometers (mounted on the waist and the arm) and a COSMED K4b2
portable metabolic measurement system (i.e. a Calorimeter). Eleven activities, as shown
in Figure 3, were performed in a predefined sequence: stand still, sit still, walking, wiping
the table, vacuuming, sweeping floor, lying down, exercising, upper body stretching, clean-
ing stain, reading. The dataset presents gaps for some recorded sequences for which we
could not generate any silhouettes. Missing data in the training set was therefore replaced by
randomly sampling input with the same label from the sequences of the same individual.

Figure 4 presents a visual depiction of the calories recorded in the dataset. Each hori-
zontal bar corresponds to one subject performing the same set of activities. Note that while
the calorie measurements present a certain degree of correlation with the activity performed,
each subject has a different response in terms of EE when performing the same activity. This
difference shows the complexity of the EE problem and highlights the strong limitations of
lookup tables when attempting the predict EE for a specific individual.
Implementation details — The network was implemented and trained in Keras using Ten-
sorflow as backend3.

3The source code is available at: https://github.com/ale152/CaloriNet

https://github.com/ale152/CaloriNet
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Silhouettes: The input to the silhouette branch of the network is a 240× 320× 5 tensor,
computed over 5 time intervals ∆t, defined by,

∆tk =
T
3k , with k = [0, ..., N] , (5)

where N = 4, and T is the maximum buffer size in the multi-scale silhouette image, set to
1000 frames. This choice of value for T is explored in Section 5. Data augmentation was
performed using a rotation range of θ = ±5◦ and a random shift of tx = ty = ±20% range.
The silhouettes branch of the network architecture, depicted in Figure 2, is formed by two
stacks of sequential convolution-activation-pooling layers, followed by a fully connected
layer producing the EE. The activation function adopted was a rectified linear unit (ReLu),
the pooling size was 2 and the stride length for each layer was also 2. Optimal parameters
were found by training each network for 1000 epochs and selecting the model with the
minimum validation loss after at least 30 epochs of training.
Accelerometers: Using the network proposed by Zhu et al. [39] as a baseline for the ac-
celerometer branch of CaloriNet, we adopted their architecture of a multi-channel CNN that
processes each component of the accelerometer independently, with two stacks of convolution-
activation-pooling, using respectively 8 and 4 filters, with a kernel size of 5 and a stride
length of 2. We replaced the tanh activation function with a ReLu, increased the input vector
from 256 to 1000 elements and used both the wrist and waist mounted accelerometers as
input, combining them into a single 6-channel input. This produced a tensor input of size
1000×6, which was fed into the accelerometer branch of the network. In addition to that, we
also estimated the gravity vector using a Wiener filter [29] with a window size of 1 second,
and subtracted its direction from the accelerometer data. The baseline model Zhu et al. [39]
was implemented without the anthropometric feature vector (as we have no heart rate data
available), and using both accelerometers as per AccuCalNet. We show that each of these
modifications allowed a better estimation of the EE in our tests. Our implementation of Zhu
et al. [39] has higher root mean square error (RMSE) than our proposed modified version in
AccuCalNet for 10 out of the 11 actions (excluding Wipe), as well as the overall error.

5 Results
The proposed network CaloriNet was tested using leave-one-subject-out cross-validation.
As baselines, we also show the results obtained from (a) METs lookup tables [1], (b) previ-
ous state-of-the-art on the same dataset from Tao et al. [34] which combined hand-crafted
visual (full RGB-D images) and accelerometer features with an SVM classifier, and (c) the
accelerometer network proposed by Zhu et al. [39]. We also report results on single modal-
ities: AccuCalNet and SiluCalNet. Comparative results are presented in Figure 5, showing
the per-activity RMSE between the calories estimated (per minute) and the ground truth,
obtained by averaging the errors for each activity class first, and then considering the mean
across the subjects. The overall error was instead evaluated by averaging all the RMSEs
regardless of the activity performed, by considering the mean across all the subjects.

The figure shows that the EE estimation of the lookup table (METs) produces the highest
error, with an overall RMSE of 1.50 cal/min when compared to the Calorimeter device. As
already stated, METs tables are based on statistical measurements and are not suitable for
subject-specific estimations. Tao et al. [34]’s method improves over the the METs table,
providing an overall average error of 1.30 cal/min. Deep learning architectures, however,

Citation
Citation
{Zhu, Pande, Mohapatra, and Han} 2015

Citation
Citation
{Rizun} 2008

Citation
Citation
{Zhu, Pande, Mohapatra, and Han} 2015

Citation
Citation
{Zhu, Pande, Mohapatra, and Han} 2015

Citation
Citation
{Ainsworth, Haskell, Leon, Jacobs, Montoye, Sallis, and Paffenbarger} 1993

Citation
Citation
{Tao, Burghardt, Mirmehdi, Damen, Cooper, Camplani, Hannuna, Paiement, and Craddock} 2018

Citation
Citation
{Zhu, Pande, Mohapatra, and Han} 2015

Citation
Citation
{Tao, Burghardt, Mirmehdi, Damen, Cooper, Camplani, Hannuna, Paiement, and Craddock} 2018



MASULLO ET AL.: CALORINET, FROM SILHOUETTES TO CALORIE ESTIMATION 9

Figure 5: Results in terms of average per-activity RMSE for the calorie estimation.

show some demonstrable performance improvments beyond these baselines. The framework
by Zhu et al. [39] allows for an overall improvement of the error for most of the classes,
using accelerometer data only. When compared with the rest of the methods, our proposed
CaloriNet achieves the best results, producing an error which is almost 30% lower than the
result from Zhu et al. [39], with a reduction of the RMSE from 1.21 to 0.88 cal/min.

It order to stress the importance of our results, we also provide a comparison of our
proposed method when accelerometers (AccuCalNet) or silhouettes (SiluCalNet) are used
independently. Results for AccuCalNet already show an overall reduction of the error from
1.21 to 0.98 cal/min showing the advantage of our proposed modifications. The error reduc-
tion is particularly pronounced for low-activity classes like Stand and Sit, which we believe
to be due to the high pass gravity filter that we apply to the raw accelerometer signals. A
further reduction of the error is achieved by SiluCalNet, when silhouettes only are used for
the EE, with an overall error of 0.95 cal/min. The RMSE of SiluCalNet is particularly im-
proved compared to AccuCalNet especially for the Exercise and Stretch activity classes, as
these activities are better characterized by the video sensor.

During our experiments, we noticed that all the methodologies tested struggled to esti-
mate the calorie expenditure during the activities Exercise and Stretch. We believe this in-
creased error is due to the high inter- and intra-class variance of these activities, estimated to
be respectively 7.3 and 2.3 calories/min for the Exercise class, and 4.0 and 1.0 calories/min
for Stretch. These values appear to be between 20 and 60 times higher than the variance
shown by other classes like Sitting or Walking, as a consequence of the rather small training
dataset available. A richer dataset including subjects with more different metabolisms and
performing a wider range of activities would benefit the reduction of this error.

Sample qualitative results are presented in Figure 6, which shows the continuous calorie
prediction for a single individual, evaluated with different algorithms and compared with
the ground truth. We observe very good agreement for CaloriNet and SiluCalNet with the
ground truth, while Zhu et al. [39]’s method shows quite erratic behaviour, missing the peak
measurement of calories during the Exercise activity (the red interval in the ground truth).
The METs table only provides a step-wise prediction, as it only takes into account the labels
of the activities performed, with data missing in those segments where no label was available.

We evaluated the sensitivity of CaloriNet when the buffer size parameter T is varied. For
this test, we adjusted T to 250, 500, 1000 and 2000 frames, and evaluated the overall error
for each buffer size. Results are presented in Figure 7, showing that lower T values produce
inferior results while the method is performing consistently for 1000 ≤ T ≤ 2000 frames.
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Figure 6: Comparison of the calories measured for a single subject (Subject 2, Session 2)
and the prediction obtained with different methods. Black lines depict missing data.

Figure 7: Overall error of CaloriNet for different buffer sizes.

6 Conclusions

The increasing adoption of healthcare monitoring devices in AAL environments demands
the necessity of privacy-aware video systems. Here, we presented a novel, fused deep archi-
tecture for online estimation of energy expenditure using a combination of image silhouettes
and accelerometer data. Systems recording such data are, for example, currently being de-
ployed in one hundred homes [27]. Silhouettes were first combined into a multi-channel
average image, which provides temporal information for different time lengths. We then fed
average silhouettes with accelerometer data in a CNN, that extracted features which were
in turn fed into a fully connected layer that estimated the calories expended. We obtained
state-of-the-art results in comparison to other existing approaches while protecting privacy.
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