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Abstract

In this paper, we propose a simple but effective texture learning network to improve
the shadow detection. It is based on an interesting observation. We found shallow net-
works perform better than deeper networks on the task of shadows detection. It suggests
shadows may be more correlated with basic textures, like harder colors, than deep se-
mantic information. Because shadow and non-shadow areas on the same ground may
share similar textures, we need to find the best boundary between them. In this paper, we
propose a novel hard-negative mining module to extract different texture patches that are
supposed to be the hardest patches to distinguish between shadows and non-shadows.
We also design an end-to-end trainable structure to integrate the texture features with
deep semantic fully convolutional networks. The texture learning module is lightweight
and the end-to-end structure makes it possible for our module to help other detection
tasks. Results on a variety of ablation experiments confirm the improvement brought by
our texture learning module. Moreover, the final detection model achieves a state-of-art
detection accuracy on most benchmarks.

1 Introduction

Shadows, as one essential aspect of visual images, play key roles in computer vision and im-
age understanding. Shadows in images may cause distraction and difficulty into the majority
of computer vision tasks, including classification, object detection, and semantic segmenta-
tion. Surfaces with shadow can be hard to distinguish even for humans. Shadow-free images
are reasonably more effective for classification and object detection. Meanwhile, precise
shadow detection can provide luminance information and scene understanding of specific
applications.

Early works on shadow detection mainly focused on physical feature of illumination
and colors [8][10][3][4]. These methods worked poorly on difficult natural images be-
cause of their strict illumination assumptions. In recent years, motivated by the advance-
ment of deep learning models, several methods were proposed based on three mainstream
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structures: CNN(Convolution Neural Network), FCN(Fully Convolutional Network) and
GAN(Generative Adversarial Networks). CNN is firstly introduced by Khan et al. [7] as
a shadow edge classifier to detect shadows. Vicente et al. [14] take advantage of FCN and
attempted to integrate semantic prior into shadow detection. They also collected a new large
shadow dataset for a fair comparison between data-driven methods. Nguyen et al. [11] ex-
tend conditional GAN as a generator to generate shadow mask. A sensitivity parameter is
proposed by Nguyen et al. to handle unbalanced distribution of shadow labels. However,
this manual parameter is sensitive to different datasets or situations.

To illustrate the motivation of our method, firstly we revisit several general basic net-
works for segmentation. The experiments on both CNNs and FCNs for shadows detection
are shown in Table 1. We unexpectedly found that shallow CNN with 8 layers produce better
results than deeper network with 10 — 18 layers. We also compared FCNs with different
layer depths and found a similar result. This observation motivates us to consider the basic
texture nature of shadows because CNN’s lower layers mostly capture image’s basic texture.
An explicit learning for texture module is reasonably beneficial for shadow detection.

Basic Networks | Feature Layer Depth | BER

FCN-conv5, VGG 16 15.5
FCN-conv4, VGG 13 15.2
FCN-conv3, VGG 10 14.3
CNN, VGG 16 15.3
CNN 8 12.8

Table 1: Experiments on CNNs and FCNs on UCF shadow datasets. FCN experiments are
different version of FCN using feature maps from different layers in VGG. CNNs are using
patch-based classification task for shadow detection. BER is Balanced Error Rate, smaller is
better.

Figure 1: Shadow Texture Learning Challenge. Red masks are non-shadow areas: left is
dark area but is not shadow, right is tree area that have similar texture with grass shadow.

One of the challenges for robust shadow texture learning is the various non-shadow tex-
tures that are hard to distinguish from shadows. As shown in Figure 1, some non-shadow
areas have darker illumination like shadows and some others may have similar textures with
shadow areas. Inspired by hard negative mining in the object detection task, we endeavour to


Citation
Citation
{Khan, Bennamoun, Sohel, and Togneri} 2014

Citation
Citation
{Vicente, Hou, Yu, Hoai, and Samaras} 2016

Citation
Citation
{Nguyen, Vicente, Zhao, Hoai, and Samaras} 2017


PAN ET AL.: SHADOW DETECTION USING ROBUST TEXTURE LEARNING 3

find out these texture patches that are hard to distinguish in each image so that we can learn
a robust classifier between shadows and nonshadows. In this paper, a novel hard negative
patch mining module is proposed for this purpose. Different from hard negative method in
the object detection, shadow detection is actually a segmentation task which doesn’t have
an explicit label (positive/negative). It only has labels for each pixel, like shadow and non-
shadow. To overcome this obstacle, we propose to use the gradients from back-propagation
to estimate the difficulty level for each patch. Our hard negative mining module for seg-
mentation is proven effective for generating reasonable patches through experiments and
visualization.

The final architecture is composed of texture learning and semantic learning networks.
The texture learning network follows our hard negative patch mining module. The semantic
learning network is a structured fully convolutional network. We make up an integrated
end-to-end trainable network by utilizing two techniques - patch extraction and stitching
backward. Ablation experiments have shown the power of our texture learning module and
its improvement for general networks.

In summary, this work mainly contains the three contributions: 1. A novel hard negative
patch mining module is proposed for robust texture learning in shadow detection task; 2. An
end-to-end trainable network is proposed to integrate texture feature with semantic features;
3. For fair comparison, ablation experiments are carried out and our proposed model achieves
a state-of-art performance on most of benchmarks.

2 Related Work

Early works on shadow detection mainly focused on the physical property or illumination
feature of shadows or texture retrieval[2]. Finlayson et al. [3] attempted to classify shadow
edges based on an illuminant-invariant image. They compared the original shadow image
with an intrinsic image and then extracted shadows from the differences. Instead of using
intrinsic images, Zhu et al. [15] proposed a statistical learning approach to learn features
in detecting shadows in a single image. They utilized intensity, texture nature of shadow
regions, and trained a CRF model for labeling shadow pixels. In addition to individual region
features, Guo et al. [5] considered pairwise illumination features between regions. They use
a region-based graph to represent the original image, whereas a graph-cut is employed to
generate labels.

Recent shadow detection methods are significantly advanced by deep learning models.
Khan et al. [7] proposed a method to automatically learn shadow features using a seven-layer
network architecture. Instead of using superpixel classification, they focused on shadow
edges and treated the structured CNN as an edge classifier. Beside using a CNN for edge
detection, Shen et al. [13] formalized the problem of pixel labeling as global optimization
and recovered shadow regions based on structured label information of edges.

FCN was originally proposed for semantic segmentation. Long et al. [9] replaced full-
connected layers by convolutional layers, which transform FCN output into a prediction map
instead of one classification label. Vicente et al. [14] trained a FCN as an image-level shadow
prior for shadow detection. They used outputs of FCN together with RGB images to train a
CNN as patch classifier. Because they divide the stack structure as independent parts, their
training process is split. In our work, we utilize the patch mining and stitching methods to
propose an end-to-end structure for semantic and texture features.

Vu Nguyen et al. [11] extended conditional GAN to detect shadow mask. They intro-
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duced an additional sensitivity parameter to the generator to parameterize the loss of the
trained detector. The main insight behind scGAN is that they tried to control the sensitivity
of generator which outputs a binary mask. However, most of these deep methods didn’t con-
sider the texture feature of shadows, which essentially makes shadows different from other
pixel-to-pixel tasks.

3 Proposed Model

We present our overall network in Figure 2. Our overall model is composed by one deep
semantic learning network and a texture learning network. The deep semantic network is a
fully convolutional network with VGG backbone. The texture learning network takes patches
from patch mining module and extract feature maps from deep semanic network. A hard
negative patch mining module is proposed to select hard patch candidates for training of
each epoch. Outputs of texture and semantic network will finally be integrated into a custom
CRF to generate overall predictions.
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Figure 2: Overall Shadow Detection Network. Our overall model is composed by one deep
semantic learning network and a texture learning network. The deep semantic network is a
fully convolutional network with VGG backbone. The texture learning network takes patches
from patch mining module and extract feature maps from deep semanic network. A hard
negative patch mining module is proposed to select hard patach candidates for training of
each epoch. Outputs of texture and semantic network will finally be integrated into a custom
CRF to generate overall predictions.

3.1 Hard Negative Patch Mining

The hard negative patch mining is proposed for consciously selecting patch candidates that
may be hard to distinguish. In the object detection task, one of abilities of hard negative
mining method is distribution balance between positive and negative samples. As a statistic
clues in UCF shadow dataset, the non-shadow label owns pixels five times that of the shadow
label, indicating that shadows are minor part of nature images. Therefore, our mining meth-
ods also need to balance patches with different ratio of shadow/non-shadow pixels to achieve
a reasonable label amount.

Two key ideas are behind our design of patch mining algorithm for shadow detection.
First, the patches should be adaptive for different epoch of training. This one is different from
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hard negative methods in the object detection. We suppose through the detectors become
better and better while training, our method should generate harder and harder patches for
it so that we can achieve a more robust detector finally. Second, larger gradients in back-
propagation may refer to harder patches for current model. This idea is motivated by the
gradients of back-propagation. Large gradient refers to bad predictions in current epoch and
bad predictions are probably hard patches for further training.

Algorithm 1 Hard Negative Patch Mining
1: T is the training patches for each epoch. We divide T into 7., T, T,, for random, shadow
and candidate patches.
i<~0
T, T, < Random patches.
T; < Shadow patches.
while i < num_epoch do
T.=T.+T,
get the backpropagation difference D, in specific layer for 7,
T, < top n pathchs in D, by max(abs(D.))
T,, Ty < new sampling patches as line 5.6.
T=T,+T,
use T for training next epoch.
i—i+1
: end while
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Based on these assumptions, we develop a hard negative patch mining framework to
generate texture patches for a robust texture learning. Pseudocode is shown in Algorithm 1.

The main process of our patch mining framework is presented in line 7 — 10. After initial-
ization, we collect random patches for each epoch of training and use them to update our hard
patch candidates. We treat the last candidate patches together with random patches as cur-
rent candidates. Shadow patches are sampled every epoch for a balanced distribution betwee
shadows and nonshadows. These candidates will then be sorted according to their maximum
difference value during back-propagation. Opting to use max(abs(D,)) is mathematical and
empirical. Considering the softmax loss function, if we use it and its derivative for patch
mining, where z; is the output of semantic network (to be illustrated in next section), and y;
is the label for jth pixel.

eci
L=-Yyilog(p;), pj= 1
;y./ ogpi) Pi=§ 5 ey
oL
!/
L;= Frs =pj—Yyj (2)

The sorting value max(abs(D.)) is the absolute value of L', which means that we aim to
select poor predictions that may include large loss function derivatives.

JL
abs(D.) = |L;| = i lpj—vil 3)
j

Given that each patch may contain amounts of outputs that respond to their derivatives,
we have experimented maximum, maximum-minimum, and average over these derivatives to
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estimate each patch. Results show that maximum derivatives can better indicate the difficulty
level of patches.

3.2 Introduce Texture into Semantic

For current semantic segmentation features, fully convolution networks (FCN) have become
a standard model. We introduce two custom layers to incorporate patch mining into FCNs.
They are patch proposal layer and stitching layer.

Given patches coordinate, patch proposal layer generates patch features from FCN fea-
ture maps. Its operation is similar to ROI pooling in faster RCNN [12] but not exactly the
same. In ROI pooling, the ROIs are collected from RPN or selective search. While in our
patch proposal layer, patch ROIs for each epoch are dependent on previous epoch which
means roi; = f(roi,_1), where roi, refers to ROI for particular image in epoch ¢. To imple-
ment this, patch proposal layer needs to restore each image’s ROI in previous epoch. The
stitching layer is proposed for stitching each patch backward into its corresponding locations
to regenerate the feature maps of overall image.

In training, we employ an two-part softmax cross entropy loss function as:

L = Lyemantic + Liexture (4)
Liexture = — Z Yj 10g (Softmax(Pd (xj) + P (xj))) (%)
J in patchs
Lyemantic = — Z Yj log(softmax(Pd (Xj))), (6)
J in images

The semantic part accumulates loss of pixels in the whole image, whereas the texture
part only involves pixels in selected patches.

In inference, we introduce a custom conditional random field to produce finer prediction
results. Basic CRF model can be represented by the following:

E(x) =Y v (%) + ), wij(xi.xp), (7
l 2%}
where yY (x;) and llll.l;(x,-,xj) represent usual unary and pairwise potentials, respectively.
In separated CRF model [1], unary potential corresponds to deep learning prediction, and
pairwise is RGB color feature. While in our model, texture feature is treated as pairwise
similarity between each pair of patches.
we define y (x;) and ¥} (x;,x;) as follows,

v (xi) = Py(x;) + Py(x;) ®)

l;lf;(xi,xj) = w;Dis(Py(xi), Ps(x;)) +w,Dis(Pr(x;), P(x;)). 9)
P;(x;) and Ps(x;) represent deep and shallow network predictions, respectively. P.(x;) refers
to the RGB channel of original images. In Equation 8, unary potential comprises Py(x;)
and Ps(x;). We do not visually present weights of these elements as we use an independent
scale-learning layer to learn integration weights dynamically. For pairwise potential, we
involve shallow texture features as Equation 9. Dis(x,y) refers to the Euclidean distance
in our experiments. w, and w; represent different weights of our texture feature and RGB
feature, respectively.
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4 Experiments

4.1 Datasets and Evaluation

We evaluate our method on a standard benchmark UCF [15] shadow dataset (which contains
355 shadow images with their label masks) and a newly collected large SBU dataset [14]
(4085 images for the train and 638 for the test). UCF dataset is the most widely used among
benchmarks. Thus, we can fairly compare our results with those of previous works. The
train/test split follows [5], in which 111 images are used for training, and 110 images are
utilized for testing. SBU dataset is newly collected, but its training labels are recovered
by algorithm instead of by manual annotation. For fair comparison, we use balanced error
rate (BER) as evaluation. We also present shadow/non-shadow to fully compare with other
methods.

4.2 General Results

We first present the general results of our texture learning method on UCF and SBU datasets.

Models | Shadow / Non | BER
Paired SVM[5] 26.7/6.3 16.5
Stack CNNJ14] 10.4/12.8 11.6
Semantic (baseline) 17.3/9.9 134
Semantic+Texture 14.1/5.1 9.6

Table 2: Our method and state-of-art methods on UCF dataset. Shadow/Non respectively
correspond to the error rates of shadow label and non-shadow label.

Models | Shadow / Non | BER
Stack CNN[14] 9.6/12.5 11.0
cGAN 20.5/6.9 13.6
ScGAN[11] 7.8/10.4 9.1
Semantic (baseline) 14.3/11.7 13.0
Semantic+Texture 9.9/6.9 8.4

Table 3: Our method and state-of-art methods on SBU dataset.

For fair comparison with previous works, especially that of [14], our baseline model
is using FCN-8s as the semantic networks. As shown in the tables, individual semantic
segmentation, which is our baseline model, has been better than Paired SVM which is a not
deep model but performs worse than most other deep networks.

After involving our texture learning network into semantic networks, the final integrated
model achieves a state-of-art accuracy and gets about 36% reduction on balance error rate.
Comparing with other state-of-art deep learning models, our method greatly outperforms
Stack-CNN which employed a similar basic model with us. One may find that there’s a
slight accuracy decrease on shadow label, we think it is caused by the mining module’s
attempt to finding the hardest patches regardless of its labels. It makes our model achieve a
much better overall prediction results no matter it is shadow or nonshadow. By Comparing
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with scGAN which utilized GAN as base structure, our semantic with texture model get a
slight improvement while our proposed texture network is a lightweight submodule. We
employ a shallow network with only 7 layers to perform basic feature learning which makes
it a very cheap module to be added into any other detection tasks. The lightweight submodule
also need much less training and inference cost comparing with GAN based models.

4.3 Effectiveness of Hard Mining

We conduct studies on different patch proposal methods to illustrate the effectiveness of our
method. Table 4 presents the experimental results on UCF dataset. All trainings share the
same initial model and learning rate.

Models BER
Convnets+CRF [7] 17.7
Stack CNN [14] 11.6
Semantic (Baseline) 134
Random Patches 15.3
Shadow Edge Patches 17.8
Canny Edge Patches 15.1
Random + Shadow Edge 11.3
Random + Canny Edge + Shadow Edge | 11.1
Hard Negative Patches 9.6

Table 4: Different patch proposal experiments on UCF dataset. The + indicates combina-
tions of different methods. Random Proposal, Shadow Edge Patches, Canny Edge Patches
respectively refer to selecting patches randomly, selecting patches centered on shadow edges
and canny edges patches.

092 1400
s eere 1200 |
- 1000

800 4

600 \

test accuracy
<
train loss

~
Seen

400

0.78 200

Figure 3: Training visualization between semantic model(dashed line) and model with patch
mining(solid line). Left: curve of test accuracy through training. Right: loss of training
epochs. As illustration, model with patch mining owns larger training loss but better test
prediction accuracy.

We compare our proposal framework with other intuitive or mostly used patch proposal
methods. As shown in Table 4, our model achieves the best final detection results compared
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with any other patch proposal methods. During experiments of patch proposal methods, we
discover that our hard negative framework can also efficiently avoid overfitting. Figure 3
shows that hard negative patch mining method exhibits a slow train convergence in training
data but present an improved final prediction accuracy in test data, which actually indicates
that it can effectively avoid overfitting. This feature is essential and intrinsic in our algorithm,
because our proposed framework can always collect harder patches while training.

To better understand the patch mining method, we visualize several images with their
training patches for every epoch in Figure 4. As for the last column, we can observe that
majority of patches are in shadow edges given that these locations cause difficulty in seg-
mentation. The car image in the last row owns patches from two parts: one in car and one in
shadow. In this sample, final patches are not shadow edges but two dark portions that, as we
suppose, are hard to distinguish.

Figure 4: Visualization of Patch Pool Selecting Method. Darker color represents that more
patches are proposed in those places. From left to right are original images, proposed patches
in first epoch, proposed patches in 10th, 20th, 30th, 40th, 50th epochs.

5 Conclusion and Future work

In conclusion, we propose a novel hard negative patch mining module for robust texture
learning in the shadow detection task. Full ablation experiments have been conducted to
confirm that our texture learning module can greatly improve the performance of common
semantic networks. Our final model also achieves superior final prediction accuracy both in
small- and large-scale datasets (UCF and SBU). Comparing with baseline, our patch mining
module can give a about 30% performance improvement in error rates. A patching and
stitiching framework is proposed to jointly train texture network together with FCNs. It
makes our module a lightweight scaffold for other detection tasks, like common semantic
segmentation or specific texture detections.

In this paper, we employed VGG16 as our backbone feature learning network for a fair
comparison with other methods. In future works, we assume that better basic feature learn-
ers, such as ResNet[6], may improve final shadow detection accuracy. The proposed hard
negative patch learning may be benificial for other segmentation tasks.
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