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Abstract
We propose to use the concept of the Hamming bound to derive the optimal criteria

for learning hash codes with a deep network. In particular, when the number of binary
hash codes (typically the number of image categories) and code length are known, it
is possible to derive an upper bound on the minimum Hamming distance between the
hash codes. This upper bound can then be used to define the loss function for learning
hash codes. By encouraging the margin (minimum Hamming distance) between the
hash codes of different image categories to match the upper bound, we are able to learn
theoretically optimal hash codes. Our experiments show that our method significantly
outperforms competing deep learning-based approaches and obtains top performance on
benchmark datasets.

1 Introduction
Many state-of-the-art deep learning-based image hashing approaches [2, 8, 10, 11, 12, 19,
22, 23] use loss functions designed by the intuition that similar images should be close and
that dissimilar images should be far in the hash code space. While these modern approaches
obtain impressive performance on the task of deep image hashing, the precise theoretical
definition of what ‘far’ should mean in terms of the Hamming distance between hash codes
is still unclear. In contrast, work in coding theory provides precise definitions and theoretical
bounds on the distance between optimal binary codes [14]. The goal of this work is to utilize
the theoretical results of coding theory to better inform the design of loss functions for deep
learning based image hashing.

The concept of the Hamming bound [14] is useful for understanding the trade-off be-
tween the length L of a codeword (i.e., a vector of L binary values), the size M of the code-
book (i.e., a set of M unique codewords) and the minimum Hamming distance dmin between
any two unique codewords. The Hamming bound, which is an upper bound on the codebook
size, can be derived as:

M ≤ QL

f (dmin,Q,L)
, (1)
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where the alphabet size Q = 2 for binary codes and f is a function that will be described in
detail later.

Typically, the Hamming bound is used to determine the maximum number of codewords
M that one can utilize while ensuring a desired level of error correction ability. The error
correcting measure of the coding scheme depends on how different the codewords are from
each other, which is directly related to the value of the minimum Hamming distance dmin.
If the codeword length L and the codeword space are determined, then increasing the error
correcting properties of the codewords will increase the denominator f (dmin,Q,L) and there-
fore reduces the number of codewords M that can be used. We will show later that this tight
coupling between codeword length, codebook size and minimum Hamming distance is very
informative for the design of deep image hashing loss functions.

In the context of deep image hashing, the number of codewords (size of the codebook) M
is equal to the number of semantic categories in our image dataset. The intuition here is that
images within a semantic category should be mapped to the same hash code and therefore
we only need M unique hash codes to represent M classes. More importantly, M is known
in advance, as it is determined by the labeled image dataset. In addition, the length of the
codeword L (determined by the designer) and the codeword space Q (typically binary) are
also known prior to training the model. Given these known constants, we are able to compute
an upper bound for the error correction measure or the minimum Hamming distance dmin as:

f (dmin)≤
QL

M
. (2)

Here we have denoted f (dmin,Q,L) in shorthand as f (dmin) since f is a monotonically in-
creasing function of dmin when L and Q are fixed. Eq. 2 describes the upper bound on the
minimum Hamming distance dmin (more detailed description in Section 3). When one for-
mulates the loss function for deep image hashing, it is ideal to learn a set of hash codes for
which the minimum Hamming distance reaches this theoretical limit.

Based on this code theoretic perspective, we propose to directly incorporate the concept
of the Hamming bound into the objective function for learning image hash codes. The key
idea of our method is to define an objective function that penalizes hash codes for which
the distance between two different image categories falls below the known upper bound for
the minimum Hamming distance dmin. The overall training pipeline is shown in Figure 1.
Extensive experiments on standard benchmarks show that our proposed code-theoretic deep
hashing approach outperforms state-of-the-art deep hashing approaches and achieve signifi-
cantly better results.

2 Related Work
Most existing hashing methods can be categorized into unsupervised or supervised meth-
ods. Unsupervised hashing methods only utilize the training data points to learn hash codes
without using any supervised information. Compared to unsupervised methods, supervised
methods usually can achieve competitive performance with fewer bits due to the help of
supervised information [10]. Typically, the supervised information is provided in one of
three forms: pointwise labels, pairwise labels or ranking labels [12]. The representative
of traditional supervised hashing methods includes CCA-ITQ [6], minimum Loss Hash-
ing (MLH) [17], Supervised Hashing with Kernels (KSH) [15], Ranking-based Supervised
Hashing(RSH) [18] and Column Generation Hashing (CGHASH) [13].

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015

Citation
Citation
{Li, Wang, and Kang} 2015

Citation
Citation
{Gong and Lazebnik} 2011

Citation
Citation
{Norouzi and Fleet} 2011

Citation
Citation
{Liu, Wang, Ji, Jiang, and Chang} 2012

Citation
Citation
{Wang, Liu, Sun, and Jiang} 2013

Citation
Citation
{Li, Lin, Shen, Vanprotect unhbox voidb@x penalty @M  {}den Hengel, and Dick} 2013



XU, WANG, KITANI: ERROR CORRECTION MAXIMIZATION FOR DEEP HASHING 3

Image Feature Learning

    Pairwise Loss
and

 Quantization Loss

Hash Code Learning

Hash Code

Determine the optimal margin based 
on the Hamming bound

Optimal
Negative 
Margin

Hash Code

Code Length

Alphabet Size

Codebook Size

Figure 1: Overview of the proposed deep hashing method.

Recently, deep hashing methods [2, 10, 12, 19, 21, 22, 23] have been proposed to simul-
taneously learn image feature and hash codes with deep neural networks and have demon-
strated superior performance over traditional hashing methods. One key to the success of
current deep hashing methods is their carefully designed loss functions, which evaluates
how well the learned hash codes approximate the similarity between images. The previous
state-of-the-art method DPSH [12] proposes a definition of pairwise label likelihood to eval-
uate the quality of the learned hash codes and DTSH [19] further proposes a definition of
triplet label likelihood. Other works such as HashNet [2] focus on designing new continuous
activation function in order to address the gradient problem for training non-smooth binary
hash codes.

Most loss functions are designed based on the intuition that two similar images should be
close to each other and that two dissimilar images should be far from each other. However,
many loss functions lack a theoretical explanation of how far two dissimilar images should
be in the Hamming space. Different from them, we first show that there exists an upper
bound for the minimum Hamming distance between dissimilar images and then formulate
our loss function based on the bound.

3 Upper Bound for Minimum Hamming Distance
We are given N training images I = {I1, . . . , IN} from M semantic classes, as well as U
pairwise labels. We denote the given U pairwise labels as S = {sq11q12 , . . . ,sqU1qU2}, where
squ1qu2 indicates whether the image of index qu1 (Iqu1 ) and index qu2 (Iqu2 ) are similar to each
other or not. squ1qu2 = 1 means Iqu1 and Iqu2 are similar to each other, and squ1qu2 = 0 means
Iqu1 and Iqu2 are dissimilar from each other. If squ1qu2 = 1, we call this image pair as a positive
image pair, otherwise, a negative pair.

Our goal is to learn a hash code bn for each image In, where b ∈ {+1,−1}L and L is
the target length of hash codes. Hash codes for all images B = {bn}N

n=1 should satisfy all
the pairwise labels S as much as possible in the Hamming space. More specifically, given
pairwise label squ1qu2 , distH(bqu1 ,bqu2) should be as small as possible if squ1qu2 = 1, other-
wise distH(bqu1 ,bqu2) should be as large as possible. Here, distH(·, ·) denotes the Hamming
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distance between two hash codes.

3.1 Hamming Bound
We now introduce the concept of Hamming bound from the field of coding theory [14]. Let C
denote a codebook with a nonempty set of Q-ary codewords of length L. A Q-ary codeword
of length L refers to a L-length sequence {w1,w2 . . .wL} with each element wi ∈ A, where
A is the set of Q possible values {a1,a2, . . . ,aQ}. Each element c ∈ C is a codeword. We
use M to denote the the number of codewords in C and thus M = |C|. In this work, we are
only concerned with binary codes where Q = 2, so each codeword or hash code is a L-bit
sequence of −1 and 1s.

For a codebook C containing at least two codewords, the minimum Hamming distance of
this codebook, denoted by dmin(C) is,

dmin(C) = min{distH(x,y) : x,y ∈ C,x 6= y}.

Here distH(·, ·) denotes the Hamming distance between any two codewords.
To understand why the minimum Hamming distance dmin(C) is important, intuitively, we

can see that the larger dmin(C) is, the more noise a code can have while still being classified
correctly. Formally, if there are V bits of errors in an erroneous hash code from class m.
Then as long as V ≤ b dmin(C)−1

2 c, we can simply choose the nearest codeword from C in
terms of Hamming distance to the erroneous hash code and it will still be the same codeword
from class m. This means that the minimum Hamming distance is a good indication of model
robustness and by increasing the minimum Hamming distance, we are guaranteed to improve
the image retrieval performance.

Conceptually, we hope that the codebook size M and the minimum Hamming distance
dmin are as large as possible. However, the Hamming bound shows that with fixed alpha-
bet size Q, codeword length L and the desired error-correcting capability (indicated by the
minimum Hamming distance dmin), there exists an upper bound for the codebook size M.
Formally, for any Q-ary (L,M,dmin)-codebook, the following relationship between the code-
book size M and the minimum Hamming distance dmin must hold:

M ≤ QL

∑
b(dmin−1)/2c
i=0

(L
i

)
(Q−1)i

. (3)

The detailed proof of Hamming bound can be found in the book [14].
For the task of deep image hashing, there are M semantic classes and we hope all images

from one semantic class are mapped to the same hash code. Thus the goal of supervised
hashing is to learn M unique hash codes or a codebook of size M. The alphabet size Q of
the code is 2 as hash codes are binary values of -1 and 1s. The hash code length L is also
determined prior to training. We can now modify Eq. 3 as follows:

b(dmin−1)/2c

∑
i=0

(
L
i

)
≤ 2L

M
. (4)

∑
b(dmin−1)/2c
i=0

(L
i

)
is monotonically increasing with respect to dmin, therefore for given M and L

we can find the maximum d∗min that satisfies this bound. This will be the minimum Hamming
distance that our model optimizes towards.
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4 Method
Our method consists of three key components: (1) image feature learning, (2) hash code
learning and (3) the loss function, as shown in Figure 1. For image feature learning, we
use convolutional layers and fully connected layers to learn the image feature. We initialize
these layers with the weights pre-trained on ImageNet. In order to generate hash codes from
image features, we adopt one fully connected layer with randomly initialized weights and
set the number of nodes of the layer to the target hash code length L. The two components
are similar to what being used in DPSH [12] and DTSH [19]. The loss function evaluates
the quality of the generated hash codes and guides the training of the network. We define the
loss function based on the optimal negative margin determined by the upper bound on the
minimum Hamming distance. We will introduce the loss function and the optimal negative
margin in detail in the following text.

4.1 Loss Function Definition
Our loss function measures how well a given pairwise label is satisfied by the hash codes
generated by the deep neural network. The key motivation of the loss function is that it only
penalizes the network when the Hamming distance between the hash codes of two dissimilar
images is smaller than the upper bound on the minimum Hamming distance dmin computed
from Eq. 4.

We use Θi j to denote the inner product between two hash codes bi,b j ∈ {+1,−1}L:

Θi j = bT
i b j. (5)

Given UP as the set of indexes for positive image pairs, UP = {u | 1≤ u≤U,squ1qu2 = 1}, and
UN as the indexes for negative image pairs, UN = {u | 1≤ u≤U,squ1qu2 = 0}. Our proposed
pairwise label based loss function is defined as

Lpairwise =
1
|UP| ∑

u∈UP

([Θqu1qu2 −αpos]−)
2

α2
pos

+
1
|UN | ∑

u∈UN

([Θqu1qu2 −αneg]+)
2

α2
neg

(6)

where [x]− = min(0,x), [x]+ = max(0,x), and αpos, αneg are the two margin parameters
computed from the Hamming bound (described in Section 4.2).

We now show how minimizing Lpairwise matches the objective of pulling the hash codes
of two similar images closer and pushing the hash codes of two dissimilar images further in
the hash code space. We can prove the following relationship between the Hamming distance
between two hash codes and their inner product:

distH(bi,b j) =
1
2
(L−Θi j), (7)

where L is the length of the hash codes.
We first focus on the positive image pairs in Eq. 6. Assume image Iqu1 and image Iqu2

are similar to each other, i.e., squ1qu2 = 1 and they belong to the same category. Since [x]− =

min(0,x), we know that as x increases, ([x]−)
2 will become smaller and smaller until it

becomes zero. Thus, for a positive image pair Iqu1 and Iqu2 , the larger (Θqu1qu2 −αpos) is,
the smaller the loss Lpairwise will be. According to Eq. 7, the larger Θqu1qu2 is, the smaller
distH(bqu1 ,bqu2) will be. Therefore, by minimizing Lpairwise, we can enforce the Hamming
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distance between two similar images to be small. Similarly, we can show that, by minimizing
Lpairwise, we can enforce the Hamming distance between two dissimilar images to be large.

In practice, we can also extend the loss function with the ‘class-wise’ strategy used in [16,
20]. The ‘class-wise’ strategy maintains a center hash code for each image class during
training and images from other classes only need to be compared to the center hash code
instead of all the images in that class. The ‘class-wise’ strategy can speed up the training
and is useful when the number of image classes is large. More importantly, it is perfectly
consistent with our derivation of the upper bound on the minimum Hamming distance dmin.
In our derivation, we assume each image class is represented by a unique codeword, which
is rarely true in practice. Therefore, it is reasonable to compare an image to the center hash
code instead of any individual image in that class. We empirically find that ‘class-wise’
strategy yields better results on ImageNet-100.

Note that Lpairwise is positive only when the inner product between the hash codes of
two dissimilar images is larger than αneg or when the inner product between the hash codes
of two similar images is smaller than αpos. We will introduce how we set the value of the
two margin parameters based on the theoretical results derived from the Hamming bound,
instead of setting them heuristically.

4.2 Setting the Margin
In the analysis in Sec 3, we assume that all images from the same semantic class are mapped
to the same hash code. This means that the inner product between the hash codes of two
similar images should equal the length of the hash code. Thus, we set αpos to the length of
the hash code, i.e., αpos = L.

According to Sec 3, given the number of semantic classes M and the length of the
hash code L, we can compute the upper bound on the minimum Hamming distance be-
tween any two dissimilar images. In practice, we compute the integer value d∗min such that

∑
b((d∗min−1)−1)/2c
i=0

(L
i

)
≤ 2L

M and ∑
b(d∗min−1)/2c
i=0

(L
i

)
> 2L

M . Note that d∗min does not satisfy the
Hamming bound inequality in Eq. 4 but (d∗min−1) does satisfy the inequality. The d∗min we
use is one Hamming distance larger than the upper bound given by Eq. 4.

The value of d∗min implies that for a given M and L, the minimum Hamming distance be-
tween dissimilar images cannot be larger than d∗min. Therefore, we set the value of the margin
αneg such that the loss function only penalizes the network when the Hamming distance of
two dissimilar images is smaller than d∗min. According to Eq. 7, we can compute the value of
αneg using the following equation:

αneg = L−2d∗min. (8)

Note that here we set the value of αneg based on the theoretical results derived from the
Hamming bound. This stands in sharp contrast to previous work where the margin parameter
is set heuristically.

4.3 Quantization Loss
We denote the vector of activations of the last layer of the network for the n-th image as un
and we obtain the binary codes bn by applying the sign function to un, i.e., bn = sgn(un).
Directly minimizing Lpairwise with back-propagation is impossible since the gradient of the
sign function is always 0. Therefore, during training, we relax the binary codes bn to the
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float vector un and re-define Θi j as Θi j = uT
i u j. Using this surrogate loss function, we can

minimize Lpairwise with back-propagation. Since the approximation will introduce additional
quantization error, we also include the quantization error term in our loss function, following
DTSH [19] and DPSH [12]. Our final loss function becomes,

Ltotal = Lpairwise +λLquan, (9)

where Lquan is defined as Lquan = ∑
N
n=1 ||bn−un||22 and λ is the hyper-parameter to balance

Lpairwise and Lquan.

5 Experiments

5.1 Datasets and Settings
We conduct experiments on two standard benchmarks: CIFAR-10 [9] and ImageNet-100
[4]. Each dataset is split into a database image set and a test image set. Training images
and validation images are sampled from the database image set. At test time, images in
the test set are used as query images to query the database. The retrieval performance is
evaluated using Mean Average Precision (MAP) for experiments conducted on CIFAR-10.
For ImageNet-100, we use MAP@1000 as the evaluation metric,

CIFAR-10 contains 60K images of size 32×32. It has 10 different categories and 6,000
images for each category. Following the experiment setup in [10, 12, 19, 21], we evaluate
our method under two different settings. In the first setting, 1K images (100 images per
class) are randomly selected as the test set. The remaining images are used as the database.
5K database images (500 images per class) are randomly sampled as the training set and 1K
database images (100 images per class) are randomly sampled as the validation set. In the
second setting, 10K images (1K images per class) are randomly sampled as test images. The
remaining 50K images are used as database images and all the database images are used for
training.

ImageNet-100 is a subset of ImageNet [4] with 100 randomly sampled classes. We use
the same data split as HashNet [2]. All images from ILSVRC 2012 train set are treated as the
database images, and 130 images per class, totally 130K images, are randomly sampled from
the database images as training data. All images in the selected classes from the ILSVRC
2012 validation set are used as test images. 50 images per class are randomly sampled from
the database as the validation set.

Following the setup from previous works [1, 2, 12, 19], we use the pre-trained VGG-F
network [3] to initialize our network for experiments on CIFAR-10. Our network is trained
with SGD and an initial learning rate of 0.05. For experiments on ImageNet-100, we use
pre-trained AlexNet [9] and set the learning rate for fully-connected layers to be 10 times
larger than that of the convolutional layers, similar to HashNet [2]. The initial learning rate
is set to 0.005 and the model is trained using SGD with 0.5 momentum. The batch size is set
to 64 for all the experiments.

5.2 Performance Evaluation
We have tried training the network with the loss function in Eq. 9 (denoted by ‘Ours’) and
the loss function extened with the ‘class-wise’ strategy (denoted by ‘Ours + class-wise’).
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Method
CIFAR-10 (5K train / 1K test)

bits = 12 24 32 48
αneg = -6 -14 -18 -34

MIHash [5] 0.687 0.775 0.786 0.822
TALR-AP [7] 0.732 0.789 0.800 0.826
DPSH [12] 0.720 0.757 0.757 0.767
DTSH [19] 0.725 0.773 0.781 0.810
Ours 0.832 0.858 0.864 0.870
Ours + class-wise 0.835 0.854 0.862 0.866

Table 1: MAP on CIFAR-10 (5K train / 1K test).

Method
CIFAR-10 (50 K train / 10K test)

bits = 16 24 32 48
αneg = -6 -14 -18 -34

MIHash [5] 0.929 0.933 0.938 0.942
TALR-AP [7] 0.939 0.941 0.943 0.945
DPSH [12] 0.908 0.909 0.917 0.932
DTSH [19] 0.916 0.924 0.927 0.934
Ours 0.950 0.951 0.953 0.952
Ours + class-wise 0.949 0.950 0.952 0.952

Table 2: MAP on CIFAR-10 (50K train / 10K test).

CIFAR-10: We set λ to 0.002 for all experiments on CIFAR-10. The Mean Average
Precision (MAP) for the two settings are shown in Table. 1 and Table. 2 respectively. ‘Ours
+ class-wise’ refers to the performance when using the ‘class-wise’ strategy. The values of
the negative margin used in our experiments are also shown in the table. They are determined
based on Eq. 8. Experimental results from both settings show that our method outperforms
previous deep hashing methods across different hash code lengths, whether using the ‘class-
wise’ strategy or not.

ImageNet-100: To further validate our proposed method, we conduct experiments on
the more challenging ImageNet-100 dataset. ImageNet-100 has more classes then CIFAR-
10 and images are more diverse, which makes it harder to learn high-quality hash codes. For
all thee experiments on ImageNet-100, we set λ to 0.01. Table 3 summarizes the MAP@1K
for different code lengths. We see that our method performs on par with the previous state-of-
the-art method and significantly outperforms them when combined with ‘class-wise’ strat-
egy. On ImageNet-100, the best performance is achieved when extending our method with
the ‘class-wise’ strategy. We attribute the performance gain to that using the ‘class-wise’
strategy is more consistent with the derivation of the upper bound as explained in Sec. 4.1.

5.3 Ablation Studies

Impact of Negative Margin: We now study the impact of negative margin αneg on the final
performance. All other settings except for the negative margin αneg are unchanged. All the
following experiments are conducted with the ‘class-wise strategy’.

Figure. 2(a) summarizes the results for CIFAR-10 with different negative margin values
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Method bit= 16 32 48 64 bits
αneg = 2 -6 -18 -30

HashNet [2] 0.5059 0.6306 0.6633 0.6835
MIHash [5] 0.5688 0.6608 0.6852 0.6947
TALR-AP [7] 0.5892 0.6689 0.6985 0.7053
Ours 0.6032 0.6658 0.6892 0.7014
Ours + class-wise 0.6429 0.6967 0.7163 0.7247

Table 3: MAP@1000 on ImageNet-100.
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Figure 2: Impact of negative margin. Black dots represents the negative margin computed
based on the Hamming bound.

under the first setting. Performance of the negative margin computed based on the Hamming
bound is shown in black dots. We can see that the negative margin determined by the Ham-
ming bound consistently give the best performance or one of the best performances across
different code lengths. The performance is more sensitive to the negative margin value for
shorter hash codes than longer hash codes. Shorter hash codes provide a smaller space for
all the classes than long hash codes, making it harder for the network to learn to generate
high-quality hash codes, thus setting the negative margin to an inappropriate value will lead
to a larger drop in terms of performance.

We also show the results on ImageNet-100 in Figure 2(b). We can see that on ImageNet-
100, the negative margin determined by the Hamming bound also consistently gives the
best performance. We also observe that the performance is more sensitive to the negative
margin value on ImageNet-100 than that on CIFAR-10. This is because ImageNet-100 has
much more classes and also images in ImageNet-100 are more diverse. Setting the negative
margin to an inappropriate value will make it harder to represent all the images as hash codes
while still preserving the similarity between them.

Impact of Hyper-Parameter: We now study the impact of the hyper-parameter of λ on
the performance. We vary the value of λ and report the MAP@1000 on ImageNet-100 with
code length 32 and 64. The results are shown in Figure 3. We can see that our method works
well when λ is between 0.001 and 0.1. When λ = 1.0, we observe that the training does not
converge so we exclude those points from the figure.
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Figure 3: Impact of λ on ImageNet-100.

6 Conclusion

In this paper, we have proposed a principled method for designing the loss function of a deep
image hashing network. We show that the minimum Hamming distance between two images
from different semantic categories has an analytic upper bound and that by incorporating
that value into the loss function, we can obtain an optimal hash code. As a consequence,
we not only improve the error correction ability of the learned hash codes, but moreover,
we showed through empirical validation that our upper bound based loss function leads to
significant improvements in the quality of the generated hash codes over state-of-the-art deep
image hashing approaches.
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