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Abstract

In this paper, we investigate the use of generative adversarial networks in the task of image
generation according to subjective measures of semantic attributes. Unlike the standard (CGAN)
that generates images from discrete categorical labels, our architecture handles both continuous
and discrete scales. Given pairwise comparisons of images, our model, called RankCGAN,
performs two tasks: it learns to rank images using a subjective measure; and it learns a generative
model that can be controlled by that measure. RankCGAN associates each subjective measure
of interest to a distinct dimension of some latent space. We perform experiments on UT-Zap50K,
PubFig and OSR datasets and demonstrate that the model is expressive and diverse enough to
conduct two-attribute exploration and image editing.

1 Introduction
Humans routinely order objects based on semantic attributes. For example, people agree on what is
“stylish”, at least to a sufficient extent for a meaningful communication. However, such subjective con-
cepts are ill defined mathematically, making the building of a computational model an open challenge.

In this paper, we propose an extension to CGAN [33] to address the problem of synthesizing images
while controlling subjective measures of semantic attributes. For instance, we want a system that
produces shoes images ranked according to the degree they exhibit a semantic attribute e.g. “sporty”.

In recent works, semantic attributes were defined as categorical labels [6, 7] indicating the presence
or the absence of some attributes. Training a conditional generative model, where the labels are as-
signed to a latent variable, results in a control limited to switching on or off the attribute in the generated
images. In contrast, we provide a mapping of semantic attributes onto a continuous subjective scale.

Although humans can order elements in an object class, there is typically no scale associated with
the ordering: people can say one pair of shoes is more “sporty” than another pair, but not by how much.
To address this problem, a ranking function is learned per attribute which can predict the rank of a
novel image using an annotated set of image pairs where each pair is ordered under human supervision.

The key characteristic of our approach is the addition of a ranking unit that operates alongside the
usual discriminator unit. Both the ranker and the discriminator receive inputs from a generator. As is
usual, the role of the discriminator is to distinguish between real and fake images; the role of the ranker
is to infer subjective ranking according to the semantic attributes. We call our architecture RankCGAN.

We evaluated RankCGAN on three datasets, shoes (UT-Zap50K) [51], faces (PubFig) [21] and
scenes (OSR) [35] datasets. Results in Section 4 show that our model can disentangle multiple
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attributes and can keep a correct continuous variation of the attribute’s strength with respect to a
ranking score, which is not guaranteed with a standard CGAN.

Contributions: In sum, our contributions are: (1) A solution to the problem of rank ordering
semantic attributes; (2) A novel conditional generative model that can generate images under semantic
attributes that are subject to a global subjective ranking; (3) A training scheme that requires only
subjective ranked pairs of images. There is no need for global ranking or to annotate the whole dataset.

2 Related work
Deep Generative Model: There is substantial literature on learning with deep generative models.
Early studies were based on RBMs and denoising auto-encoders [10, 11, 44, 48]. Recently,
deterministic networks [5, 39, 50] propose architectures for image synthesis. In comparison, stochastic
networks rely on a probabilistic formulation of the problem. VAE [19, 41] maximizes a lower bound
on the log-likelihood of training data. PixelRNN [34] represents directly the conditional distribution
over the pixel space. GANs [8] have the ability to generate sharp image samples with higher resolution.

Several studies have investigated conditional image generation settings. Most of the methods
use a supervised approach such as text, attributes and class label conditioning to learn a desired
transformation [30, 33, 40, 47]. Additionally, there are works on image-conditioned models, such as
style transfer [15, 54], super-resolution [24, 42] and cross-domain image translation [13, 17, 25, 31].

In contrast, fewer works have focused on disentangling latent space representation. InfoGAN [4]
learns unsupervisedly semantic features by maximizing mutual information between the latent code
and the generated observation. In the spectrum of supervised approaches, VAE [19] was used in
DC-IGNs [20] to learn latent codes representing the rendering process of 3D objects, similarly used in
Attribute2Image [49] to separately generate the background and the foreground of an image. Attempts
to incorporate the adversarial objectives were conducted in VAE [32] and autoencoders [29] settings.

In fader network [22] approach, the attribute is incorporated in the encoded image and trained
using binary labels, which requires a careful parametrization. Independently, CFGAN [16] proposes
a filtering architecture that enables more variations of the attribute and hence more control options.
Finally, RankGAN [26] proposes a method which substitutes the discriminator of GAN by a ranker
for generating high-quality natural language descriptions. If we were to project this method on image
generation task, the ranker will be modelled to order real image higher than generated ones. But, in
our work, the ranker will play a different role: it orders the images according to their present semantic
attributes rather than their quality.

Image Editing: Image editing methods have a long history in the research community. Recently,
CNN based approaches have shown promising results in image editing tasks such as image coloriza-
tion [12, 23, 52], filtering [28] and inpainting [36]. These methods use an unsupervised training
protocol during the reconstruction of the image, that may not capture important semantic contents.

Handful works used generative models for image editing. iGAN [53] imposes color and shape con-
straints on an input image, finds the best latent code of GAN satisfying these constraints, and then trans-
fers the generated image motion and color flow during the interpolation to the real image. Similarly,
the Neural photo editor [2] proposes an interface for portrait editing using an hybrid VAE/GAN model.

Aiming for high semantic level image editing, the Invertible Conditional GAN [37] trains separately
a CGAN on the attributes of interest and an encoder that maps the input image to the latent space of
CGAN. Similarly, CFGAN [16] relies on iGAN’s [53] approach to estimate the latent variables of an in-
put image, while the Fader network [22] can directly manipulate the attributes using its built-in encoder.

Relative Attributes: Visual concepts can be represented by semantic attributes. In early studies,
binary attributes, describing the presence of an attribute, showed excellent performance in object
recognition [45] and action recognition [27]. However, relative attributes [35] proposes a better rep-
resentation that quantifies the strength of an attribute by learning a global ranking function on images
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using constraints describing the relative emphasis of attributes. This approach is regarded as solving
a learning-to-rank problem where a linear function is learned based on RankSVM [14]. Similarly,
RankNet [3] trains a neural network to model the ranking function using gradient descent methods.
Also, Criteria Sliders [46] applies semi-supervised learning to learn user-defined ranking functions.

3 Approach
In this section, we outline the generative CGAN [33]; then the discriminative RankNet [3]; and last we
describe our contribution by showing how to combine these distinct architectures to build RankCGAN.

3.1 Generation by CGAN
The CGAN [33] is an extension of GAN [8] in a conditional setting. The generative adversarial
network (GAN) is a generative model trained using a two-player minmax game. It consists of two
networks: a generator G which outputs a generated image G(z) given a latent variable z∼ pz(z), and a
discriminator D which is a binary classifier that outputs a probability D(x) of the input image x being
real; that is, sampled from true data distribution x∼ pdata(x). The minmax objective is defined as:

min
G

max
D

Ex∼pdata(x)[log(D(x))]+Ez∼pz(z)[log(1−D(G(z)))]. (1)

In this model, there is no control over the latent space: the prior, pz(.), on z is often a multivariate nor-
malN (0,I) or a multivariate uniform U(−1,1) distribution. Thus sampling generates random images.

CGAN [33] provides some control over the generation process via an additional latent variable,
r, that is passed to both the generator and discriminator. The objective of CGAN is expressed as:

min
G

max
D

Er, x∼pdata(r, x)[log(D(r, x))]+Ez∼pz(z), r∼pr(r)[log(1−D(r, G(r, z)))]. (2)

We can now consider the latent space to be partitioned into two parts: a random subspace for z that oper-
ates exactly as in standard GAN, and an attribute subspace containing r over which the user has control.

3.2 Discrimination by RankNet
RankNet [3] is a discriminative architecture in the sense that it classifies a pair of inputs, xi and
x j according to their rank order: xi .x j or xi /x j. As proposed in [43], the architecture learns a
ranking function R that maps an input image x to a real ranking score value R(x), such that xi.x j or
R(xi)>R(x j) means that input xi is ranked higher than input x j. The training is supervised by a set of
triplets {(x(1)i , x(2)i , yi)}Pi=1 where P is the dataset size, (x(1)i , x(2)i ) is a pair of images and yi∈{0,1}
is a binary label indicating whether the image x(1)i exhibits more of some attribute than x(2)i or not.
The loss function for (x(1)i , x(2)i ) along with the target label yi is defined as a cross binary entropy:

LQ(x
(1)
i , x(2)i , yi)=−yilog(pi)−(1−yi)log(1−pi), (3)

where the posterior probabilities pi=P(x(1)i .x(2)i ) make use of the estimated ranking scores

pi=sig(R(x(1)i )−R(x(2)i )) :=
1

1+e−(R(x
(1)
i )−R(x(2)i ))

. (4)
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Figure 1: The difference between CGAN and RankCGAN architectures. The dark grey represents
the latent variable, light grey represents the observable images, the light blue indicates the output
of the discriminator and the ranker, and the dark blue indicates their loss functions.

3.3 Ranking Conditional Generative Adversarial Networks

Recall our aim: to generate images of a particular object class, controlled by one or more subjective
attributes. With CGAN and RankNet available, we construct our architecture called RankCGAN. The
key novelty of RankCGAN is the addition of a ranking unit where the training scheme puts semantic
ordering constraints in the generation process with respect to input latent variables. We note that
RankCGAN does not use the matching-aware discriminator [40] as in CGAN because it is trained
on continuous controlling variables rather than binary labels.

The Figure 1 illustrates the RankCGAN architecture that is versatile enough to specify points over a
line or a plane using one or two semantic attributes respectively, and in principle could operate in three
or more dimensions. For simplicity’s sake, we open our description with the one-dimensional case,
followed by a generalization to n dimensions. Finally, we augment RankCGAN with an encoder that al-
lows users to specify the subjective degree of semantic attributes, and in that way control image editing.

3.3.1 The one-attribute case

The generator G takes two inputs, z∼N (0, I) the unconditional latent vector, and r∼U(−1, 1)
the latent variable controlling the attribute. The generator outputs an image x=G(r, z). This image
is input not just to a discriminating unit, D(x), as in CGAN, but also to a ranking unit R(x); as
seen in Figure 1. Consequently, the architecture has three sets of parameters ΘG, ΘD, and ΘR for
the generator, discriminator, and ranker, respectively. As for RankNet, let {(x(1)i , x(2)i , yi)}Pi=1 be
pairwise comparisons and {xi}Ni=1 an image dataset of size N. These datasets are used in a supervised
mini-batch training scheme of size B by defining three loss functions, one for each unit: generation
(LG), discrimination (LD), and ranking (LR).

LG(I)=−
1
B

B

∑
i=1

log[D(Ii)], (5)

such that {Ii}Bi=1={G(ri, zi)}Bi=1.

LD(I)=−
1
B

B

∑
i=1

(tlog[D(Ii)]+(1−t)log[1−D(Ii)]), (6)
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where t=

{
1 if {Ii}Bi=1={xi}Bi=1,

0 if {Ii}Bi=1={G(ri, zi)}Bi=1.

LR(I(1), I(2), l)=
2
B

B/2

∑
i=1
LQ(I

(1)
i , I(2)i , li)=−

2
B

B/2

∑
i=1

(lilog[sig(R(I(1)i )−R(I(2)i ))]

+(1−li)log[1−(sig(R(I(1)i )−R(I(2)i )))]), (7)

with{
(I(1)i , I(2)i , li)

}B/2

i=1
=


{
(x(1)i , x(2)i , yi)

}B/2

i=1
, ‘for real images’;{

(G(r(1)i , z(1)i ), G(r(2)i , z(2)i ), f (r(1)i , r(2)i ))
}B/2

i=1
, ‘for synthesised images’;

f (r(1)i , r(2)i )=

{
1 if r(1)i >r(2)i ,

0 else.
(8)

The Algorithm 1 defines the adversarial training of RankCGAN using the loss functions. The hyper-
parameter λ controls the contribution of the ranker-discriminator during the updates of the generator.

3.3.2 Multiple semantic attributes

An interesting feature of RankCGAN is the model extension to multiple attributes. The architecture
design and the training procedure remain intact, the only differences are the incorporation of new latent
variables that control the additional attributes and the structure of the ranker which outputs a vector of
ranking score with respect to each attribute. There are two ways of designing a multi-attribute ranker,
either using a separate ranking layer for each attribute, or a single ranking layer shared between all the
attributes. Let {(x(1)i , x(2)i , yi)}Pi=1 be pairwise comparisons where yi is a vector of binary labels indi-
cating whether x(1)i .x(2)i or not with respect to all S attributes. We define the loss function of ranking:

LR(I(1), I(2), l)=
S

∑
j=1
LR j(I

(1), I(2), l j), (9)

LR j(I
(1), I(2), l j) is the ranking loss with respect to the attribute j, defined similarly to Equation (7):

LR j(I
(1), I(2), l j)=−

2
B

B/2

∑
i=1

(li jlog[sig(R(I(1)i )−R(I(2)i ))]

+(1−li j)log[1−(sig(R(I(1)i )−R(I(2)i )))]), (10)

such that{
(I(1)i , I(2)i , li j)

}B/2

i=1
=


{
(x(1)i , x(2)i , yi j)

}B/2

i=1
, ‘for real images’;{

(G(r(1)i j , z(1)i ), G(r(2)i j , z(2)i ), f (r(1)i j , r(2)i j ))
}B/2

i=1
, ‘for synthesised images’;

f (r(1)i j ,r
(2)
i j )=

{
1 if r(1)i j >r(2)i j ,

0 else,
(11)

with yi j j-th element in yi and ri j i-th input in the mini-batch, associated to the j-th attribute latent
variable.
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Algorithm 1 RankCGAN
Set the learning rate η, the batch size B, and the training iterations S
Initialize each network parameters ΘD,ΘR,ΘG

Data Images Set {xi}Ni=1, Pairs Set
{
(x(1)i , x(2)i , yi)

}P

i=1
for n=1 to S do

Get real images mini-batches:

xreal ={xi}Bi=1, x(pair)
real =

{
(x(1)i , x(2)i , yi)

}B/2

i=1
Get fake images mini-batches:

x f ake={G(ri, zi)}Bi=1, x(pair)
f ake =

{(
G(r(1)i , z(1)i ), G(r(2)i , z(2)i ), f (r(1)i , r(2)i )

)}B/2

i=1
Update the discriminator D:

ΘD←ΘD−η ·
(

∂LD(xreal)
∂ΘD

+
∂LD(x f ake)

∂ΘD

)
Update the ranker R:

ΘR←ΘR−η · ∂LR(x
(pair)
real )

∂ΘR
Update the generator G:

ΘG←ΘG−η ·
(

∂LG(x f ake)

∂ΘG
+λ ·

∂LR(x
(pair)
f ake )

∂ΘG

)
end for

3.4 An Encoder for Image Editing
The image editing task consists of inferring the latent variables (r, z) of an image x and generating the
desired image by manipulating r. Since GAN lacks an inference mechanism, we use latent variables
estimation for such task. The approach [37] consists of creating a dataset of size M from the generated
images and their latent variables {ri, zi, G(ri, zi)}Mi=1 and training the encoders Er, Ez which encode
to r and z on this dataset. Their loss functions are defined in the mini-batch setting as follows:

LEz=
1
B

B

∑
i=1
‖zi−Ez(G(ri, zi))‖22, LEr=

1
B

B

∑
i=1
‖ri−Er(G(ri, zi))‖22 . (12)

To reach a better estimation of z and r we can use the manifold projection method proposed in [53]
which consists of solving the following problem:

r∗, z∗=argmin
r, z
‖x−G(r, z)‖22 . (13)

Unfortunately, this problem is non-convex, so that obtained estimates for r∗ and z∗ are strongly
contingent upon the initial values of r, z; good initial values are provided by the encoders Er, Ez.

4 Empirical Results

4.1 Datasets
We used three datasets that provide relative attributes: UT-Zap50K [51], PubFig [21], and OSR [35].

UT-Zap50K [51] consists of 50,025 shoes images with white backgrounds and same orientation
rescaled to 64×64 for GAN training purpose. The annotations for pairwise comparisons comprise
4 attributes (sporty, pointy, open, comfortable). We defined the “black” attribute by comparing the
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Figure 2: Mean FID (solid line) surrounded by a shaded area bounded by the maximum and the mini-
mum over 5 runs for GAN/RankCGAN on PubFig, OSR and UT-Zap50K datasets. Left: PubFig with
two RankCGANs trained on “masculine” and “smiling” attributes, starting at 3k mini-batch for better
visualisation. Middle: UT-Zap50K with two RankCGANs trained on “sporty” and “black” attributes,
also starting at 3k mini-batch. Right: OSR with one RankCGAN trained on “natural” attribute.

color histogram of images. We relied on coarse pairs collection in our experiments because they are
easy to visually discern. It contains 1,500 to 1,800 ordered pairs per each attribute.

PubFig dataset [21] consists of 15,738 downloaded face images rescaled to 64×64. A subset of
PubFig dataset is used to build a relative attributes dataset [1] containing 900 facial images of 60
categories and 29 attributes. The ordering of samples is annotated in a category level with respect
to an attribute. We used 50,000 pairwise image comparisons from the ordered categories.

Finally, Outdoor Scene Recognition dataset (OSR) [35] consists of 2,688 images rescaled to 64×64
from 8 scene categories and 6 attributes. Similar to PubFig, the attributes are defined in a category level,
which enable to create 50,000 pairwise image comparisons to train the ranker on the desired attribute.

4.2 Implementation
Our RankCGAN is built on top of DCGAN [38] implementation with the same hyperparameters
setting and structure of the discriminator D and the generator G. Besides, we modelled the encoders
Er, Ez, and the ranker R with the same architecture of the discriminator D, except for the last sigmoid
layer. We set the hyperparameter λ =1, learning rate to 0.0002, mini-batch of size 64, and trained the
networks using mini-batch stochastic gradient descent (SGD) with Adam optimizer [18]. We trained
the networks on UT-Zap50K and PubFig datasets for 300 epochs and on OSR dataset for 1,500 epochs.

4.3 Quantitative Results
The Fréchet Inception Distance (FID) [9] is a recent evaluation method for GAN models. It consists of
estimating the mean and covariance of a multivariate Gaussian distribution for both real and generated
images using Inception Net pool 3 layer for feature extraction. The Fréchet Distance between these two
Gaussians is used to quantify the quality of the generated images. In figure 2, we compare RankCGAN
with the standard GAN on all datasets by measuring the quality of generated images. We calculate FID
on every 1,000 mini-batch iterations such that the size of generated images is equal to the size of the
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Figure 3: Examples of the interpolation of similar images with respect to “sporty” attribute using
RankCGAN (rows 1, 3) and CGAN (rows 2, 4).
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Figure 4: Generated shoe (top), face (middle), and scene (bottom) images associated with their
ranking scores using “sporty”, “masculine” and “natural” attributes respectively.

used dataset. We notice that the standard GAN is a little faster in the beginning but eventually RankC-
GAN achieves slightly better or equal performance to GAN. The FID scores are higher in OSR dataset
due to the difficulty to generate its images, while the FID scores are lower on UT-Zap50K and PubFig
datasets which show that our model generative capability and quality are tied to the standard GAN.

4.4 Qualitative Results
We would like an experiment that tests the added value of RankCGAN in comparison with CGAN.
Unfortunately, conducting such experiment is not straightforward due to the fact that RankCGAN
requires ordering pairs for the training, whereas CGAN requires binary labels.

To enable a comparison, we follow [46] method in mapping pairwise ordering to binary labels
in order to train CGAN on all datasets. It consists of training a ranker identical to RankNet to map
each real image in the dataset to a real score. Then, all images with a negative score are said to not
have the semantic property, while those with a positive score are said to possess it. The proportion
of images with positive and negative scores in all the datasets is balanced around the threshold zero.

Figure 3 shows the qualitative results. We used the encoders Er, Ez to estimate the latent variables
r and z of a given real image. The results suggest that RankCGAN is capable of spanning a wider
subjective interval than CGAN. Evidence for this is seen in the extreme ends of each interval. The
top line (second row) of CGAN fails to reach shoes that can reasonably be called “sporty”, while
the bottom line (fourth row) fails to include a high-heel at the “not sporty” extremity. In contrast,
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䴀漀爀攀 戀氀愀挀欀䰀攀猀猀 戀氀愀挀欀

䴀
漀爀攀 猀瀀漀爀琀礀

䰀攀猀猀 猀瀀漀爀琀礀

䴀漀爀攀 猀洀椀氀椀渀最䰀攀猀猀 猀洀椀氀椀渀最

䴀
漀爀攀 洀

愀猀挀甀氀椀渀攀
䰀攀猀猀 洀

愀猀挀甀氀椀渀攀

刀攀昀攀爀攀渀挀攀猀

吀愀爀最攀琀猀

Figure 5: Left: Example of two-attributes interpolation on shoe and face images using
(“sporty",“black") and (“masculine",“smiling") attributes. Right: Examples of “smiling" attribute trans-
fer task. The latent variable r of reference images is estimated and then transferred to the target image.

䴀漀爀攀 猀瀀漀爀琀礀䰀攀猀猀 猀瀀漀爀琀礀

䤀渀瀀甀琀 椀洀愀最攀 刀攀挀漀渀猀琀爀甀挀琀攀搀
椀洀愀最攀

䴀漀爀攀 洀愀猀挀甀氀椀渀攀䰀攀猀猀 洀愀猀挀甀氀椀渀攀

䤀渀瀀甀琀 椀洀愀最攀 刀攀挀漀渀猀琀爀甀挀琀攀搀
椀洀愀最攀

Figure 6: Examples of image editing task, where the latent variables are estimated for an input image
to perform the editing with respect to the “sporty” attribute (top) and “masculine” attribute (bottom).

RankCGAN reaches a desirable shoe across the scale in both cases (first and third rows), we see
a dress shoe at one end and a sporty shoe at the other.

4.5 Application: Image Generation

In order to demonstrate image generation for RankCGAN, we choose a single and pair semantic
attributes that span a line and plane respectively and we held the noise vector z constant.

Figure 4 shows how the generated images vary with respect to the value of some subjective variable.
We note that plausible shoe and face images are generated at every point, scene images are more
difficult to generate, but our images are reasonable and progress from “urban” to “natural” in a
pleasing manner. In all cases, the semantic attribute changes smoothly over subjective scale.

Figure 5 (left) illustrates the image generation using two-attributes. We trained RankCGAN on
multiple attributes using the separate ranking layers strategy because the shoes dataset provides
different pairs of images with respect to a specific semantic attribute. We used (“sporty”, “black”) and
(“masculine”, “smiling”) attributes. In both cases plausible images are generated, and the progression
in both directions smoothly adheres to the subjective attributes in question. We invite the reader to
the supplementary material for additional application results on more attributes.
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4.6 Application: Image Editing
The core of image editing is to map a given image onto the subjective scale by estimating its latent
variables r, z that produce a reconstructed image, and then move along the scale, one way or the other.

In figure 6, we show image editing on shoes and faces, using the “sporty” and “masculine”
attributes respectively. The reconstructed images are framed in red, and the images generated with
subjectively less of the chosen attribute are shown on the top line, while the images generated to have
subjectively more are on the bottom line. In both cases the noise vector z was held constant.

4.7 Application: Semantic Attribute Transfer
Our final application is semantic attribute transfer. The idea is to extract the subjective measure of a
semantic attribute from one image, and apply that measure to another. Formally, we quantify the con-
ditional variable r of the source image using the encoder Er, then edit the target image with the new es-
timated semantic value. Figure 5 (right) shows some examples. The reference images are ordered, left
to right, by increasing the subjective level of “smiling”. The corresponding semantic value is then used
in conjunction with each of the target images to generate a new expression for the person in the picture.

5 Discussion and Conclusion
We introduced RankCGAN, a novel GAN architecture that synthesises images with respect to
semantic attributes defined relatively using a pairwise comparisons annotation. We showed through
experiments that the design and training scheme of RankCGAN enable latent semantic variables
to control the attribute strength in the generated images using a subjective scale.

Our proposed model is generic in the sense that it can be integrated into any extended CGAN
model. It follows that, our model’s generative power is tied to that of the GAN in terms of the quality
of generated images, the diversity of the model and the evaluation methods.

Possible extensions to this study consist of incorporating a filtering architecture, CFGAN [16],
to enhance the RankCGAN controllability and also incorporating an encoder in the RankCGAN to
perform an end-to-end training in order to improve image editing and attribute transfer tasks.
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