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Abstract

The paper proposes Convolutional Neural Network (CNN) for License Plate Recog-
nition (LPR) from low-resolution videos. The CNN accepts arbitrary long sequence of
geometrically registered license plate (LP) images and outputs a distribution over a set
of strings with an admissible length. Evaluation on 31k low-resolution videos shows that
the proposed CNN significantly outperforms both baseline methods and humans by a
large margin. Our second contribution is a CNN based super-resolution generator of LP
images. The generator converts input low-resolution LP image into its high-resolution
counterpart which i) preserves the structure of the input and ii) depicts a string that was
previously recognized from video.

1 Introduction
Automatic LPR is a mature technology with a wide range of applications. The commercial
LPR systems rely on specialized cameras designed specifically for the task as the quality
of captured images largely determines the overall performance. In this paper we address a
different and under-explored scenario when the input of the LPR system is a low resolution
(LR) video e.g. captured by a common camera or a mobile phone.

We propose a CNN with a novel architecture, denoted as LprNet, which accepts a se-
quence of geometrically registered LP images obtained from a tracker and outputs distribu-
tion over a set of strings with an admissible length. The LprNet architecture has three com-
ponents: i) a CNN extracting features from each image in the sequence, ii) an aggregation
layer shrinking the feature sequence into a single vector and iii) another CNN converting the
output of the aggregation layer into a distribution over strings. The aggregation layer allows
the training and the testing sequences to have a different number of images. We compared
the LprNet with a common approach based on recognizing the strings in each image of the
sequence independently and then aggregating the individual predictions to a single hypothe-
sis. Evaluation on 31k low-resolution image sequences shows that the LprNet significantly
outperforms both the baseline approach and human performance by a large margin. We
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also demonstrate that the LprNet performance monotonically improves with the number of
images in the sequence unlike the baseline approach.

Our second contribution is a CNN based generator of super-resolution LP images. The
generator has two inputs: i) a string recognized by the LprNet from image sequence and ii) a
single LR image. The generator outputs HR image depicting LP with the desired string and
closely matching the structure the LR input like pose, background, lighting conditions, etc.

The paper is organized as follows. A brief summary of the relevant prior work is given
in Section 2. The proposed LprNet architecture is a subject of Section 3. Section 4 describes
the proposed architecture generating super-resolution LP images. The empirical evaluation
is presented in Section 5 and Section 6 concludes the paper.

2 Previous work
The classical approach to LPR involves three stages: detection of LP region, segmentation
of the characters and recognition of each character separately. A survey of works imple-
menting the classical approach can be found e.g. in [1, 4]. Here we briefly review only
the recent works solving the LPR problem in end-to-end fashion by a deep neural network
trained from examples. In [12] a sequence of features is extracted by a CNN sliding across
the input image depicting geometrically registered LP. Then a Recurrent Neural Network [8]
is used to label the sequential features. Finally, the Connectionist Temporal Classification
layer [6] converts the label sequence into a character string. The approach of [10] uses a
CNN with the last layer representing N different classifiers each predicting particular char-
acter in the string. The classifier outputs either the character class or "NULL" symbol if the
character is not present which allows to model LP with different number of characters. The
model is made spatially invariant by placing the Spatial Transformer module [9] before the
CNN. The method of [13] solves both the license plate detection and recognition simultane-
ously by a single CNN. The work of [18] considers LPR from images captured by a moving
camera. Their approach uses a architecture similar to [12]. However, the CNN is trained
from synthetically generated training examples without manual annotation. The examples
are generated from a grammar model producing noise-free image. The Cycle-GAN [21] is
used to translate the synthetic graphics to real looking photos.

Most existing LPR systems, like those listed above, process still images. To our best
knowledge the CNN based method for LPR from video sequences has not been published
yet. Hence we briefly review only non-CNN works. There are two main approaches to
exploit the video sequences. The first approach is based on using a super-resolution recon-
struction [3, 15, 17, 20] to create a single high-quality image which is then passed to the
still-image LPR recognizer. The second approach is based on recognizing LP strings in each
image of the sequence independently and aggregating the predicted strings to a single hy-
pothesis. For example [2] recognizes each frame by SVM classifier and then applies simple
majority voting on each position in the character string. The approach of [16] is based on
first registering the independently recognized character strings by the Levenstein distance
and then averaging posterior distribution of the registered characters.

The architecture proposed in our paper extends the CNN for number recognition of street
view images [5]. Namely, we employ the same last layer for representing distribution over
character strings of variable length. Our network uses a layer aggregating sequence of fea-
tures which are extracted from the individual images in the sequence. It differs from [2, 16]
who directly aggregate either the predicted characters or their distribution. The CNN ar-
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Figure 1: Architecture of the proposed LprNet and the super-resolution generator.

chitecture proposed in this paper uses averaging and max-pool aggregation layers to obtain
fixed size representation from a sequence of features extracted from video frames. A similar
CNN architecture with max-pool aggregation was proposed [19] for 3D shape analysis from
multiple views. The CNN architecture with the averaging aggregation was used in [7] to
learn patch similarity for depth estimation.

3 LPR from image sequences

3.1 Proposed LPR-NET
LP image x ∈ X depicts a string (c1, . . . ,cL) ∈ CL of L ∈ L characters. We use X to denote
a set of admissible input images, L = {Lmin, . . . ,Lmax} is a set of admissible lengths of the
strings and C = {”0”, . . . ,”9”,”A”, . . . ,”Z”, . . .} is an alphabet of characters. Let further C∗ =
∪L∈LCL denote a set of all strings composed of characters from the alphabet C which have
an admissible length L ∈ L. Let X ∗ be a power set of X .

Our goal is to design a predictor h : X ∗ → C∗ which accepts an image sequence x =
(x1, . . . ,xN) ∈ X ∗ and returns a string c = (c1, . . . ,cL) ∈ C∗. The elements of the sequence
x are geometrically registered LP images obtained by tracking the plate in a video, i.e. the
images depict the same string c ∈ C∗. Note that the string length is unknown and has to be
predicted as well. Given a sequence x ∈X ∗, we predict the character string by the MAP rule

h(x) = argmax
c∈C∗

p(c | x;θ) (1)

p(c | x;θ) = p(L | x;θ)
L

∏
i=1

pi(ci | x;θ) (2)

where p(L | x;θ) is the probability that the string length is L and pi(c | x;θ) is the probability
that character c is at the i-th position of the string. We use the following parametric models

p(L | x;θ) ∝ exp〈wL,ψ(x)〉 and pi(c | x) ∝ exp〈wi,c,ψ(x)〉 , i ∈ {1, . . . ,Lmax} , (3)

where ψ : X ∗→RD is a function extracting features from the image sequence and wL ∈RD,
L ∈ L, wi,c ∈ RD, i ∈ {1, . . . ,Lmax},c ∈ C, are parameters. The feature extractor ψ is a CNN
composed of three parts (see Fig 1)

ψ(x) = ψF(φ(ψ I(x1), . . . ,ψ I(xN))) (4)
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where ψ I : X → RK and ψF : RK → RD are CNNs with a chain architecture composed of
convolution, max-pooling, fully-connected and ReLU layers. The function φ : RK×N → RK

is an aggregation layer converting a sequence of N K-dimensional vectors to a single K-
dimensional vector. We consider two different aggregation layers performing element wise
averaging and maximization, respectively, i.e.,

φavg(F) =


1
N ∑

N
n=1 F1,n

...
1
N ∑

N
n=1 FK,n

 and φmax(F) =

 maxn∈{1,...,N}F1,n
...

maxn∈{1,...,N}FK,n

 . (5)

Let all model parameters, i.e. the vectors wL,wi,c and the convolution filters of the CNNs
ψ I and ψF , be encapsulated in θ . We learn θ by maximizing the log-likelihood

L(θ) =
m

∑
j=1

(
log p(L j | x j;θ)+

L j

∑
i=1

log pi(c
j
i | x

j;θ)
)

(6)

defined on a training set {(x j,c j) ∈ (X ∗×C∗) | j = 1, . . . ,m}. The training set is composed
of m image sequences x j = (x j

1, . . . ,x
j
N) each annotated by a string c j = (c j

1, . . . ,c
j
L j) depicted

on the images. We maximize the log-likelihood (6) by ADAM [11].
The distribution of variable length character strings, equation (2), is adopted from [5]. In

case the video sequence x is a single image, N = 1, our architecture becomes equivalent to
the chain CNN proposed in [5] for recognition of house numbers from still images.

3.2 Baseline: aggregation of independent predictions
In this section we describe a baseline approach that has been used for LPR from video se-
quences [2, 16]. The approach is based on predicting the character string from each image
in the sequence independently and aggregating the individual predictions to a final one.

Let (x1, . . . ,xN)∈XN be a sequence of LP images and let qn(y) denote a distribution over
a generic label y∈Y = {1, . . . ,Y} which is extracted from the n-th image. By g : RY×N→Y
we denote an aggregation strategy used to predict a single label based on the sequence of
distributions Q = (q1(y), . . . ,qN(y)). The aggregation is applied to prediction of characters
at individual positions in which case Y = C and qn(y) equals to pi(c | xn). Similarly, it can
be used to predict the string length in which case Y =L and qn(y) equals to p(L | xn). In our
experiments, pi(c | xn) and p(L | xn) is defined by (3) with the feature descriptor ψ(x) being
a CNN with a chain architecture [5]. We consider the following aggregation strategies:

Averaging The label is predicted based on the highest average probability

g(Q) = argmax
y∈Y

N

∑
n=1

qn(y) . (7)

Voting The labels is predicted based on the sum of votes weighted by the label probability

g(Q) = argmax
y∈Y

N

∑
n=1

qn(y)[[y = argmax
y′∈Y

qn(y′)]] . (8)

Maximization The label is predicted based on the highest probability
g(Q) = argmax

y∈Y
max

n∈{1,...,N}
qn(y) . (9)
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The video-based LPR system using Averaging aggregation was proposed in [16]. A variant
of the Voting aggregation was described in [2]. In particular, they consider all votes to have
equal weight, i.e. g(Q) = argmaxy∈Y ∑

N
n=1[[y = argmaxy′ q

n(y′)]]. However, we found the
strategy (8) to work considerably better because the weights resolve decision making in case
of even number of votes often occurring when the video sequence is short.

4 Generator of super-resolution LP images
Assume we predicted a string c = h(x;θ) from a LR image sequence x = (x1, . . . ,xN) using
the approach from Sec 3.1. The task now is to create a HR and well perceivable image of
a LP that closely resembles images in the sequence x themselves being unreadable. Let x
be a single image taken from x. We compute its HR counterpart x̂ by the super-resolution
generator (see Fig 1)

x̂ = d(e(x;ωe),c;ωd) (10)

where d : RZ ×C∗ →X is a decoder generating the synthetic image and e : X → RZ is an
encoder the task of which is to extract a low-dimensional description of x. The descriptor
z = e(x;ωe) encodes all information not contained in the string c, e.g. a pose, lighting
condition, background color and so on. The decoder d(·;ωd) and the encoder e(·;ωe) are
CNNs whose convolution filters are encapsulated in the vectors ωd and ωe, respectively.

In order to measure quality of the images generated by (10) we introduce a discriminator
` : X ×C∗ → [0,1] similarly to CGANs [14]. The discriminator’s output `(x,c;ω l) corre-
sponds to the probability that image x depicts a real LP conditioned the string is c. The value
1− `(x,c;ω l) is then the probability that x is synthetically generated. The discriminator it-
self is a CNN with filters ω l . Let {(x j, x̂ j,c j) ∈ X ×X ×C∗ | j = 1, . . . ,m} be a training set
where x j is the input LR image, x̂ j is a desired HR counterpart of x j and c j is the string to be
depicted on x̂ j. To measure the quality of HR images generated by (10) we define a function

F(ωd ,ωe,ω l) =
1
m

m

∑
j=1

(
‖x̂ j−d(e(x j;ωe),c j;ωd)‖1

+ log(1− `(d(e(x j;ωe),c j;ωd),c j;ωl))+ log`(x̂ j,c j;ω l)

)
.

(11)

The first term in (11) is L1 distance between the ground-truth HR image x̂ j and the generated
one d(e(x j;ωe),c j;ωd). The second and the third term corresponds to the adversarial loss
whose value is low if the discriminator cannot distinguish the generated image from the real
one. The parameters of the generator are then learned by solving the min-max problem

(ω∗d ,ω
∗
e)← min

ωd ,ωe
max

ω l
F(ωd ,ωe,ω l) . (12)

We solve (12) iteratively by alternating minimization w.r.t (ωd ,ωe) using ADAM [11] and
maximization w.r.t. ω l using the Stochastic Gradient Descend.

5 Experiments

5.1 Data
For empirical evaluation we use LP images originating from three sources:

Citation
Citation
{Thome, Vacavant, Robinault, and Migue} 2011

Citation
Citation
{Arth, Limberger, and Bischof} 2007

Citation
Citation
{Mirza and Osindero} 2014

Citation
Citation
{Kingma and Ba} 2014



6 VAŠEK, FRANC, URBAN: LPR FROM VIDEOS BY CNN

Video tracks We captured videos of cars using a common camera and a mobile phone
installed on a tripod. The videos were processed by a commercial LP tracker producing
sequences of geometrically registered LP images. In total we have 31k sequences with ≈72
images on average. The image resolution in each sequence is either monotonically increasing
(car driving towards the cam) or monotonically decreasing (car going away from the cam).
The LP strings were manually annotated using the well readable frames with the highest
resolution.

Still images We used a proprietary database of 1.4M high-resolution images of geometri-
cally registered LPs. The LPs originate from various European countries. Each image has
annotation of the LP string. The annotation is created manually (40%) and automatically
(60%). The automatic annotation is done by recognizing the string and the car make and
model, both by a trainable CNN, and verifying the recognized entries in the car register.

Synthetic images We have a precise description of LP format of 16 European countries.
We used the information to generate a database of 4M synthetic LP images.

The video tracks, still images and synthetic images were used to create data for bench-
marking the LprNet and the super-resolution generator as follows:

Image sequences for training and testing the LPR system We randomly selected 5.7k
video tracks for testing and 1.5k for validation. The 1.5k validation tracks were split in a
sliding window fashion into 79k image sequences each having 5 frames. The validation set
serves for hyper-parameter tuning of the CNNs. The remaining 23.8k video tracks were
used for training. In addition, the training set was extended by artificially generated image
sequences. The first frame of the artificial sequence was taken from the still image or the
synthetic image database. The consecutive frames in the sequence were created by applying
a distortion transformation on the first frame. The distortion transforms involve application
of motion blur, additive Poisson noise, and bilinear down-scaling with randomly selected
parameters. In total, the training set contains 8.3M image sequences (1.5M video tracks +
2.8M still images + 4M synthetic images) each having 5 images.

Training examples for the super-resolution generator The triplets (x j, x̂ j,c j) for training
the super-resolution generator were created from the still images and the synthetic images
only. The database image distorted by a random affine transform was used as the desired
generator’s output x̂ j. The corresponding input image x j was obtained by applying a distor-
tion transform (the same as described above) on x̂ j. Altogether we use 1.6M training triplets
(1.4M still images + 0.2M synthetic images).

Human annotation We randomly selected 500 images from the video tracks. The distri-
bution of the horizontal resolution of the selected images is uniform on the range from 60
to 100 pixels. We asked 7 financially motivated annotators to estimate the LP string on each
of the 500 images. Note that the ground-truth annotation is also created manually, however,
using the well readable high-resolution images (>120px) of each video track.

5.2 Implementation

We implemented the proposed CNN for LP recognition based on image sequences as de-
scribed in Sec 3.1. The variants using averaging φ avg and maximization φ max aggregation
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layer are further denoted by LprNet-Avg(N) and LprNet-Max(N), respectively. The argu-
ment N denotes the number of images in the input sequence. Both variants were trained on
8.3M annotated image sequences each having 5 frames. Note that the number of images in
the test sequences can be arbitrary (i.e. not just 5) thanks to the aggregation layer.

As the first baseline, denoted as SfCnn, we use a CNN recognizing the LP from a single
frame. The SfCnn is trained from the same examples as LprNet. The architectures of the
SfCnn, LprNet-Avg and LprNet-Max are exactly the same up to the aggregation layer. In
case of SfCnn the aggregation layer is just the identity function, i.e. the layers of SfCnn
form a chain like in [5].

As the next baseline we applied SfCnn on images in the sequence independently and
aggregated the individual predictions by the strategies described in Sec 3.2. The baselines are
denoted as SfCnn+Avg, SfCnn+Voting and SfCnn+Max corresponding to the averaging (7),
voting (8) and maximization (9) aggregation strategy, respectively. Note that the original
works [2, 16] use the SVM classifier as the method of single-image classification. Replacing
SVM by SfCnn allows us to fairly measure the effect of different aggregation strategies.

All evaluated methods use a CNN (including the super-resolution CNN generator) pro-
cessing gray-scale images normalized to resolution 128×32 pixels, i.e. X = R32×128. The
alphabet L has 48 characters. The LP string length varies from Lmin = 5 to Lmax = 9.

5.3 Results
Accuracy versus number of frames We split the test image sequences into two subsets.
First, a low-resolution subset, containing 2,318 sequences in which the widest LP image
has the horizontal resolution 65 pixels. Second, a higher-resolution subset, containing 1,751
sequences with the widest image resolution 105 pixels. We varied the number of images in
the sequence from 2 to 20 and for each setting we computed the accuracy of the competing
methods. The accuracy is a fraction of test sequences for which all characters in the string
and its length are predicted correctly. We performed the experiment twice: image resolution
in the sequence is increasing (car goes towards cam) and decreasing (car goes away).

The results are summarized in Figure 2. The LprNet-Avg consistently outperforms
LprNet-Max, and both methods are better than the baselines SfCnn+Avg/Max/Voting by
a large margin. The improvement of LprNet-Avg/Max over the baselines is more significant
on LR sequences. The ordering of image resolution matters. In case of increasing resolu-
tion the accuracy of all methods monotonically improves w.r.t. the number of images. In
the opposite case accuracy of baselines starts to deteriorate when the number of images is
more than 6, and this effect is more pronounced on LR sequences. The prediction of later
added LR images is more likely to be erroneous which spoils the aggregation. In contrast
the accuracy of LprNet-Avg/Max only stagnates but is not decreasing.

Accuracy versus image resolution We compare the LprNet-Avg, performing best accord-
ing to the comparison in Sec 5.3, against human performance and the baseline SfCnn. The
results are summarized in Tab 1. For humans we report the average accuracy and the top 7
accuracy. The average accuracy is the fraction of all 500×7 =3.5k human predictions that
are correctly predicted. The top 7 accuracy is the fraction of 500 test images for which the
correct string is predicted at least by one of the 7 human annotators.

We further split the test sequences into groups according to the horizontal resolution of
the widest image in the sequence. We then evaluated the prediction accuracy separately on
sequences with the given resolution. The results are shown in Fig 3. It is seen that the
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Figure 2: Test accuracy w.r.t. the number of image frames in the sequence shown for the pro-
posed LprCnn-Avg/Max and the baselines SfCnn-Avg/Max/Voting. The left column shows
results on low-resolution sequences and the right column on higher-resolution ones. The top
row is for sequences with increasing image resolution and the bottom for the decreasing.

LprNet-Avg significantly outperforms both the baseline SfCnn and the human performance.
The difference is most significant on the lowest resolution images. In particular, while 60px
wide LPs are unreadable for humans (top-7 accuracy below 10%) the accuracy of LprNet-
Avg using sequences with 10 images reaches 80%. The top-7 human accuracy approaches
the computer performance at resolution ≈100px. However, the average human performance
at 100px resolution is still only 60% while the LprNet-Avg(10) reaches 95%.

Method Acc [%]

LprNet-Avg(10) 90.6
LprNet-Avg(5) 88.9
LprNet-Avg(2) 85.6
SfCnn 78.1
Human-top7 64.4
Human-avg 39.3

Table 1: Accuracy of the proposed
LprNet-Avg(N) (N is the number of
images in the sequence), the baseline
SfCnn using a single image and the
human accuracy.

Figure 3: Accuracy as the function of the horizon-
tal resolution of the LP image.
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Figure 4: Accuracy vs. coverage for the proposed LprNet-Avg(N) and the baseline SfCnn
when both methods are extended to have the reject option. The results are shown separately
on the high-resolution sequences (left) and the low-resolution sequences (right).

Prediction with reject option The probabilistic output of the LprNet allows to extend
the predictor by the reject option, i.e. h(x) rejects to decide if maxc∈C∗ p(c | x;θ)< α where
α ∈ [0,1] is a desired minimal confidence. We evaluated the prediction with the reject on low-
resolution and high-resolution sequences separately. We compared the proposed LprNet-Avg
and the baseline SfCnn. Recall that SfCnn provides the same probabilistic output. We varied
the value of α and for each setting we computed the coverage and accuracy. The coverage
is the fraction of sequences for which the predictor does not reject to decide. The results are
summarized in Fig 4. The LprNet-Avg has consistently higher coverage for a fixed accuracy
as compared to the baseline SfCnn that uses only a single image. As expected the coverage
increases with the number of images in the sequence.

Generator of super-resolution LP images Examples of super-resolution images created
by the proposed CNN generator are shown in Fig 5. Please read the caption for more details.

6 Conclusions

We have proposed end-to-end CNN architecture, called LprNet, recognizing character string
from a sequence of geometrically registered images. Empirical evaluation on LR videos
shows that the LprNet significantly outperforms both baseline methods and humans. E.g. the
human prediction accuracy on LP images at 60px resolution is below 10% while accuracy
of the LprNet reaches 80%. The performance of the LprNet improves monotonically with
the number of images in the sequence in contrast to the baselines. Our second contribution
is a CNN based super-resolution generator converting LR images into their HR counterparts
closely matching the structured of the input. In contrast to previous works, our generator
allows to explicitly control the content of the generated image, namely, the depicted string.
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Figure 5: The first and the fourth columns show a sample of input images taken from the
first frame of LR (60px) test sequences. The red strings denote the ground-truth. Other
columns are super-resolution images created by the proposed CNN generator. The input of
the generator was the corresponding LR image and the black strings shown above. The black
strings were predicted from test sequences using LprNet-Avg(5) and they correspond to the
MAP estimate and the second most probable hypothesis. The samples for which the MAP
estimate of the string is correct are above the dash line. The samples below the line show
errors. Note that the generated super-resolution images preserve structure of the LP inputs.
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