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Abstract

We propose an approach for generating photorealistic facial expressions for multi-
ple virtual identities in dyadic interactions. To this end, we study human-human inter-
actions to model one individual’s facial expressions in the reaction of the other. We
introduce a two level optimization of generative adversarial networks, wherein the first
stage generates one’s face shapes conditioned on facial action features derived from their
dyadic interaction partner and the second stage synthesizes high quality face images from
sketches. A ‘layer features’ L1 regularization is employed to enhance the generation
quality and an identity-constraint is utilized to ensure appearance distinction between
different identities. We demonstrate that our model is effective at generating visually
compelling facial expressions. Moreover, we quantitatively showed that generated agent
facial expressions reflect valid emotional reactions to behavior of the human partner.

1 Introduction
Human communication involves both verbal and nonverbal ways of making sure our mes-
sage is heard. A simple smile can indicate our approval of a message, while a scowl might
signal displeasure or disagreement [9]. Moreover, the sight of a human face expressing
fear elicits fearful responses in the observer, as indexed by increases in autonomic mark-
ers of arousal [22] and increased activity in the amygdala [19]. This process whereby an
observer tends to unconsciously imitate the behaviour of the person being observed [3] has
been shown to impact a variety of interpersonal activities such as collaboration, interviews
and negotiations among others [2, 25].

Recent research in autonomous avatars [7, 11] aims to develop powerful human-agent
interfaces that mimic such abilities. Not only do these avatar systems sense human behavior
holistically using a multitude of sensory modalities, they also aim to embody ecologically
valid human gestures, paralinguistics and facial expressions. However, producing realistic
facial expressions in virtual characters that are appropriately contextualized and responsive
to the interacting human remains a significant challenge. Early work on facial expression
synthesis [5] often relied on rule based systems that mapped emotional states to predefined
deformation in 2D or 3D face models. Later, statistical tools such as principal component
analysis were introduced to model face shapes as a linear combination of prototypical ex-
pression basis [4]. A key challenge for such approaches is that the full range of appearance
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Figure 1: Our framework is composed of two stages of GANs, one to generate affective face
sketches and the other to generate photorealistic facial expressions of agents. The inputs are
facial action unit vectors dt extracted from image sequences of human users.

variations required for convincing facial expression is far greater than the variation captured
by a limited set of rules and base shapes. Advanced motion capture techniques have also been
used to track facial movement of actors and transfer them to avatars [26] recreating highly
realistic facial expressions. However, these solutions are not scalable to autonomous sys-
tems as they require a human actor in the loop to puppeteer avatar behavior. Recently, deep
belief nets [23] and temporal restricted Boltzmann machines [30] were utilized as powerful
yet flexible representation tools to model the variation and constraints of facial emotions and
to produce convincing expression samples. While these approaches have shown promising
results in transferring the same facial expression from one identity to another, they have not
purported to model interaction dynamics of multiple person conversations.

This paper tackle the problem of generating photorealistic facial expressions for multiple-
identities in human-agent interactions using conditional Generative Adversarial Networks
(GAN) [10, 18]. Conditional GANs are generative models that learn a mapping from random
noise vector z to output image y conditioned on auxiliary information x: G : {x,z} → y.
Previous work based on GANs and conditional GANs [18] has shown promise in a number
of applications such as future frame/state prediction [16, 32], video generation [27], image
manipulation [33], style transfer [15], text-to-image/image-to-image translation [14, 21] and
3D shape modeling [29]. Our work differs from these in that we do not employ conditions
related to facial attributes of generated agent identities, but consider the influence of the
interacting human’s facial expressions in the virtual agent response. Similar to some recent
work such as [12, 13, 24, 31], we developed a two-stage optimization of GANs that enable
modeling of complex human behavior as well as compelling photorealisim in the generated
agent (see Figure 1). The first stage generates non-rigid shape descriptors pn of agents
conditioned on human’s expression. We designed a single layer LReLU (Leaky Rectified
Linear) encoder that takes a sequence of action unit vectors [8] (of the interacting human) as
input and outputs conditional features, which are in turn used by the Shape GAN to generate
an intermediate representation, the non-rigid shape descriptors which are used to reconstruct
affective face sketches. These sketches have the advantage of being rich enough to capture
valid human-like emotions and generic enough to be mapped onto a number of different
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agent face identities. The second stage termed Face GAN fleshes out affective face sketches
into high-quality photorealistic images. In this stage, a new L1 regularization term computed
from layer features of the discriminator is employed to enhance the quality of generated
images and novel identity constraint are proposed to ensure appearance distinction between
different identities. We demonstrated that our approach is effective at generating images
that depict visually compelling facial expressions. Moreover, we quantitatively showed that
agent facial expressions in the generated images reflect valid emotional reactions to behavior
of the human partner.

2 Datasets and Feature Extraction

In this study we learn ecologically valid models of human-agent interactions on two datasets:
the interview dataset and SEMAINE dataset [17]. Our interview dataset consists of 31 dyadic
Skype interviews for undergraduate university admissions. Each prospective student was
interviewed by the same interviewer (Caucasian female) who followed a predetermined set
of questions designed to gather evidence of the candidate’s English speaking ability. For the
purpose of this study we treat the interviewer as the only agent who’s behavior we aim to
model as a response to the stimulus i.e. human partner (interviewee). An advantage of this
dataset is that it provides a significant amount of data under varying stimuli (31 different
interviewees) to adequately model the interviewer’s i.e. the agent’s behavior with different
lighting conditions, backgrounds, outfits and hair styles. SEMAINE dataset [17] contains
over 140 dialogues between 4 ‘operators’ (who are persons simulating a machine) and 16
‘users’ (who are humans). An operator plays one of four personalities and tries to keep the
corresponding user engaged: ‘Poppy’ (happy), ‘Spike’ (angry), ‘Prudence’ (sensible) and
‘Obadiah’ (gloomy), as shown in the first column of Figure 8. one individual can play an
operator in one session and a user in another conversation. To test the ability of our model
to generate facial expressions of multiple identities, on this dataset we utilize the ‘users’ as
agents and ‘operators’ as human partners.

We used OpenFace [1] to process sampled image frames of humans and agents. Three
features are extracted: a 17-d vector d representing likelihoods of 17 facial action units such
as inner brow raiser and lid tightener; a 40-d shape descriptor p= [pr, pn]; a 136-d vector s of
68 landmarks. p can be obtained by fitting s to a Point Distribution Model (PDM) provided
by OpenFace, in which pr (pn) represents the rigid (non-rigid) shape transformation. With a
chosen pr and the PDM, a pn can produce a set of face landmarks which forms an affective
face sketch (we link these landmarks by piece-wise linear lines of one pixel width). To train
and test GAN models, We create training/testing sets on above two datasets respectively
by uniformly sampling data pairs of human video sequences (as input to our system) and
corresponding agent images (as ground truth of output).

3 Approach Details

3.1 Agent Face Sketch Generation

Shape GAN generates contextually valid face sketches of agents conditioned on interacting
human’s behavior. Figure 2 (Left) summarizes the architecture of Shape GAN. For time t,
a 10-d random noise z (sampled from the uniform prior U(−1,1)) , an 17-d feature ct and a
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Figure 2: Left: the architecture of Shape GAN, illustrating the relationship between the
discriminator (D), the generator (G) and the encoder (E), which is utilized to extract temporal
context of a human partner’s facial expression. Right: the architecture of Face GAN and how
our layer feature loss works.

one-hot vector l representing identity label are used to form input of Generator (G). A one-
layer Leaky Rectified Linear (LReLU) encoder is employed to compute each element of ct
from a sequence of temporal AU descriptors dτ (τ ∈ [t−δ t, t]) of interacting humans:

ci
t = LReLU

(
∑

τ∈[t−δ t,t]
wi

τ di
τ +bi), (1)

where LReLU(.) is a Leaky Rectified Linear function. In the training phase, dt , correspond-
ing real shape descriptors pn and agent id labels l are sampled to form the training set. ct
is also used as conditional features in the Discriminator (D). G/D consists of five/three fully
connected layers, each followed by batch normalization and rectified linear processing; D
outputs a real/fake image classification and an id classification (to constain the training of
G). To guarantee that G produces valid shapes, a L1 loss LL1(G) is combined with L(D,G),
the original loss of Conditional GAN as follows:

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[||y−G(x,z)||1], (2)

G∗ = argmin
G

max
D
L(D,G)+λLL1(G), (3)

where x here denotes an input facial expression feature ct , y represents a corresponding real
shape descriptor pr

n and G(x,z) is a fake shape descriptor generated. In our experiments we
fixed λ = 20 and found it worked well. With a sampled pr and the Point Distribution Model,
pn can produce face landmarks which form a sketch.

3.2 Photorealistic Agent Face Generation
Face GAN fleshes out agent affective face sketches into high-quality photorealistic images.
We developed a framework similar to Isola et al. [14] with following two novel techniques.

Layer feature loss. In the original image-to-image translation method [14], the GAN
objective is combined with a L1 loss (in the form of Equation 3) to enhance image quality of
outputs. In this context, x in Equation 3 denotes an input sketch image, y represents a cor-
responding real video frame and G(x,z) is a fake face image generated from Generator (G).
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This L1 loss only computes the difference between real and generated images on pixel level
and does not model the abstract content discrepancy. By using the loss function in Equa-
tion 3, we found the quality of generated images is not satisfactory in practice. Consider that
the discriminator (D) is a convolutional neural network, in which lower level layers extract
local features such as edges or corners of an input image, while higher-level layers extract
more abstract information such as parts and contours. Inspired by this fact, we proposed a
Llayer

1 loss on the ‘layer features’ of D between real and generated images:

Llayer
L1 (G) = Ex,y∼pdata(x,y),z∼pz(z)∑

l
||F l(y)−F l(G(x,z))||1, (4)

L∗ = L(G)+λ (LL1(G)+Llayer
L1 (G)), (5)

where F l denotes flattened feature representation in layer l; L(G) is the original generator
loss of conditional GAN; L∗ is the final objective that combines the pixel level loss LL1(G)
and the layer feature loss Lcontent

L1 (G)). Figure 2 (Right) illustrates how this layer feature loss
works. In this way, both the precise appearance and real content difference is constrained
in our model to force the transferred images matching the original ones. We also fixed λ in
Equation 5 to be 20 and found it worked well.

With this approach, D’s task remains unchanged, i.e., distinguish real facial expression
images from generated ones, but G’s job is to not only fail D, but also produce images
matching the content of real samples y (the input to D) in an L1 sense. The noise signal of
z is not explicitly fed into this stage; instead randomness is only provided in the form of
dropout, applied on first 3 layers in the encoding network of the generator at both training
and inference time. As shown in the experiment, this content loss Lcontent

L1 produces images
with much higher quality, compared with the pixel level loss LL1.

Identity constraint with two-pass optimization. On SEMAINE dataset we model the
face expression generation of multiple agents. Initially we adopted an ‘Info-GAN’ like
model [6] to provide identity constraint, as shown in Figure 2 (Right). D not only distin-
guishes real images from generated ones, but also outputs an identity classification result
which we expect to match the input label. We use its loss to constain the training of G; how-
ever, even with a large weight on this loss, G can only generate images with serious defects
and blurs, as shown in Figure 3. Each of those images seems to contain facial features from
multiple identities. To overcome this problem, we further impose a two-pass optimization
on each mini batch. In the first pass, a sketch (from the ID i) and the label i are used as
input and the loss of G is computed according to Equation 5. To compute the layer loss and
the pixel-level loss, in this pass the generated image will be compared with the real image

Figure 3: Defective SEMAINE agent Images produced by Face GAN with ‘Info-GAN’-like
identity constraint. Each image was generated from a different ID and the same face sketch,
but contains blurry facial features which are suspected to come from multiple identities.
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(a) (b) (c) (d) (e)

Figure 4: a) an input sketch of identity i; b) the real image of the sketch; c) the generated
image of the sketch; d) a real image of identity j; e) the generated image of j. Given the
identity label j and the sketch of i, our system is able to generate an image e) of j which
contains very similar facial expression to that of i’s images, b) and c).

Figure 5: First row: face images generated from different video interview session labels
which illustrate different outfits, hair styles, lighting conditions or backgrounds. Second
row: images generated from a fixed session label. Notice in each column two images are
generated from the same sketch, therefore have the exactly same facial expressions.

corresponding to the input sketch. In the second pass, the same sketch from ID i and a dif-
ferent label j, j 6= i are used as input; the generated image will be compared with a randomly
sampled real image from ID j (we hope a sketch from ID i can still generate an image with
a similar appearance to ID j given that the input ID label is j and j 6= i)). The loss of G in
the second pass is computed as L∗∗ =L(G)+λLlayer

L1 (G), that is, we only consider the layer
feature loss without imposing a ‘pixel-level’ matching between the generated image and the
randomly sampled image from ID j. As Figure 4 shows, with this two-pass optimization,
even a sketch of label i can generate an image of j given the label j as input.

Although there is only one agent in the interview dataset, the lighting conditions, back-
grounds, outfits or hair styles may vary from one interview session to another. On this
dataset, we use video session IDs as ’identity’ constraint and enforce above two-pass opti-
mization. We are able to generate various facial expressions with similar outfits, hair styles,
lighting conditions and background, as illustrated in Figure 5.

4 Experiments

4.1 Results on the Interview Dataset
In Figure 6 we show image pairs of human partners and the generated agent. The top row in
each pair shows the last frame of a human partner’s video clip which is used to generate the
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Figure 6: The figure shows image pairs of human partners and the generated agent on the
interview dataset. Each image in the top row shows the last frame of a human partner’s video
clip that is used to generate the virtual agent response below it. Notice how the generated
agent frames embody an appropriate emotional response to the human partner.

virtual agent response in the row below it. Notice how the generated agent images embody an
appropriate emotional response to the human partner. While evaluating generative models
that can sample but not estimate likelihood directly is a challenging problem[10, 18], we
designed two innovate methods to quantitatively test both the validity of generated agent’s
emotional response in the context of interacting human partner’s behavior and the quality of
photorealistic agent images.

Experimental Setting. From the interview dataset we randomly sampled 70,000 video
clips, 100 frames in length each from the human partner videos and extracted their action unit
vectors. For each human partner video clip a single frame from the associated agent video
(last frame of clip) is also sampled for training. All face images are aligned and processed
by OpenFace [1] to generate ground truth face shape descriptors and sketches. For testing,
we randomly sampled 7000 human partner video clips V h (100 frames each and no overlap
with the training set) and used these as input to generate 7000 facial expression images of the
virtual agent Ig. Separately, we also constructed a set of 7000 true agent images Ir sampled
directly from the interviewer videos, with each image corresponding exactly to the last frame
of associated human partner’s clip in V h.

Testing validity of generated agent behavior. We used an Euclidean distance between
Action Unit vectors of two corresponding images to compute the facial expression difference.
Our hypothesis is that on average, the paired expression distance between a real interviewer
image irj ∈ Ir and corresponding generated virtual agent clip igj ∈ Ig should be significantly
smaller than the distance with a control group irk,(k 6= j) randomly selected from Ir. We
formed two distance groups Dispaired and Disrand , where Dispaired contains 7000 paired dis-
tance values Dis(irj, i

g
j) and Disrand contains 7000 random distance values Dis(irj, i

g
k),k 6= j

(for each j we randomly sampled k for 100 times to compute an average distance). Our
hypothesis could be tested by a lower-tailed, two sample t-test in which the null/alternative
hypotheses is defined as H0: µ1 = µ2 and Hα : µ1 < µ2 respectively, in which µ1 (µ2) rep-
resents the mean of Dispaired (Disrand) (as shown in Table 1). We adopted Matlab function
ttest2 to conduct this test in which Satterthwaite’s approximation [28] was used for the case
that equal variances of two distributions are not assumed. At a significance level of 0.05,
the computed p-value is 6.4× 10−7. The alternative hypothesis Hα is accepted at the 0.05
significance level, which concludes a statistically significant reacting effect of our model.

Measuring image quality. To measure the quality of images generated by Face GAN
and compare our layer feature loss with the L1 loss in [14], we extracted face sketches from
each sample in Ir (defined above) and input them to two pre-trained Face GAN models,
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Dispaired Disrand

Sample Mean(± STD) 0.157 ± 0.231 0.248 ± 0.216
Table 1: Sample means and standard deviations of two distance groups.

Table 2: The confusion matrix de-
scribed in Section 4.2. The hor-
izontal dimension indicates pre-
dicted classes of generated agents
and the vertical dimension denotes
the actual classes of their real
counterparts.

% Poppy Spike Prudence Obadiah
Poppy 71.4 4.6 19.7 4.3
Spike 2.1 63.9 12.3 21.7

Prudence 15.6 9.7 60.3 14.4
Obadiah 3.4 16.6 6.8 73.2

where the first one was trained with our layer feature loss while the second one with a pixel-
level L1 loss [14]. In this way we obtained two generated image sets Ig

1 and Ig
2 . In this

experiment, we masked all generated images by an oval shape to compare the appearance
difference in the face area only. To compute the similarity of an image Ig

1 (k) (or Ig
2 (k)) to its

true counterpart in Ir(k), we used the mean squared error (MSE) to measure the difference
between 7000 pairs of ig1(k) (or ig2(k)) and ir(k). The average MSE (±ST D) of two sets on
7000 pairs are 47.03±53.71 and 87.88±94.86 respectively. Our method outperforms the
method of [14] by cutting down the mean squared error (MSE) almost by half (from 87.88 to
47.03). These results quantitatively verified that our model with layer feature loss produces
better images. Some samples in Figure 7 illustrate the image quality comparison between
two sets of generated images.

Figure 7: Image quality comparison between real images (Ir, Row 1), corresponding images
generated with layer feature loss (Ig

1 , Row 3) and images generated with a pixel-level L1 loss
only (Ig

2 , Row 4). Row 3 and Row 4 are generated from the same sketches in Row 2.

4.2 Results on SEMAINE Dataset
On SEMAINE Dataset, our model employs a training (testing) set containing 10,000 (6000)
sampled sequence-image data pairs. As introduced in Section 2, one individual can play a
human partner in one session and an agent in another conversation. Images of agents can be
categorized to 4 classes based on their human partner’s personality. However, a large por-
tion of them only express neutral emotions no matter what personality their human partners
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Figure 8: The first column shows the last frame of 4 input sequences of 4 human partners.
From top to bottom, each person plays one of 4 personalities respectively: Poppy, Spike,
Prudence and Obadiah. On the right, each row illustartes the generated facial expression
images of 8 agents corresponding to the input on the left.

played. To analyze the most representative cases, Euclidean distances are computed between
AU vector of each real image of agents and all AU vectors of agent images from a different
personality class. We summed up these distances (for each image) and selected top-ranked
4000 (2400) agent images and corresponding sequences of human partners from training

(a)

(b)

(c)

(d)

Figure 9: Smaple agent images generated from different typies of human partners: (a) Poppy,
(b) Spike, (c) Prudence and (d) Obadiah.
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(testing) set. These two sets of agent images are the most distinctive samples of 4 classes
and contains much less neutral expressions. By using the selected 2400 image sequences
of humans from the testing set, we generate 2400 fake agent face images (some generated
samples are illustrated in Figure 8 and Figure 9). With the 4000 real agent images from the
training set, we trained a convolutional network to perform a 4-way classification according
to their human partner’s personalities. We utilize this network on 2400 generated images and
the confusion matrix is shown in Table 2. Results in Figure 8, 9 and Table 2 demonstrate that
our model is effective at generating visually compelling facial expressions of agents that re-
flect valid emotional reactions to behavior of partners: the predicted categories of generated
agents generally align well with the true classes of their real counterparts.

5 Discussion
A key feature of our approach is that the generative model for agent behavior is learned not
as a function of predefined rules or the generated identity’s own/self attributes but rather the
behavior of their interaction partner. Consistent with much of the literature in behavioral
neuroscience on the significance of non-verbal modes of communication through facial ex-
pressions [9, 20], our approach demonstrates that even when limiting observations to facial
expressions of the interacting human partner we can generate agent behavior depicting valid
emotional responses. Our model can be enhanced by fusing a multitude of modalities to
more comprehensively model behavior of the human partner, including speech, paralinguis-
tics, interaction context and past behavior of the virtual agent itself.
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