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Abstract

Structured representations, such as Bags of Words, VLAD and Fisher Vectors, have
proven highly effective to tackle complex visual recognition tasks. As such, they have
recently been incorporated into deep architectures. However, while effective, the result-
ing deep structured representation learning strategies typically aggregate local features
from the entire image, ignoring the fact that, in complex recognition tasks, some regions
provide much more discriminative information than others.

In this paper, we introduce an attentional structured representation learning frame-
work that incorporates an image-specific attention mechanism within the aggregation
process. Our framework learns to predict jointly the image class label and an attention
maps in an end-to-end fashion and without any other supervision than the target label.
As evidenced by our experiments, this consistently outperforms attention-less structured
representation learning and yields state-of-the-art results on standard scene recognition
and fine-grained categorization benchmarks.

1 Introduction
In recent years, Convolutional Neural Networks (CNNs) have emerged as the de facto stan-
dard for visual recognition. Nevertheless, while they achieve tremendous success at clas-
sifying images containing iconic objects, their performance on more complex tasks, such
as scene recognition and fine-grained categorization, remains comparatively underwhelm-
ing. This is partly due to their simple pooling schemes that fail to model the dependencies
between local image regions. By contrast, in the realm of handcrafted features, structured
representations, such as Bags of Words (BoW) [17, 33, 40], Vectors of Locally Aggregated
Descriptors (VLAD) [1, 14] and Fisher Vectors (FV) [31, 35], have been shown to be highly
discriminative thanks to their aggregation of local information. As a consequence, they have
started to re-emerge in the deep networks realm, with architectures such as NetVLAD [2]
and Deep FisherNet [41].

While effective for complex visual recognition tasks, these structured representations,
whether based on handcrafted features or incorporated into deep networks, suffer from one
drawback: They aggregate local information from the entire image, regardless of how rel-
evant this information is to the recognition task. In practice, however, while certain image
regions contain semantic information that contribute to the target label, others clearly don’t.
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Figure 1: Attentional structured representation network. Our network consists of two
branches with a shared base feature extraction CNN. The attention module produces class-
specific attention maps, which are then incorporated into the VLAD module that outputs an
attention-aware VLAD representation. Note that, while we focus on the VLAD case here, as
evidenced by our experiments, our approach applies to any structured representation.

For example, in the image shown in Fig. 1, from the MIT-Indoor dataset [32], the region de-
picting washing machines gives us a much stronger cue of the class laundry than the regions
containing the person and the background. Incorporating information from these latter two
regions, which can appear in many other scene categories, will typically yield less discrimi-
native image representations.

In this paper, we address this by introducing a novel deep attentional structured represen-
tation network for visual recognition. Our network incorporates an image-specific attention
mechanism that encourages the learnt structured representation to focus on the discrimina-
tive regions of the image. We then learn to predict jointly the input image class label and the
spatial attention map without requiring any annotations for the latter.

Our framework is depicted by Fig. 1 for the case of a VLAD aggregation strategy. It
consists of two streams that share a base network extracting deep features: The attention
module and the VLAD module. The attention module, based on the framework of [11],
learns a set of filters that transform the deep features into C heatmaps encoding attention
for the C classes of interest. The VLAD module then exploits these heatmaps to form an
attention-aware VLAD vector from the deep features of the base network. We train our
network with a combination of two losses that encourage both the attention maps and the
final attention-aware VLAD representation to be discriminative. Note that, while Fig. 1
focuses on the VLAD case, as evidenced by our experiments, our approach generalizes to
any local feature aggregation strategy.

In short, we contribute the first systematic integration of an attention mechanism within
a structured image representation learning framework. We demonstrate the benefits of our
approach on four challenging visual recognition tasks, including scene recognition on MIT-
Indoor [32] and fine-grained categorization on the UCSD Birds [42], FGVC Aircrafts [27]
and Stanford Cars [18] datasets. Our attentional structured representation learning strategy
consistently outperforms its standard attention-less counterpart and yields state-of-the-art
results on several of the above-mentioned datasets.
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2 Related Work
Over the years, visual recognition has attracted a huge amount of attention in Computer
Vision. Before the deep revolution in 2012, most methods adopted a two step pipeline
consisting of extracting handcrafted features and training a classifier, such as Support Vec-
tor Machines [13] or Boosting [8]. In this pipeline, the core Computer Vision research
was targeted towards extracting discriminative image features. In particular, Bags of Visual
Words (BoW) [17, 33, 40], based on local features such as SIFT [26] or BRIEF [4], have
proven effective for image recognition. Later, such histogram-based features were extended
to VLAD [14] and Fisher Vectors [31, 35], which model higher-order statistics of the data
w.r.t. the codewords. After the remarkable performance of AlexNet [20], much of the visual
recognition research turned to deep learning strategies. While many new architectures do
not explicitly focus on extracting structured representations, some work has nonetheless at-
tempted to leverage the lessons learnt from handcrafted features. In particular, [12] performs
multi-scale orderless pooling of deep CNN features, and [5, 7] compute Fisher encodings of
similar deep features. In contrast with these approaches that still separate feature extraction
from classifier learning, NetVLAD [2] and Deep FisherNet [41] constitute the first attempts
at introducing learnable VLAD and Fisher Vector layers, respectively, within an end-to-end
learning formalism. More recently, [22] proposed to make use of a mixture of factor ana-
lyzers to model an accurate Fisher Vector with full covariance matrix. While the previous
methods all rely on histogram-based descriptors, in the context of fine-grained categorization
and texture recognition, other structured representations, in the form of covariance matrices
have been used [23, 24, 48]. In [37], a generalization of average and bilinear pooling was
proposed to automatically learn an intermediate pooling strategy during training. In any
event, all these methods, whether using hand-crafted features or relying on deep learning,
aggregate local features from the entire image, without accounting for the fact that only
parts of the image contain information that contributes to the target class label. This will
typically reduce the discriminative power of the resulting representations.

For complex tasks, such as scene classification and fine-grained categorization, some
research has nonetheless attempted to focus the feature extraction process on discrimina-
tive image regions. In the context of scene recognition, this was achieved by modeling the
scene with mid- (or high-)level representations [21], such as detected semantic visual at-
tributes [30], patch-based codewords obtained via discriminative clustering [39] and object-
oriented representations learnt from a manually-created database of typical scene objects [46].
For fine-grained categorization, several works exploit bounding box annotations to learn part
detectors [49, 51]. The use of such additional annotations was then removed in [47], which
learns part templates by clustering deep features. More recently, [9, 52] introduced end-
to-end learning strategies to automatically identify discriminative regions for fine-grained
recognition.

The above-mentioned works typically reason about the notion of parts, or objects in a
scene. In the rare cases that don’t require part annotations during training [9, 52], the in-
put image is first processed globally to identify regions with high attention, which are then
cropped into multiple parts that are processed individually. By contrast, our network pro-
cesses the input image in a single forward pass, without explicitly relying on the notion of
parts. In essence, these methods are therefore tailored to the specific problem they tackle. By
contrast, here, we exploit the more general notion of visual attention and produce heatmaps
encompassing the discriminative regions in the image. This does therefore not require any
prior knowledge about the data at hand. Our formalism builds upon the attention framework
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of [11], but with the additional goal of leveraging structured representations. As a conse-
quence, and as evidenced by our results, our approach yields higher accuracies than both
attention-less methods and unstructured attentional pooling in all the tasks we tested it on.

3 Method

In this section, we introduce our novel attentional structured representation learning frame-
work depicted by Fig. 1. We first present the structured representation and attention modules,
and finally our approach to integrating them in an end-to-end learning formalism.

3.1 Structured Representation Module

Structured representations aggregate local descriptors into a global feature vector of fixed
size using a visual codebook. In particular, here, we focus on VLAD, which has proven
highly effective. As will be evidenced by our experiments, however, our framework gener-
alizes to other aggregation strategies.

In contrast to BoW that only store information about which codeword each local de-
scriptor is assigned to, VLAD also computes the residual distance of the descriptor to the
codeword. To incorporate this into a deep learning framework, the hard codeword assign-
ment of each descriptor is replaced by a soft one. More specifically, let I be an image input
to a CNN, and X ∈ RW×H×D the feature map output by the last convolutional layer, with
spatial resolution W ×H and D channels. X can then be thought of as N = W ×H local
descriptors xi of dimension D. Given a codebook B with K codewords, VLAD produces a
DK-dimensional representation of the form

v = [vT
0 ,v

T
1 , · · · ,vT

K ]
T , (1)

where vk ∈ RD is given by

vk =
N

∑
i=1

ak(xi)(xi−bk) , (2)

with bk the k-th codeword of codebook B. The values ak(xi) represent the assignment of
descriptor xi to codeword bk. In the standard VLAD formalism, these assignments are binary,
with each descriptor being assigned to a single codeword. Within a deep learning context,
for differentiability, these assignments can be relaxed and expressed as

ak(xi) =
e−α‖xi−bk‖2

∑k′ e
−α‖xi−bk′‖

2 , (3)

with α a hyperparameter defining the softness of the assignments.
The resulting VLAD vector then acts as input to the classification layer of the deep net-

work. While effective, as discussed above, the VLAD representation aggregates information
from the entire image, regardless of whether the local descriptors correspond to discrimi-
native regions or not. Below, we first discuss a general attention module, which is able to
identify relevant image regions, and then introduce our approach to incorporating this infor-
mation within our structured representation learning formalism.
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3.2 Attention Module
It has been shown multiple times that CNNs were not only effective at predicting the class
label of an image, but could also localize the image regions relevant to this label [15, 36,
53]. Most existing approaches to performing such a localization, however, work as a post-
training step. By contrast, our attention module, based on the framework of [11], produces
attention maps that are actively used during training. Furthermore, it combines top-down
attention, modeling class-specific information, with bottom-up attention, modeling class-
agnostic information, or, in other words, a form of image saliency. Such integration [29] of
top-down cues [3, 50, 54] with bottom-up attention [34] modulates the image saliency map
to ignore non-relevant background regions of the target.

Specifically, let X be the same final W ×H ×D convolutional feature map as in Sec-
tion 3.1. Our attention module consists of an additional 1× 1 convolutional layer with
one class-agnostic filter with parameters wca ∈ RD×1 and C class-specific filters whose pa-
rameters can be grouped in a matrix Wcs ∈ RD×C, where C is the number of classes of
the problem at hand. This convolutional layer produces a class-agnostic heatmap Hca and
class-specific heatmaps (H1

cs, · · · ,HC
cs), each of spatial resolution W ×H. Each class-specific

heatmap is then multiplied element-wise by the class-agnostic one, yielding C attention maps
(H1, · · · ,HC).

Training the attention module can be achieved by global average pooling of each of the
attention maps, which produces a score for each class. These scores are then passed through
a softmax layer, and the resulting probabilities {pc} used in a standard cross-entropy loss

Latt =−
1
S

S

∑
s=1

log(pc∗(Is)) , (4)

where S is the number of samples in a mini-batch and pc∗(Is) is the probability of the ground-
truth class for sample s. This was the procedure used in [11] to train an attentional deep
network. Below, we propose to rather make use of the attention maps to further build a
more discriminative structured representation. As evidenced by our results, this allows us to
achieve consistently higher recognition accuracies.

3.3 Attention-aware Feature Aggregation
Our goal is to make use of the attention maps when aggregating the local descriptors into a
structured representation. To this end, instead of global average pooling the maps, we gen-
erate a single attention map, which can be interpreted as a weight w(xi) for every descriptor
xi, and is defined as

w(xi) =
max

l
Hl

i

∑
i′

max
l

Hl
i′
, (5)

where Hl
i indicates the attention-weight corresponding to feature xi in the attention map of

class l from Section 3.2. The resulting attention map has the same spatial resolution as
the final deep feature map. We then use it to re-weight the aggregation scheme of Eq. 2.
Specifically, we re-write Eq. 2 as

vk =
N

∑
i=1

w(xi)ak(xi)(xi−bk) . (6)
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Following common practice [2, 14], we perform L2 normalization of each vk to remove
burstiness, followed by a final L2 normalization of the entire vector v. The resulting repre-
sentation is then passed to a classification layer.

Ultimately, our network combines an attention module with a structured representation
learning one. Both modules share the base network up to the final convolutional feature map.
To train our network, we first pre-train the base network with the attention module only using
Latt from Eq. 4. We then continue training the entire network in an end-to-end manner by
minimizing a loss of the form

L = Lcls +λLatt , (7)

where Lcls is a cross-entropy loss on the output of the classifier acting on the structured
representation v, and λ is a hyper-parameter setting the relative influence of both terms. At
test time, we then take the prediction from the VLAD branch of the network.

Note that training is not only done w.r.t. the network parameters, but also w.r.t. to the
codebook B. As suggested in [2], and motivated by [1] to adapt VLAD descriptors to new
datasets, we decouple the soft assignment ak(xi) from the codeword bk. That is, we re-write
the assignment ak(xi) of Eq. (3) as

ak(xi) =
esT

k xi+hk

∑k′ e
sT
k′xi+hk′

, (8)

where hk =−α ‖bk‖2 and sk = 2αbk are treated as independent parameters.

3.3.1 Geometric Interpretation of Attention

Figure 2: Geometric interpretation
of attention

Consider the features of two images from same
class with different backgrounds that are assigned
to the same codeword, depicted as a Voronoi cell in
Fig. 2. The features with high attention are shown
in blue and those with low attention in red and or-
ange, respectively. While ignoring attention would
yield residual vectors pointing in almost opposite di-
rections, our attention-aware aggregation produces
vectors with high cosine similarity, shown as blue ar-
rows. The inverse reasoning can be made for images
from two different classes but containing common el-
ements that are irrelevant to the class labels: By ig-
noring attention, these shared elements would yield components with high cosine similarity,
thus decreasing the discriminative power of the complete VLAD vector. Attention allows us
to discard these shared elements.

4 Experiments
We first present the datasets used in our experiments and implementation details for our
model. Then, we demonstrate the benefits of our attention-aware structured representation
learning framework over its attention-less counterpart and over unstructured attentional pool-
ing, and finally compare our results to the state of the art on each dataset. We provide addi-
tional results and ablation studies in the supplementary material.
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4.1 Datasets
We experiment on the MIT-Indoor scene recognition dataset and on three fine-grained cate-
gorization datasets, namely CUB-200, Stanford cars and aircraft. We discard the part anno-
tations but conduct experiments with and without bounding box annotations on fine-grained
datasets.

MIT-Indoor is a widely used benchmark dataset for scene classification with 67 classes.
We use the train/test split of [32] consisting of roughly 80 training and 20 test images.

CUB-200 is a challenging dataset with 11,788 images of 200 bird species, with an av-
erage of 60 images per class. The dataset has extremely large variations in pose, size and
viewpoints. We use the standard train/test split of [42].

FGVC-Aircraft contains 100 different aircraft models with roughly 100 images for each
model. We adopt the same train/test split as in [27].

Stanford Cars is a 196 class dataset [18] of 8144 training images and 8041 test images.
Heavy background clutter makes this dataset challenging.

4.2 Implementation Details
We use the VGG-16 [38] model pre-trained on Imagenet [20] as our base model and that
of the baselines, with the conv5_3 features before ReLU activation as final convolutional
features for aggregation. Following prior work [22, 24], we resize the images to 512× 512
for MIT-Indoor, and 448× 448 for the fine-grained datasets. Data augmentation is carried
out on all datasets by performing random cropping and horizontal flipping. At test time, we
flip the image and average the predictions for the original and flipped image. For structured
representations, we fix the codebook size to K = 64 for VLAD and K = 4096 for the BoW
experiments. We initialize the weights of the VLAD layer with K-means clustering of the
conv5_3 features. We set α in Eq. 3 to 100, and λ in Eq. 7 to 0.4.

Training: We use the ADAM optimizer [16] with parameter ε = 10−4, batch size of 16
and a weight decay of 0.0005 for all experiments. We first pre-train the attention network
with η = 0.0001 for 20 epochs. For scene recognition, we then train the classification layer
with η = 0.01 for 5 epochs, and further train the layers above conv5 with η = 0.00001 for
25 epochs. For the fine-grained datasets, we train with η = 0.01 for the classification layer
and η = 0.0001 for the layers above conv5 for 50 epochs, with a decay rate of 0.1 every 15
epochs.

4.3 Results
We first compare our approach to attention-less structured representation learning and to di-
rect attentional pooling [11], and then to the state of the art on each dataset. To be consistent
with prior work [22, 24], we report the average accuracy per class on MIT-Indoor and the
average per image accuracy on the fine-grained datasets.

To evaluate the benefits of our attention-aware feature aggregation framework, we com-
pare it with counterparts that do not rely on attention. In particular, we report results with
VLAD pooling, as discussed in Section 3, but also with BoW representations, which can
easily be obtained by using the soft assignments to form histograms. To further evidence
the benefits of using structured representations, we compare our results with those of the
direct attentional pooling strategy of [11], which relies on a global average pooling of the
attention masks. The results of this comparison for all datasets are reported in Table 1,
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Pooling Anno. Birds Cars Aircrafts MIT-Indoor
VGG-16 BBox 79.9 88.4 86.9 -
Attention BBox 77.2 90.3 85.0 -
NetBoW BBox 74.4 89.1 85.6 -

Attentional-NetBoW BBox 80.5 91.2 89.3 -
NetVLAD BBox 82.4 89.8 88.0 -

Attentional-NetVLAD BBox 85.5 93.5 89.2 -
VGG-16 76.0 82.8 82.3 76.6
Attention 77.0 87.4 81.4 77.2
NetBoW 68.9 85.2 79.9 76.1

Attentional-NetBoW 76.9 90.6 88.3 76.6
NetVLAD 80.6 89.4 86.4 79.2

Attentional-NetVLAD 84.3 92.8 88.8 81.2
Table 1: Comparison of our attentional structured pooling scheme with attention-less (VGG-
16, NetBoW, NetVLAD) and structure-less (Attention) baselines. Our approach consistently
outperforms these baselines, thus showing the benefits of pooling only the relevant local
features into a structured representation.

casino studio music operating room video store

Figure 3: Attention maps for MIT-Indoor. Each column shows an image from a different
class (indicated above the image). Note that the maps focus on regions indicative of the
label, ignoring the regions common to multiple classes, such as the people.

where we also show the accuracy of the standard VGG-16 model, with fully connected lay-
ers transformed into convolutional ones followed by global average pooling. Note that our
Attentional-NetVLAD outperforms the baselines in all cases, both when using and not us-
ing bounding boxes for fine-grained recognition. Note also that using attention consistently
helps improving the results, thus showing the importance of reasoning at the level of lo-
cal features rather than combining information from the entire image in these challenging
recognition tasks.

In Figs. 3 and 4, we provide some representative qualitative results of the attention maps
obtained with our method for MIT-Indoor and the fine-grained datasets, respectively. For
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Figure 4: Attention maps for fine-grained datasets. Our method is able to localize dis-
criminative parts of birds (tail, beak), aircrafts (engine, landing gear) and cars (lights, logo).

Method Avg. Acc.
Deep FisherNet [41] 76.5

CBN [10] 77.6
NetVLAD [2] 79.1
H-Sparse [25] 79.5
B-CNN [24] 79.5
SMSO [48] 79.7
FV+FC [5] 81.0

MFAFVNet [22] 81.1
Ours 81.2

Table 2: Comparison with
the state of the art on MIT-
Indoor.

Method Anno. Birds Cars Aircraft
MG-CNN [43] BBox 83.0 - 86.6

B-CNN [24] BBox 85.1 - -
PA-CNN [19] BBox 82.8 92.8 -

Mask-CNN [45] Parts 85.4 - -
MDTP [44] BBox - 92.6 88.4

Ours BBox 85.5 93.5 89.2
KP [6] 86.2 92.4 86.9

Boost-CNN [28] 86.2 92.1 88.5
B-CNN [24] 84.1 86.9 86.6

Imp. B-CNN [23] 85.8 92.0 88.5
α-pooling [37] 85.3 - 85.5

RA-CNN [9] 84.1 92.5 88.2
MA-CNN [52] 86.5 92.8 89.9

Ours 84.3 92.8 88.8

Table 3: Comparison with the state of the art on fine-
grained datasets.

scene recognition, note that our network learnt to focus on the discriminative regions, such
as the casino table and the piano, while ignoring regions shared by other classes, such as
people. Similarly, for fine-grained categorization, the network is able to locate discriminative
parts, such as the beak and the tail of birds, the brand logo and the head lights of cars, and
the engine and landing gears of airplanes. This clearly evidences that our model can, in a
single pass, find the regions of interest that define a class.

Finally, we compare our results with the state of the art on each individual dataset. These
comparisons are provided in Table 2 for MIT-Indoor and Table 3 for the fine-grained datasets.
In the case of scene recognition, we outperform all the baselines, including MFAFVNet [22],
which relies on an accurate Fisher Vector encoding of 500K dimensions based on multi-scale
image patches. For fine-grained recognition, we outperform all the baselines when relying
on bounding boxes. Without bounding boxes, we achieve accuracies only slightly lower
than the state-of-the-art methods, such as [9, 52], which were tailored to the fine-grained
categorization problem, and rely on a multi-stage approach involving cropping parts and
processing them separately. By contrast, our approach makes use of a single forward pass
through a network and generalizes to any complex recognition scenario.
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5 Conclusion
We have introduced an attention-aware structured representation network for complex visual
recognition tasks. Our network jointly identifies the informative image regions and learns
a structured representation. Our comprehensive experiments on scene recognition and fine-
grained categorization have demonstrated the superiority of our approach over attention-
less strategies. Our approach is general and can be extended to other feature aggregation
techniques, or can make use of any generic attention module. This will be the focus of our
future work.
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