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Abstract

We address the problem of zero-shot visual recognition in this paper and particularly
focus on learning a discriminative latent embedding space where the visual image de-
scriptors and the respective semantic class representations can be projected with coincid-
ing alignment. While a supervised dimension reduction strategy which simultaneously
optimizes the intra-class compactness and between-class separation is used to learn the
latent space for the visual features, the semantic class prototypes are further projected
onto this latent space via a multi-stage non-linear mapping function for re-alignment
purposing. Furthermore, it is ensured that the visual and semantic class prototypes are
likely to overlap in the latent space such that the overall similarity between samples from
both the domains is maximized. Apart from remarkably reducing the so-called semantic
gap, the discriminative property of the learned latent layer representations entails im-
proved classification performance on both the standard zero-shot learning (ZSL) and the
challenging generalized ZSL (GZSL) setups on three benchmark datasets (AWA, CUB,
SUN) where the proposed method surpasses the state of the art results.

1 Introduction
The recent success of deep learning methods in the field of visual recognition can be at-
tributed to availability of the large-scale labeled datasets such as ImageNet [33]. However
from a different point of view, precisely annotating such colossal source of data has indeed
posed a challenge since manual annotations can be time consuming and erroneous at the
same time. It is therefore necessary that the improved performance for visual recognition be
obtained while reducing the effort in annotating data.

Zero-shot learning (ZSL) [4, 7, 8, 18, 24, 32, 48] techniques provide an elegant solution
in extending the capabilities of a classifier in recognizing novel (unseen during training)
classes by deploying mid-level semantic representations at the class level. These semantic
representations (also referred as class prototypes, class embeddings or attribute vectors) such
as human-annotated attributes, word vector representations [22], and textual descriptions
allow transfer of knowledge from seen (training) to unseen (test) classes. While ZSL training
is devoted to learn some measure of compatibility between the labeled images and class
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embeddings by leveraging the complementarity of both the visual and semantic spaces, the
test stage is based on evaluating the function for mapping the visual features of the unseen
classes to the nearest class prototypes.

Early ZSL techniques are based on modeling a direct mapping from visual to semantic
space using regressors. However, such methods lead to the loss of semantic structure of vi-
sual data after being projected onto the semantic space given the unbounded nature of the
compatibility functions. Additionally, techniques based on direct mapping to semantic space
suffers from hubness issue [6, 20, 35]. On the other hand, few ZSL methods such as [9, 14]
learn the latent space where both visual and semantic features can be projected. Although
the motivation is to learn a better space to improve the ZSL performance, such methods can
suffer due to the fundamental difference in the inter-class structure in the semantic and visual
space. As a single class prototype is available as opposed to different visual representations
for the same class samples, intra-class variation poses a greater challenge in ZSL which is
not addressed explicitly in most of the endeavors. The intra-class variation in visual samples
come from occlusion, different lighting conditions, different viewing angles in which case
some of the object attributes may not be readily attainable. Besides, simply finding a latent
space based on standard least-square fitting may not help in case of ZSL for fine-grained
visual categories. It is imperative that such visually similar categories remain discriminative
in the learned latent space. A triplet-loss based metric learning for discriminating the visual
categories in latent space has been studied in [29] but requires careful selection of triplets.
To the best of our knowledge, the existing ZSL techniques do not take care of all these is-
sues concerning the learning of discriminative visual and semantic embeddings in an unified
framework. We, on the other hand, retrospect the necessity of discriminativeness in common
latent space learning based ZSL and outline the main contributions below:

• We ensure discrimination of the visual features in the latent space in terms of a discrim-
inative class-encoder model. This simultaneously minimizes the within-class variance
by reconstructing one sample from another both sharing similar class labels and max-
imizes the between-class separation in terms of a softmax type classifier.

• The class prototypes are projected onto this latent space via an additional intermediate
latent space, thus ensuring the learning of a prior abstract class embedding which is
deemed to be more discriminative than the original class prototypes.

• Inter-class structures of the visual and semantic space are aligned in the latent space
by minimizing the divergence between the class wise visual centroids (or visual pro-
totypes) and semantic class prototypes when projected onto the latent space. It is also
ensured that the overall similarity between the visual features and the class prototypes
is maximized in the latent space. A trade-off between both these measures leads to
better correspondence between the visual and semantic domains.

• Experimental results showcase that the proposed formulation performs better or com-
parable with the state-of-the-art for the challenging AWA [19], CUB [40], and SUN
[28] datasets for standard ZSL considering both the attributes and word vector based
semantic space representations. Likewise, in case of GZSL where training and test
classes are not disjoint, our method delivers improved performance on AWA1 [19],
CUB, and SUN, while showing consistent trends with the literature for AWA2 [42].
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Figure 1: The architecture of a proposed model. During training, visual features are projected
onto the common latent space and are reconstructed back at the output using a class-encoder.
The seen class prototypes are projected onto common latent space via intermediate space.
The classifier is fed with the latent representations to make them discriminative. During
testing, ZSL is carried out in the latent space using nearest neighbor search after projecting
test sample and unseen class prototypes.

2 Related Work

Semantic Space: Existing ZSL methods can be categorized based on the use of semantic
space. [7, 27, 48] use attributes while word vector representations such as [22] have been
used in [1, 37, 48]. Image sentence descriptions have been explored in [31, 46]. Crucially,
attributes suffer from the drawback of manual annotations but are more effective than the
word vector representations which are modeled in an unsupervised way in terms of neuronal
probabilistic language models trained on large text corpus. In this regard, few study the
attribute correlations problem [12, 13, 27]. Although, the use of word vectors looks more
prominent practically, characterization of objects by the corresponding word vectors may
be ambiguous thus resulting in lower performance. In contrary, [1, 2, 9, 39] appreciate the
benefits of both attributes and word vectors for ZSL.
Embedding method: [8, 37] use direct visual to semantic projection while [1, 9, 32] learn
the relation between visual and semantic space using intermediate latent space. Deep models
[8, 30, 31, 37, 43, 46] are also used in ZSL. Few tackle the problem of ZSL by representing
unseen class in term of seen classes [5, 25, 47, 49] while others check the compatibility of
visual and latent space [3, 26, 32, 37]. The transductive ZSL in [9, 11, 16] use unlabeled un-
seen class samples along with seen samples and always outperform the standard or inductive
ZSL models. More comprehensive survey on ZSL can be found in [10].

Simply mapping from visual/semantic to latent space may result in the different inter-
class structure in the latent space than the inter-class structure in visual/semantic domain. To
overcome this, neighborhood relation between different classes is learned in visual and se-
mantic domain. The latent structure preserving methods have been used in [9, 14, 21, 36, 48].
Specifically, [48] uses similarity between seen classes while [9] uses Canonical Correlation
Analysis for visual and multiple semantic domains in the transductive setting. Dictionary
learning approach is used to learn discriminative latent attributes in [14] while [45] uses
discriminative sparse non-negative matrix factorization to learn discriminative semantic rep-
resentations.

The proposed technique differs from previous models in the following aspects. First,
the class-encoder [34] in our framework makes the visual features to have lower intra-class
variance. In principle, the decoder part of class-encoder is key to learn an abstract visual
concepts at the class scale in the latent layer which can be better related to the abstract class
prototypes. Second, the classifier in the latent space further makes latent features discrimina-
tive. Third, aligning projections of visual features with their corresponding class prototypes,
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such as in [8, 46], alone would not be sufficient as it may lose inter-class structure present
in the original visual and semantic space. Identically, aligning semantic prototypes and vi-
sual prototypes (class means of visual features) as in [36] would have limited use in case of
multi-modal distribution of classes. The trade-off between these two aspects is necessary to
meaningfully align the embeddings of visual and semantic prototypes in the latent space. The
explicit consideration of all these issues in our model demonstrates improved performance
for ZSL as well as GZSL.

3 Proposed Model

3.1 Background on ZSL and Notations
Consider a visual dataset with s seen classes and u unseen classes. Let DS = {xi,yi}ns

i=1 ∈
X ×Y denote the training data with xi ∈ Rd as the visual feature and yi as the label from
YS = {1,2, · · · ,s}. On the other hand, let DU = {x j,y j}nu

j=1 be the test data with x j ∈Rd being
the jth test sample and y j is the corresponding label from YU = {s+1,s+2, · · · ,s+u} such
that YS ∩YU = φ . The semantic class prototype for the ith class is zi ∈ Rk which can be an
attribute vector or a word vector representation. Therefore, there are s+ u class prototypes
available such thatZS = {z1,z2, · · · ,zs} andZU = {zs+1,zs+2, · · · ,zs+u}. Finally, let θ(x) and
φ(z) be the embedding functions which separately project the visual and semantic descriptors
to the common latent space. Under the aforementioned setup, the standard ZSL problem
aims at learning a compatibility function F(θ(x),φ(z)) given DS and ZS such that F(·)
outputs a high value if a given x and z share an identical class label or otherwise produces low
values. Given a test sample xt coming from a random unseen class, its label ŷt is estimated
as follows:

ŷt = arg max
y∈YU
F(θ(xt),φ(zy)) (1)

In case of GZSL task, samples with labels from YS
⋃
YU are present during testing.

Nonetheless similar to standard ZSL, F(·) is trained here solely based on DS and ZS.

3.2 Discriminative and Structure Aligning Embedding
Figure 1 outlines the proposed ZSL model which contains one sub-network each for the
visual and semantic space. We aim to learn θ(·) and φ(·) in order to project the visual
and semantic data onto the common latent space where F(·) can be applied to assess the
compatibility between the two representations. Essentially, the proposed network depicts
an encoder-decoder model with a class-encoder [34] for the visual features and a two-layer
encoder for the semantic prototypes.

We initiate our discussion with the standard auto-encoder (AE) model and subsequently
define our loss function. An AE in its simplest form is a three layer neural network which
aims to reconstruct the input at the output using an encoder-decoder framework. Consider
an input to AE be X = [x1x2 · · ·xns ] ∈ Rd×ns which contains ns samples from a d-dimension
feature space. The encoder part of AE projects X onto l-dimension latent space (l � d)
using W ∈ Rl×d while decoder of AE aims to reconstruct the input as X̂ ∈ Rd×ns from these
projected samples using W T ∈ Rd×l . The encoding and decoding functions, θ(·) and ψ(·),
respectively, can be realized along with non-linearity s f (·) and sg(·) as follows:

hi = θ(xi) = s f (Wxi) and x̂i = ψ(hi) = g f (W T hi). (2)
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The following loss is minimized while learning the AE parameters W :

LAE =
ns

∑
i=1
‖x̂i− xi‖2

F (3)

AE allows to learn useful latent space for compact representation of original features
in an unsupervised way. However, more useful representation in terms of lower intra-class
variance can be obtained using a class-encoder [34]. A class-encoder is a variant of AE
which reconstructs the output from the different samples belonging to the same class. Let
Cx be the class label of two randomly picked samples x and x̃. Then the loss function to be
minimized for class-encoder is:

LCE = ∑
x∈X

∑
x̃∈Cx

‖x̂− x̃‖2
F . (4)

Ideally, different images of the same class may vary significantly in the visual feature
space owing to aforementioned transformations. However, in semantic space a single unique
representation is available for each class. Therefore in order to draw the correspondence
between two different domain representations of the same class, intra-class variance must
be lowered. Apparently, the visual - latent - visual path of Figure 1 acts like a typical AE
model. As stated before, instead of standard AE we use a class-encoder to reduce the intra-
class variance of the visual features in the latent space.

From a different point of view, learning F(·) in the latent space is a regression problem
which may lose the discriminative property of features in the original visual and semantic
spaces. The problem is even severe while dealing with fine-grained visual categories hav-
ing overlapping feature descriptors. To overcome this difficulty, we simultaneously posit
the use of a classifier which is explicitly trained on latent visual features in order to enforce
discriminativeness. Note that the learning of a classifier requires minimization of a typical
cross-entropy loss LCLFR for s seen classes. The gradients due to LCLFR affects the learning
of an embedding function during back propagation making the latent representations dis-
criminative. The cumulative loss for the visual - latent - (visual, classifier) branch now is put
forward as follows:

LV IS = LCE +LCLFR. (5)

Further, the class prototypes are projected onto the latent space through an intermediate
layer. Let the respective non-linear embeddings be φ1(·) and φ2(·), with φ(·) = φ2(φ1(·)).
Ideally, given the original Z , φ(z) learns abstract semantic class representations which can
better be associated with the latent visual concepts than the original class prototypes. Since
we seek to minimize the pairwise divergence between the two embeddings in the latent space,
the respective loss (LLE ) is defined as:

LLE =
ns

∑
i=1
‖hi−φ(zyi)‖

2
F . (6)

Visual space and semantic space have inherently different inter-class structures. In other
words, relation between visual features of different classes are likely to be different than
the relation between the respective semantic class prototypes. As class-encoder is used for
visual feature reconstruction, a lower intra-class variance signifies that the latent visual rep-
resentations are centered around the mean vectors of the classes separately. Given that, we
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Parameters AWA1 AWA2 CUB SUN
# of seen classes/# of unseen classes 40/10 40/10 150/50 645/72
# of instances 30475 37322 11786 14340
Attribute dimension 85 85 312 102

Table 1: Descriptions of different datasets of ZSL.

seek to match the structures of visual and semantic features in the latent space by aligning
these mean vectors with the projection of semantic prototypes of the corresponding classes.
Since the latent space is discriminative as well, thanks to LCLFR, such an alignment further
ensures that the semantic prototypes do not get projected within close vicinity, a problem
frequently encountered in ZSL. Let µyi denote the mean of the latent features hi of class yi
from DS, we define the structure alignment loss (LSA) as:

LSA =
s

∑
i=1
‖µyi −φ(zyi)‖

2
F . (7)

The overall loss to be minimized along with the standard `2 regularization R on the model
parameters to avoid a trivial solution is expressed as

L= α1LCE +α2LLE +α3LSA +α4LCLFR +βR. (8)

where α1,α2,α3,α4, and β are scalars to appropriately weight the different losses.
Training and inference: L is a non-convex function given that φ(·) and θ(·) are non-linear
mappings. Following the same, L is minimized based on the standard mini-batch gradient
descent optimization strategy. For LV IS, input-output pairs are selected randomly from each
of the classes in YS in each iteration of the training. We do not observe any convergence
related issue during training. During testing, the visual samples and class prototypes of the
unseen classes are separately projected onto the latent space using θ(·) and φ(·), respectively.
F(·) is evaluated to assign the class labels to the visual features using Eqn.(1).

4 Experiments

4.1 Datasets
We consider three standard datasets for the evaluation of the proposed inductive ZSL model:
Animals with Attributes (AWA) [19], Caltech Birds 200-2011 (CUB) [40] and SUN At-
tributes (SUN) [28]. The details of these datasets are given in Table 1. We use d = 1024-
dimension GoogleNet [38] features for all the datasets as visual embeddings while experi-
menting separately with the manually annotated attributes and distributed word vectors based
representations. We use 1000-dimension word vectors for AWA provided by [46] while
500-dimension word vectors for CUB provided by [39] is deployed (both obtained using the
word2vec model trained on the wikipedia corpus). For GZSL, we experiment on AWA1 [19],
AWA2 [42], CUB, and SUN datasets, as suggested in [42] and utilize d = 2048-dimension
ResNet features [46].

4.2 Model Architecture
The proposed model shown in Figure 1 is simple in architecture yet achieves the state of
the art performance in most of the experimental setups. Specifically, we implement all the
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Visual AWA CUB SUN
Method Feature Attribute word2vec Attribute word2vec Attribute
ConSE [24] FG 59.0 53.2 33.6 28.8 49.6
SSE [48] FV 76.3 - 30.4 - -
ESZSL [32] FG 76.3 - 47.2 - 59.2
SPLE [36] FG 78.4 66.5 56.7 35.2∗ 69.3
SYNC [5] FG 72.9 - 54.5 - 62.8
RKT [39] FG 71.6 59.1 33.5 23.2 -
ALE [41] FG 71.9 61.1 45.5 31.8‡ 63.7
LAD [14] FV 82.5 - 56.6 - -
SAE [17] FG 84.7 - 61.4 - 65.2
DZSL [46] FG 86.7 78.8 58.3 - -
DSR [45] FV 87.2 - 57.1 - -
Ours-AE FG 83.7 79.8 61.2 28.7 69.6
Ours-CE FG 85.0 80.7 62.2 31.0 68.1

Table 2: ZSL classification accuracy (%) comparison on different datasets. Ours-AE: Pro-
posed model with standard AE, Ours-CE: proposed model with class-encoder. FV : VGG
features, FG: GoogleNet features. Kernelized prototypes are used in ∗. For CUB we use
500D CBoW word2vec from [39] while ‡ uses 400D word2vec.

functional mappings explained in section 3 using fully-connected (fc) neural network layers.
For the visual - latent - visual branch (Figure 1), d-dimension fc input and output layers are
considered while the latent layer dimension is set to 1000. For the semantic-intermediate-
latent path, we have k-dimension fc input layer, one fc intermediate layer of 750-dimensions
followed by the fc latent layer of 1000-dimensions where k represents the dimension of
the semantic representations. In addition, we use ReLu [23] non-linearity at the latent and
intermediate layers. The classifier is modeled as s-dimension fc softmax layer whose inputs
are the latent visual representations. Note that we use the same model specifications for all
the datasets while separately tuning the relative weights of the individual loss terms (α1−
α4,β ). Furthermore the weights of fc layers are randomly initialized during training. We use
a learning rate of 0.0001 and train the model using Adam [15] with batch of 64. We also
consider the following two different scenarios while fusing both the attribute and word vector
based class prototypes: (1) We concatenate both the representations in order to form the new
class embeddings; (2) We non-linearly (tanh(·)) project both the representations separately
onto the common space, which is subsequently projected onto the visual latent space after
performing a weighted combination of both the intermediate representations [46].

4.3 Performance on ZSL and GZSL
Evaluation protocols: We compare the classification accuracy on unseen classes of our
model with others on the standard ZSL in Table 2. For GZSL, we use the same separately
on seen classes (S), unseen classes (U), and also report the harmonic mean (H) as defined in
[42]. Table 3 shows the performance comparison 1 with the recent literature for GZSL. Only
discriminative models are used while comparing the ZSL and GZSL performance.
ZSL performance: It is clear that the ZSL performance is better using attributes than the
word vectors. The primary reason for the same is that carefully and manually designed at-

1https://github.com/lzrobots/DeepEmbeddingModel_ZSL
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AWA1 AWA2 CUB SUN
Method S U H S U H S U H S U H
DeViSE[8] 68.7 13.4 22.4 74.7 17.1 27.8 53.0 23.8 32.8 27.4 16.9 20.9
SYNC [5] 87.3 8.9 16.2 90.5 10.0 18.0 70.9 11.5 19.8 43.3 7.9 13.4
SJE [1] 74.6 11.3 19.6 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8
ALE [41] 76.1 16.8 27.5 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3
SAE [17] 77.1 1.8 3.5 82.2 1.1 2.2 54.0 7.8 13.6 18.0 8.8 11.8
DZSL [46] 84.7 32.8 47.3 86.4 30.5 45.1 57.9 19.6 29.2 34.3 20.5 25.6
PSR [44] - - - 73.8 20.7 32.3 54.3 24.6 33.9 37.2 20.8 26.7
Ours-CE 85.5 34.7 49.4 87.1 30.1 44.7 60.7 30.2 40.3 41.1 21.2 27.9

Table 3: Performance comparison of GZSL on different datasets. Ours-CE: proposed model
with class-encoder. S: Accuracy on seen classes, U: Accuracy on unseen classes, H: Har-
monic mean (Settings followed from [42].)

tributes provide holistic representations for the classes as compared to word vectors which
are learned in an unsupervised way. Despite this fact, for AWA our model outperforms all
the recent methods and achieves a relative improvement of 2.41% using word vectors over
the best performing model [46] so far. In addition, our shallow model attains an impressive
result of 85.0% with attributes for AWA, a score marginally inferior to the deep model of
[46] which takes the advantage of end-to-end training of the visual features, but superior to
all the ad-hoc ZSL techniques. CUB is a fine grained dataset where our best result of 62.2%
beats all the recent ZSL models. This excellent performance can be partly associated with
the classifier in the latent space which makes the classes discriminative. We achieve the best
performance using class-encoder instead of standard AE structure in the visual-latent-visual
path of our model. As fewer training samples are available for CUB, class-encoder allows to
capture better intra-class variance (by reconstructing each sample from every other sample
of the same class) as compared to the standard AE. For SUN, we report the state of the art
performance of 69.6% using attributes. We also experiment by fusing the attribute and word
vectors together and report the results in Table 5. Simple concatenation of attribute and word
vectors gives the best accuracy of 63.1% on CUB while the other more principled fusion
strategy (section 4.2) achieves superior performance on AWA with 87.4%.
GZSL performance: For GZSL we experiment using attributes. Our model achieves the
best performance on AWA1 while reports a slightly lower harmonic mean on AWA2 with
respect to [46]. Differently, we report a relative improvement of 17.1% in term of harmonic
mean for CUB which is the best performance for CUB on GZSL to date. We again outper-
form recent methods on SUN with harmonic mean of 27.9. It is to be noted that we perform
relatively better for unseen classes for all the datasets as compared to the others. This trend
is indeed encouraging as GZSL is tenacious than standard ZSL due to a bias towards seen
classes while identifying the unseen data.

4.4 Ablation study
Table 4 shows the results of more controlled experimental cases by purposefully overlooking
the effects of individual loss measures in Eqn.(8) on the ZSL performance. We are interested
in assessing the effects of: (1) the visual class-encoder (LCE ), (2) the softmax classifier on
the visual latent features (LCLFR), and (3) the structure alignment in terms of the difference
between latent visual and semantic prototypes (LSA). Clearly, the classifier plays a significant
role in improving the overall performance, specifically in case of fine-grained datasets CUB
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Figure 2: t-SNE plots of embeddings of unseen class visual samples onto latent space
for AWA. Latent space is learned using following loss measures: (Left) LCE ,LLE ,LSA;
(Middle)LAE ,LLE ,LCLFR,LSA; (Right)LCE ,LLE ,LCLFR,LSA. Best viewed in color.

Loss measures AWA CUB SUN
LCE ,LLE 72.5 20.8 38.5
LCE ,LLE ,LSA 78.1 37.2 34.1
LCE ,LLE ,LCLFR 80.3 55.2 66.7
LCE ,LLE ,LCLFR,LSA 85.0 62.2 69.6

Table 4: Ablation study for standard ZSL using dif-
ferent loss measures using attributes.

Method AWA CUB
AMP [11] 66.0 -
SJE [1] 73.9 51.7
DZSL [46] 88.1 59.0†
Ours-CE(CT) 83.7 63.1
Ours-CE(FS) 87.4 62.7

Table 5: ZSL performance accu-
racy (%) using both attributes and
word2vec. CT: Feature concatena-
tion, FS: Feature fusion. Sentence
description is used in †.

and large dataset SUN (in terms of number of classes). Precisely, the classifier is distinctly
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Effect of latent feature dimension on ZSL accuracy

AWA
CUB
SUN

Figure 3: Effect of latent feature dimension on
the ZSL accuracy using attributes on different
datasets. Best viewed in color.

responsible for enhancing the ZSL accu-
racy from 72.5% to 80.3%, from 20.8% to
55.2%, and from 38.5% to 66.7% for AWA,
CUB, and SUN respectively. The dissimilar
inter-class structures of visual and seman-
tic domain are aligned in the latent space
by minimizing LSA which further boosts the
ZSL accuracy by 4.7%, 7.0%, and 2.9% for
AWA, CUB, and SUN, respectively. Ad-
ditionally from t-SNE plots in Figure 2, it
is clearly perceptible that the inclusion of
the classifier in the latent space benefits the
ZSL performance. Moreover, a sensitivity
analysis on the ZSL performance with re-
spect to the dimension of the latent layer is
shown in Figure 3. It can be observed that the ZSL performance is relatively unaffected by
latent feature dimension.

Citation
Citation
{Fu, Xiang, Kodirov, and Gong} 2015

Citation
Citation
{Akata, Reed, Walter, Lee, and Schiele} 2015

Citation
Citation
{Zhang, Xiang, Gong, etprotect unhbox voidb@x penalty @M  {}al.} 2017



10GUNE ET AL: STRUCTURE ALIGNING DISCRIMINATIVE LATENT EMBEDDING FOR ZSL

5 Conclusions

We propose a novel discriminative and inter-class structure preserving latent space learning
based ZSL model in this paper. The prime goal of our work is to make the visual latent
representations discriminative while aligning the visual and semantic prototypes in the latent
space simultaneously. Using extensive experiments, we thoroughly evaluate the efficacy
of our approach both on the standard and generalized ZSL settings for three challenging
datasets where overall superior classification performance with respect to the literature can
be observed. We are currently interested in extending our model for the transductive ZSL
where unlabeled test visual features can be used along with the seen data during training.
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