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Abstract

We propose a novel algorithm, namely Resembled Generative Adversarial Networks
(GAN), that generates two different domain data simultaneously where they resemble
each other. Although recent GAN algorithms achieve the great success in learning the
cross-domain relationship [9, 19, 22], their application is limited to domain transfers,
which requires the input image. The first attempt to tackle the data generation of two
domains was proposed by CoGAN [10]. However, their solution is inherently vulnerable
for various levels of domain similarities. Unlike CoGAN, our Resembled GAN implicitly
induces two generators to match feature covariance from both domains, thus leading to
share semantic attributes. Hence, we effectively handle a wide range of structural and
semantic similarities between various two domains. Based on experimental analysis on
various datasets, we verify that the proposed algorithm is effective for generating two
domains with similar attributes.

1 Introduction
Generative adversarial networks (GANs) are capable of producing sharp and realistic images
by learning the generative process, instead of explicitly estimating the data distribution with
variational bounds or strict model constraints. GANs [5] is composed of two networks,
discriminator and generator, and they adversarially compete each other to approximate Pdata
using Pmodel: the discriminator distinguishes real samples from fake samples produced by
the generator, while the generator aims to create the sample as real as possible so that the
discriminator cannot recognize it as the fake sample. The objective function of this adversarial
learning process in [5] is defined by the following minimax game,

min
G

max
D
Ex∼Pdata

[
log(D(x))

]
+ Ez∼Pz

[
log(1−D(G(z))

]
,

where E denotes expectation, x and z are random variables for data and latent vector, where
their probability distributions are Pdata and Pz, respectively.

Most GAN algorithms learn an unidirectional mapping function from Pz to Pdata for a
single domain. Unlike those, our algorithm learns two mapping functions for two domains
simultaneously; one associates Pz to Px

data, and the other maps the same Pz to Py
data. Through-

out this paper, we denote two different domains by X and Y, respectively. When x and y are
samples generated from the same latent z, we aim to accomplish two objectives; 1) two data
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obey their own data distribution, and 2) two data hold shareable characteristics as similar as
possible. For example, faces of human and those of cat represent different species, technically
different domains. Hence, they have different shapes and structures. However, their posture,
hair color, or facial expression can be similar in both domains, thus those attributes can be
regarded as shareable characteristics. Then, our research goal is to generate a pair of human
face and cat face that faithfully produce their domain characteristics, and at the same time
both faces show the similar attributes such as pose, hair style, or facial color. Note that our
algorithm is categorized as an unsupervised GAN because we do not rely on correspondences
between two different domains. Also, our approach does not condition on additional input
data (i.e., unconditional GAN). Thus, our algorithm is categorized into an unsupervised
unconditional GAN for generating two domain data simultaneously.

Recent studies learn the relationship between two different data domain for domain
transfer. They include cycleGAN [22], DiscoGAN [9], and dualGAN [19]. Because they aim
to establish an image-to-image translation, they require to have the input image as the given
condition so to generate the output image in different domain. This problem is inherently
analogous to the problem of conditional GAN; it is a different problem from unconditinoal
GAN where the data is generated from Pz. CoGAN [10] made the first attempt toward the
unsupervised unconditional GAN for generating two domains, as same as our study. They
formulate this problem by learning the joint distribution Px,y

data. Suppose the joint probability
distribution is factorized as Px,y

data = Px
1 ·P

y
2 ·P

x,y
3 . CoGAN assumes that Px,y

3 is related to high-
level semantics while Px

1 and Py
2 are related to low-level details. Based on this assumption,

they suggests a new GAN architecture of two generators. To model Px,y
3 , first several layers

of two generators are coupled by a weight-sharing constraint. The last remaining layers for
both generators are designed to learn Px

1 and Py
2, respectively. It is because the first layers

decode high-level semantics and the last layers decode low-level details in the generator.
Although each generator is trained with samples for a single data domain, two generators
are enforced to share high-level representations during training because of the shared layers.
This weight-sharing constraint works well when there is the high structural similarity between
two domains. However, with the low structural similarity, the network constraint for CoGAN
is too restrictive to achieve the factorization; two generated samples may not show similar
attributes.

Unlike CoGAN, the proposed GAN, namely Resembled GAN, does not explicitly design
the network architecture to enforce structural similarity. Instead, our approach employs the
feature statistics as an additional constraint, thus it is naturally more flexible to handle a wide
range of structural similarities between two data domains.

The main contribution of this study is to define a new objective function of discriminators
that leads generators to model the joint distribution, Px,y

data. To factorize this joint distribution,
we propose a feature statistic matching algorithm. Suppose that we derive a feature space
where all samples are representative. On this feature space, we assume that the feature distri-
bution of all training data for each domain forms a multivariate Gaussian distribution. After
that, we regard a mean vector of each Gaussian as the independent component (i.e. domain
specific characteristics), associated with Px

1 or Py
2. On the other hand, the covariance matrix

represents the dependent component (i.e. shareable attributes), associated with Px,y
3 . Under

this assumption, we enforce that two feature distributions have similar feature covariance
matrices, effectively leveraging the covariance of two feature distributions.

Using our algorithm, different levels of structural similarity is accounted by the feature
covariance; lower the similarity, greater the difference of covariance matrices. As the results,
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even two domain data are structurally quite different, we can maintain the quality of data
generation as well as the attribute similarity.

2 Background
We categorize recent studies handling multiple data domains using GANs based on 1) super-
vised versus unsupervised approach, and 2) conditional versus unconditional approach.

Supervised Conditional GAN (e.g., Image-to-Image translation): Pix2Pix [8] and
BicycleGAN [23] propose Image-to-Image translation techniques, which transforms the
image of the input domain to the image of the target domain. To learn such transformation,
they utilize a set of paired images as training data, and they employ the mapping constraint;
the transformed image should match the paired image. Finally, they combine a GAN loss with
a traditional loss (e.g., L1 or L2) and learn a transformation function that maps X to Y domain.
Moreover, they utilize the input image as priors for training the generator and discriminator.
The main difference between two studies is a complexity of mapping functions; pix2pix aims
to learn a one-to-one mapping while BicycleGAN learns a one-to-many mapping.

Unsupervised Conditional GAN (e.g., Learning domain transfer): CycleGAN [22],
DiscoGAN [9], and DualGAN [19] are domain transfer algorithms using unpaired two
domain images. Because there are no correspondences between images from two domains,
they develop two mapping functions (i.e., forward and inverse mapping) and utilize the cycle
consistency loss; the sequential operation of forward and inverse mapping should result in
the identity mapping. They produce plausible results in learning cross domain relationship.
However, they are incapable of generating other domain data without the input.

Unsupervised Unconditional GAN (e.g., Learning joint distribution): CoGAN [10]
first suggest the unsupervised unconditional GAN for generating two domain data from Pz
at the same time, using unpaired two domain data. This is achieved by enforcing a weight-
sharing constraint that restricts the generator capacity and favors a joint distribution solution
over a product of marginal distributions. Later, the idea of weight sharing was extended
to multiple domain translations by Lucic et al. [11]. However, this study is categorized as
unsupervised conditional GAN because it requires input images for generating corresponding
translated images.

3 Unsupervised unconditional Resembled GAN
Our goal is to generate paired images corresponding to two different domains with unpaired
training sets. Given two different domain distributions, we aim to train two generators that can
faithfully reproduce original characteristics of each domain data distribution (i.e. statistically
independent component), and at the same time, retain shareable characteristics (i.e. dependent
component of joint distribution) as similar as possible. For that, we define the feature space
that represents both domain characteristics using an encoder of a pre-trained autoencoder
(AE), and then match two covariance matrices of two feature distributions derived through
the encoder.

MGGAN [1] first introduced the idea of inducing the generator to possess specific mani-
fold characteristics using a guidance network. Their guidance network leads the generator to
learn Forward KL divergence by matching the feature distribution of fake images to that of
real images. In this way, they effectively solve a mode collapse problem without sacrificing
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Figure 1: Architecture of Resembled GAN. X and Y represent two domain data. xreal (yreal)
and x f ake (y f ake) are the sample of Pdata and Pmodel, respectively. z is latent vector. E, G, and
D are the encoder, the generator, and the discriminator network. The superscript of Gx (Gy)
and Dx (Dy) indicates the domain and the subscript of Dx

f (Dy
f ) indicates the feature space.

the image quality of baseline GAN. Inspired by this success, Resembled GAN employs the
idea of guidance networks into our problem. That is, we construct a new GAN architecture
that two generators produce samples that represent their own domain characteristics and
shareable attributes of each other.

We first define two discriminators for each generator; Dx (Dy) distinguishes the real
distribution from the fake distribution while Dx

f (Dy
f ) distinguishes the real feature distribution

from the fake feature distribution. The feature space is defined by an encoder, E. Then, we
introduce a new loss term Lfc that represents the norm between the feature covariance matrix
of x and that of y. We refer this term as the feature covariance constraint, which enables to
implicitly learn the joint distribution. Figure 1 visualizes the network architecture for our
Resembled GAN. Its overall objective function is summarized as follow. Firstly, the objective
of four discriminators (i.e., Dx, Dy, Dx

f , and Dy
f ) is

min
Dx , Dy , Dx

f , Dy
f

E
x∼Px

data

[
logDx (x) + logDx

f (E(x))
]
+ E

y∼Py
data

[
logDy (y) + logDy

f (E(y))
]

+ E
z∼Pz

[
log

(
1−Dx (

Gx (z)
))

+ log
(
1−Dy (

Gy (z)
))

+ log
(
1−Dx

f
(
E
(
Gx (z)

)))
+ log

(
1−Dy

f
(
E
(
Gy (z)

)))]
.

(1)

To update the parameters of two generators (i.e., Gx and Gy), we optimize the following
objective function.

min
Gx , Gy

− E
z∼Pz

[
log

(
Dx (

Gx (z)
))

+ log
(
Dy (

Gy (z)
))

+ log
(
Dx

f
(
E
(
Gx (z)

)))
+ log

(
Dy

f
(
E
(
Gy (z)

))) ]
+ωL f c, (2)

L f c =
∥∥∥∥ E

(
Gx (z)

)
−Ex∼Px

data
[E(x)] , E

(
Gy (z)

)
−Ey∼Py

data

[
E(y)

] ∥∥∥∥
1

(3)

where ω serves the weighting factor for L f c. We update the discriminators and the generators
alternatively, and two discriminators for each domain, Dx (Dy) and Dx

f (Dy
f ), are trained

independently.

3.1 Analyzing the feature distribution
To utilize the statistics of feature distribution as constraints, we first develop the feature space
where all samples from two domains are analyzed. To compare feature statistics from two
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domains, we should ensure that this feature space should be representative for all samples
from both domains. Suppose that they represent only the major mode in each domain, or are
biased toward one of two domains in feature space. In such a case, generators suffer from
mode collapse or fail to learn the other domain characteristic. To cope all data from both
domains, we utilize an encoder from a pre-trained AE. Because AE aims to reconstruct all
training samples, the encoded features from AE faithfully represents the data distribution [16].
Using all samples from both domains as training set, we can ensure that the AE can encode
all samples into the same feature space; two feature distributions from both domains can be
comparable. Furthermore, we modify the AE to the denoising AE in order to improve the
robustness of model as a feature extractor [18]. Finally, we pre-train and fix the parameters of
the AE during GAN training. In this way, we maintain the representative power of feature
space defined by its encoder.

3.2 Feature covariance constraint, L f c

Our key idea is to enforce the feature covariance constraint for GAN training, implicitly
learning the joint distribution. The similar idea has been discussed in the previous study,
Snell et al. [17] for few-shot learning. Assuming the feature distribution on embedding space
as a multivariate Gaussian distribution, they claim that the mean of real feature distribution
represents the identity attribute of the class while the covariance of that represents intra-class
variation (e.g., shareable attributes). Inspired by this observation, we regard the mean of
feature distribution as domain identity attribute, and the covariance of that as shareable
attributes. From the similar observation, several studies for low-shot learning augment the
data of long-tailed classes by referencing the feature covariance of rich class data. Given
a single or few training image, they manipulate their features of training set to generate
additional training data. For example, Yin et al. [20] transfer the principal components from
regular classes to tail classes so to increase their intra-classes variance.

4 Evaluation

In this section, we first analyze the performance of the Resembled GAN by 1) adapting
various domains, 2) conducting the image reconstruction, and 3) generating by the latent
space walking. Then, we compare our model with CoGAN, which is a baseline algorithm and
evaluate how well their generation retains the semantic similarity between two domains. Also,
we quantitatively evaluate the generation quality both in terms of diversity and image quality.

To confirm whether each model can handle a wide range of structural similarities across
domain, we experiment with two scenarios.

1. High structural and semantical similarity: We divide CelebA [12] dataset into two
domains using its attribute labels; such as gender, hair colors or with/without glasses.
This scenario is relatively easy because any pair of domains have high structural
similarity (i.e., all are human faces) with the precise alignment.

2. Low structural and semantical similarity: We choose the CelebA dataset and Cat head
dataset [21] to construct the problem of handling significantly different two domains.
This scenario is relatively hard because human and cat face has low structural similarity
with the poor alignment.
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D, E G D f

5 × 5 64 conv, ↓, BN, leaky ReLU 4 - 4 - 1024 fc, BN, ReLU, reshape (4 × 4 × 1024) ? 1024 fc, leaky ReLU
5 × 5 128 conv, ↓, BN, leaky ReLU ? 5 × 5 512 conv, ↑, BN, ReLU ? 1024 fc, leaky ReLU
5 × 5 256 conv, ↓, BN, leaky ReLU ? 5 × 5 256 conv, ↑, BN, ReLU ? dimension of Pz fc
5 × 5 512 conv, ↓, BN, leaky ReLU ? 5 × 5 128 conv, ↑, BN, ReLU ?

D : 1 fc, sigmoid ? 5 × 5 3 conv, ↑, Tanh
E : dimension of Pz fc

Table 1: Architectures for the networks that comprise CoGAN and Resembled GAN. fc and
conv means a full connected layer and a convolutional layer respectively. ↑ and ↓ represent up-
and down-sampling respectively. BN denotes batch normalization [7]. ReLU and Tanh denote
rectified linear unit and hyperbolic tangent activation function, respectively. ? indicates
shared layers of CoGAN.

For fair comparison, we design the architecture of discriminator and that of generator for
Resembled GAN and CoGAN based on DCGAN [15]; for that, we crop and resize all dataset
into 64× 64× 3. The architecture of manifold discriminators, Dx

f and Dy
f , follow that of

MGGAN. Table 1 demonstrates the architecture design in detail. We crop the facial region of
the cat head using facial key points provided by the original cat head dataset. Among 10k cat
images, 9k images are used for training while 1k images are used for testing. For improving
the training stability, we increase the training dataset to 90k using the affine transform based
data augmentation. During training, we randomly draw 90k images from the CelebA dataset to
match the number of Cat head data. To implement CoGAN, except the last layer of generator
and the first layer of discriminator, the rest of layers from each domain network is tied for a
weight-sharing constraint. We set ω = 1 for all experimental evaluations.

4.1 Evaluating the semantic similarity between two domains
First, we evaluate the Resembled GAN with various paired domains: with/without glasses
and black/blond hair styles. Our generation results are summarized in Fig. 2. These generated
images present the domain characteristics reasonably well such as the presence of glasses or
color of hair while they hold shareable attributes such as the rest of facial structure.

Resembled GAN is capable of reconstructing real data by introducing a small modification
to the network. The image reconstruction has originally been demonstrated in MGGAN. That
is, we add the three layers of fully connected network to map P f to Pz. To perform the image
reconstruction with CoGAN, they should conduct the additional optimization for searching a
latent vector corresponding to real data. Unfortunately, this optimization is error prone and
unreliable because it should solve inverse generation process, which is extremely non-linear
and complicated like the generation process. Using Resembled GAN, the reconstruction
can be easily formulated as a part of generative model, thus the reconstruction results are
more plausible than optimization based reconstruction. Fig. 3 shows our reconstruction
results. Each of the first, second, and third column are real images, reconstructed images and
generated images in the other domain.

To verify whether data generation is the results of data memorization or not, we generate
samples by latent space walking. The generated images from interpolated latent vectors
between two specific vectors do not have meaningful connectivity if the generator just
memorize the dataset, such as lack of smooth transitions or fail to generation [2, 15]. From
semantically smooth interpolation results shown in Fig. 4, we conclude Resembled GAN
reproduces the data distribution without memorization. More interestingly, we observe that
latent walking in two domains demonstrates semantically similar. For example, in the middle
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Figure 2: Generation with high structural and semantical similarity dataset; with/without
glasses(top), black/blond hair(bottom). Each of odd and even columns are resembled image
generated from same random noise vectors.

Figure 3: Reconstruction results. Each of the first, second, and third columns are real test
image, a reconstructed image, and a resemble image of the corresponding domain.

row of Fig. 4, the smooth transitions of facial poses are quite similar in both domains. We
have the same observation consistently over various examples.

Finally, we qualitatively compare Resembled GAN with CoGAN. For fair comparison,
we draw samples at the same iteration of training, 35k. The generated images are shown in
Fig. 5; the left half are from CoGAN, and the right half are from Resembled GAN. Each
of odd and even column images are paired, each generated from Gx and Gy from the same
random vectors, z ∼ Pz.

When generating the different gender, the quality of CoGAN and Resembled GAN
are nearly the same. Both algorithms retain each domain characteristic clearly (male and
female) while keeping shareable attributes; such as smile, skin color or background. An
interesting observation is that some attributes associated with the domain characteristics,
such as mustache, are excluded from shareable features automatically by networks decision.
On the contrary, when handling human and cat faces, Resembled GAN clearly is better
than CoGAN, especially how well two generated images share common attributes. Because
CoGAN generates images with the weight-sharing constraint, several results can also match
the face orientation. However, they do not share hair color, facial shape or eye shapes, which
are properly modeled shareable attributes in Resembled GAN. The generated pairs from
Resembled GAN can match the facial orientation, background color, hair color, skin tone,
facial shape or eye shape (e.g., oval or line-shape).
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Figure 4: Interpolation results. Each of odd and even rows are pair images generated from
same interpolated latent vectors.

Although CoGAN aims to match high-level semantics, weight-sharing constraint just
considers the structural similarity in substance. Thus, their approach is less effective when
structural features between two domains are substantially different. Unlike CoGAN, Resem-
bled GAN constrains the feature statistics. Hence, the strength of constraint is automatically
determined by the discrepancy of two domains; the bigger the difference, the stronger the
constraint. For this reason, our model is more robust to handle various levels of structural and
semantic similarities between two domains.

4.2 Quantitative Evaluation

Using existing evaluation metric, it is hard to quantitatively evaluate the semantic similarity of
two domains. Instead, we utilize two general metrics for evaluating GANs; one is MS-SSIM
for measuring image diversity (e.g., the lower the MS-SSIM, the higher the diverse [3, 14])
and the other is a Fréchet distance (FID) for measuring visual quality. (e.g., the higher the
FID score, the higher the quality [6, 13])

When training the generators of two domains by keeping the shareable attributes, the
generation process tends to increase its intra-class variations because it learns the feature
covariance from both domains. As a result, the diversity of generated images in each domain
becomes higher than that of real data if generators are influenced by the shareable attributes
from the other domain. We observe the same phenomenon in our experiment. For example,
although faces of cat in training dataset do not possess red hairs, Resembled GAN can generate
cat with red hairs as shown in the last row in Fig. 5. This observation consistently holds in the
quantitative evaluation summarized in Table 2. All scores are the average MS-SSIM repeated
five times for each model and dataset. Resembled GAN achieves greater diversity (i.e., lower
MS-SSIM) than all real dataset and CoGAN. From these results, we justify that Resemble
GAN possesses the representation power for generating the wide range of attributes, more
flexible to model various attributes.

Because the trade-off relationship between visual quality and sample diversity is a well-
known issue in GAN training [4], we also verify whether our achievement in image diversity
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Figure 5: Comparison between CoGAN (Left) and Resembled GAN (Right) using two cases
of dataset: one (top) utilize male and female of CelebA; the other (bottom) utilize celebA and
cat face dataset.

Metric Model Male Female Human Cat
Real-dataset 0.3558 0.4214 0.3897 0.2134

MS-SSIM Coupled GAN 0.3584 0.4351 0.3961 0.2123
(mean) Resembled GAN 0.3392 0.4090 0.3324 0.2069

FID score Coupled GAN 34.55±2.45 29.59±3.34 38.74±3.32 31.45±4.21
(mean ± std) Resembled GAN 36.35±2.21 37.33±4.02 41.89±3.21 33.89±4.59

Table 2: Comparison of the sample diversity and quality using MS-SSIM (mean) and FID
score (mean and standard deviation), respectively. The lower MS-SSIM, the higher diversity.
The lower FID score, the higher quality.

is the result of sacrificing the image quality. The FID scores in Table 2 show that Resembled
GAN reports a slightly lower FID than CoGAN in average. However, because the one standard
deviation of FID from CoGAN overlaps with Resembled GAN, the statistical difference is
not significantly meaningful.
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5 Conclusion
This paper introduces Resembled GAN that generates a pair of images from two domains
with similar attributes. The objective of our study is different from those of domain transfer
techniques in that we deal with unsupervised and unconditional approach to generating two
domains simultaneously. While existing method for the same objective, CoGAN, explicitly
enforces the structural similarity between two domains, we induce generators to learn the
shareable attribute from the other domain based on feature covariance matching. In this way,
Resembled GAN handles semantic attributes such as color mood better than CoGAN. More
importantly, Resembled GAN is more flexible to handle various levels of similarities between
two domains. We expect that our feature matching idea can be extended toward cross-domain
transfers in a unsupervised unconditional manner.
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