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Abstract

Adversarial noises are useful tools to probe the weakness of deep learning based com-
puter vision algorithms. In this paper, we describe a robust adversarial perturbation (R-
AP) method to attack deep proposal-based object detectors and instance segmentation al-
gorithms. Our method focuses on attacking the common component in these algorithms,
namely Region Proposal Network (RPN), to universally degrade their performance in a
black-box fashion. To do so, we design a loss function that combines a label loss and a
novel shape loss, and optimize it with respect to image using a gradient based iterative
algorithm. Evaluations are performed on the MS COCO 2014 dataset for the adversarial
attacking of 6 state-of-the-art object detectors and 2 instance segmentation algorithms.
Experimental results demonstrate the efficacy of the proposed method.

1 Introduction
Deep learning based algorithms achieve superior performance in many problems in com-
puter vision, including image classification, object detection and segmentation. However, it
has been recently shown that algorithms based on Convolutional Neural Network (CNN) are
vulnerable to adversarial perturbations, which are intentionally crafted noises that are im-
perceptible to human observer, but can lead to large errors in the deep network models when
added to images. To date, most existing adversarial perturbations are designed to attack CNN
image classifiers, e.g., [4, 6, 10, 14, 15, 16, 19, 23].

Recently, attention has been shifted to finding effective adversarial perturbation to CNN-
based object detectors [13, 22]. Compared to image classification, finding effective pertur-
bations for object detectors is more challenging, as the perturbation should affect not just the
class label, but also the location and size of each object within the image. Existing methods
[13, 22] mostly design specific loss functions based on the final prediction to disturb object
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Figure 1: Overview of the Robust Adversarial Perturbation (R-AP) method. Our method attacks Re-
gion Proposal Network (RPN) [17] in deep proposal-based object detectors and instance segmentation
algorithms.

class labels. As such, these methods are model dependent, which require detailed knowledge
of the network architectures.

In this work, we develop a Robust Adversarial Perturbation (R-AP) method to univer-
sally attack deep proposal-based models that are fundamental to majority of object detectors
and instance segmentation algorithms. Our method is based on the fact that a majority of
recent object detectors and instance segmentation algorithms, e.g., [2, 8, 11, 17] use a Re-
gion Proposal Network (RPN) [17] to extract object-like regions, known as proposals, from
an image and then process the proposals further to obtain object class labels and bounding
boxes in object detection, and the instance class labels and region masks in instance segmen-
tation. If a RPN is successfully attacked by an adversarial perturbation, such that no correct
proposals generated, the subsequent process in the object detection or instance segmentation
pipeline will be affected. Figure 1 overviews the proposed R-AP method. The investigation
of adversarial perturbation on deep proposal-based models can lead to further understanding
of the vulnerabilities of these widely applied methods. The efforts can also aid improv-
ing the reliability and safety of the derived technologies, including computer vision guided
autonomous cars and visual analytics.

The proposed R-AP method attacks a RPN based on the optimization of two loss func-
tions: (i) the label loss and (ii) the shape loss, each of which targets a specific aspect of
RPN. First, inspired by recent methods [13, 22] that attacks CNN-based object detectors,
we design the label loss to disturb the label prediction (which indicates whether a proposal
represents an object or not). Second, we also design a shape loss, which attacks the shape
regression step in RPN, so that even if an object is correctly identified, the bounding box can-
not be accurately refined to the object shape. Note that our R-AP method can be combined
with existing adversarial perturbation method such as [22] to jointly attack corresponding
network, since R-AP specifically focuses on attacking RPN, which is the intermediate stage
of network compared to others which target the entire network.

Experimental validations are performed on the MS COCO 2014 [12], the current largest
dataset used for training and evaluating mainstream object detectors and instance segmen-
tation algorithms. Our experimental results demonstrate that the proposed R-AP attack can
significantly degrade the performance of several state-of-the-art object detectors and instance
segmentation algorithms, with minimal perceptible artifacts to human observers.

Our contributions are summarized in the following:

• To the best of our knowledge, this is the first work to thoroughly investigate the effects
of adversarial perturbation on RPN, which universally affects the performance of deep
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proposal-based object detectors and instance segmentation algorithms.

• In contrast to previous attack paradigms that only disturb object class label prediction,
our method not only disturbs the proposal label prediction in RPN, but also distracts
the shape regression, which can explicitly degrade the bounding box prediction in
proposal generation.

2 Related Work
Deep proposal-based models follow a common paradigm of two steps — proposal gener-
ation and proposal refinement. A majority of recent object detectors and instance segmen-
tation algorithms are deep proposal-based models. For object detection [2, 17], a Region
Proposal Network (RPN) generates object proposals, which are refined in subsequent net-
work modules for the exact bounding boxes and class labels. The state-of-the-art instance
segmentation [8, 11] can be viewed as an extended version of object detection, which also
use RPN to generate object proposals and refine them to semantic mask of objects.

Region Proposal Network (RPN) is a CNN-based model for object proposal generation.
A RPN starts with a (manually specified) fixed size of multi-scale anchor boxes for each
cell in feature map. At training phase, each anchor box is matched to ground truth. If the
overlap between an anchor box and a ground truth is greater than threshold, this anchor box
will be marked as positive example, otherwise negative example. Moreover, the shape offset
between positive anchor box and the matched ground truth is recored for bounding box shape
regression. At testing phase, the label and offset predictions of all anchor boxes are generated
within a single forward. Compared to the selective search method [21] used in RCNN [5],
RPN is much more efficient and accurate, such that it is widely used in current deep models
to provide proposals.

Adversarial perturbation is an intentionally crafted noise that aims to perturb deep learn-
ing based models with minimal perception distortion to the image. Many methods [4, 6,
10, 14, 15, 16, 19, 23] have been proposed to fool image classifiers. Szegedy et al. [19]
first described this intriguing property and formulated adversarial perturbation generation as
an optimization problem. Goodfellow et al. [6] proposed an optimal max-norm constrained
perturbations, referred as “fast gradient sign method” (FGSM), to improve the running effi-
ciency. Kurakin et al. [10] proposed a “basic iterative method” which generates perturbation
iteratively using FGSM. Papernot et al. [16] constructed an adversarial salieny map to indi-
cate the desired places that can be affected efficiently. The DeepFool of Moosavi et al. [14]
further improves the effectiveness of adversarial perturbation. Moosavi et al. [15] discovered
the existence of image agnostic adversarial perturbations for image classifier.

Recently, adversary attack on object detectors has attracted many attentions. Lu et al.
[13] attempted to generate adversarial perturbations on “stop” sign and “face” to mislead
corresponding detectors. Xie et al. [22] proposed a dense adversarial generation method
to iteratively incorrect predictions of object detectors. However, these methods are task-
specific, which designs loss functions based on the final predictions. They do not address
the adversarial perturbation universally. In contrast, we focus on attacking RPN, a common
component of deep proposal-based models, to universally degrade their performance without
knowing the details of their architecture.
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Figure 2: Illustration of performing R-AP on the object detector Faster-RCNN [17] and the instance
segmentation algorithm FCIS [11]. (c) is the original image. (d) is the noise generated from R-AP,
amplified by a factor of 10 for better visibility. (e) is the perturbed image by adding (c) and (d). (a,f)
are the Faster-RCNN object detection of (c,e), and (b,g) are the FCIS instance segmentation of (c,e),
respectively.

3 Method
The proposed method attacks deep proposal-based object detectors and instance segmenta-
tion algorithms by adding minimal adversarial noises to the input image that can effectively
disturb the predictions of Region Proposal Network (RPN). Given an input image and a pre-
trained RPN, we design a specific objective function, a combination of two terms — the label
loss and the shape loss, to calculate the adversarial perturbation. In particular, we optimize
this objective function with respect to image using an iterative gradient based method.

Note all mainstream deep proposal-based object detectors and instance segmentation
algorithms rely on a few standard RPNs to provide proposals for subsequent processes. Once
the RPN is disturbed, the performance of these deep models is naturally degraded. As such,
our R-AP method is suitable in nature for black-box attack to these models, i.e., without
the need to know their implementation details. Inspired by [22], we generate adversarial
perturbations for different RPN and combine them together to improve the robustness of
black-box attack. Figure 2 illustrates an example of R-AP attack on object detection and
instance segmentation.

Section 3.1 describes the notations and the general paradigm of label loss for generating
adversarial perturbations. Then we introduce our new shape loss that can explicitly disturb
proposal shape regression. Section 3.2 presents the details of iterative adversarial perturba-
tion generation scheme.

3.1 Notations and Problem Formulation
Denote I as the input image that contains n ground truth bounding boxes for objects {b̄i =
(x̄i, ȳi, w̄i, h̄i)}n

i=1, where x̄i, ȳi, w̄i, h̄i are the x- and y-coordinate of the box center point, the
width and height of bounding box b̄i, respectively. Let Fθ denote a Region Proposal Net-
work (RPN) with model parameters θ . Let Fθ (I) = {(s j,b j)}m

j=1 denotes the set of m
generated proposals with input image I, where s j denotes the confidence score (probability
after sigmoid function) of j-th proposal and b j is the bounding box of j-th proposal. Let
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b j = (x j,y j,w j,h j), where x j,y j,w j,h j are the x- and y-coordinate of the box center point,
the width and height of bounding box b j, respectively.

Our goal is to seek an minimal adversarial perturbation added to image I to fail a RPN .
The adversarial perturbation generation can be casted as an optimization problem of specific
designed loss. In our method, we design the loss as the summation of (i) the label loss Llabel ,
which is a general paradigm used in previous methods to disturb label prediction, and (ii) the
shape loss Lshape, which is our newly proposed term to explicitly disturb bounding box shape
regression. As Peak Signal-to-Noise Ratio (PSNR) is an approximation of human perception
of image quality, we employ it to evaluate the distortion of adversarial perturbation. Less
perturbation results in higher PSNR. Throughout this work, we assume the model parameters
θ of PRN are fixed, and the R-AP algorithm generates a perturbed image I by optimizing
the following loss as

minI Llabel(I;Fθ )+Lshape(I;Fθ ), s.t. PSNR(I)≥ ε, (1)

where PSNR(I) denotes the PSNR of luminance channel in image I, ε is the lower bound
of PSNR. We describe the label loss Llabel and shape loss Lshape in sequel.
Label Loss. The label loss Llabel is designed to disrupt the label prediction of proposals,
which is in analogy to existing adversarial perturbation methods [13, 22] for object detectors.
Denote z j ∈ {0,1} as the indicator of j-th proposal, where z j = 1 means that j-th proposal
is positive, otherwise negative. We let z j = 1 if (1) the bounding box intersect-over-union
(IoU) of j-th proposal with an arbitrary ground truth object is greater than a preset threshold
µ1; (2) the confidence score of j-th proposal is greater than another preset threshold µ2,
otherwise we set z j = 0. The above rule can be formulated as z j = 1, if ∃ i, IoU(b̄i,b j)> µ1
and s j > µ2, and 0 otherwise.

Note that RPN initially generates a large amount of proposals, and in R-AP, we only
focus on disturbing positive proposals as they are the key to the subsequent algorithms. The
label loss Llabel is given by

Llabel(I;Fθ ) = ∑
m
j=1 z j log(s j). (2)

In other words, minimizing this loss is equivalent to decreasing confidence score of positive
proposals.

Algorithm 1 Adversarial Perturbation Generation

Require: RPN model Fθ ; input image I; maximal iteration number T .
1: I0 = I, t = 0;
2: while t < T and ∑

m
j=1 z j 6= 0 do

3: p̂t = ∇It (Llabel +Lshape);
4: pt =

λ

||p̂t ||2 · p̂t ; . λ is a fixed scale parameter
5: It+1 = clip(It − pt);
6: if PSNR(It)< ε then
7: break
8: t = t +1;
9: p = It −I0;

Ensure: adversarial perturbation p

Shape Loss. Shape regression is an important step to refine the bounding box of object
detections or proposals. Specifically, in RPN, shape regression is used to adjust the anchor
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Table 1: Performance of R-AP on 6 state-of-the-art object detectors at mAP 0.5 and 0.7. Lower value
denotes better attacking performance.

FR-v16 FR-mn FR-rn50 FR-rn101 FR-rn152 RFCN [2]
origin 59.2/47.3 47.1/32.6 59.5/49.4 63.5/53.6 64.8/54.5 60.1/50.0
random 58.7/46.5 46.5/32.6 59.6/48.9 63.2/53.2 64.6/54.4 59.9/49.6
v16 (p1) 5.1/3.1 34.8/22.2 47.9/36.8 52.7/42.4 55.5/45.0 54.5/43.8
mn (p2) 56.8/44.4 11.0/6.1 56.7/45.2 60.6/50.2 62.3/51.4 57.5/46.6
rn50 (p3) 53.8/41.2 39.5/25.7 10.5/6.6 52.8/42.2 55.9/44.7 53.7/42.6
rn101 (p4) 54.8/42.6 41.0/27.4 50.0/39.2 16.8/11.0 56.0/45.3 52.0/40.4
rn152 (p5) 55.0/41.9 41.8/27.4 49.8/38.3 53.6/42.2 17.3/10.6 54.4/42.9
P = α ·∑5

i=1 pi 37.5/25.6 26.4/16.5 31.3/21.3 37.9/27.2 41.4/30.1 47.0/35.9

boxes to the ground truth bounding boxes of the object by minimizing the offset between
them. Therefore, we design a specific shape loss to explicitly disturb the bounding box
shape regression. Let ∆x j,∆y j,∆w j,∆h j be the predicted x- and y- coordinate center location
offsets, width and height offset of bounding box b j, respectively. To explicitly disturb the
shape regression, we define a new loss function Lshape as

Lshape(I;Fθ ) = ∑
m
j=1 z j((∆x j− τx)

2 +(∆y j− τy)
2 +(∆w j− τw)

2 +(∆h j− τh)
2), (3)

where τx,τy,τw,τh are large offsets defined to substitute the real offset between anchor boxes
and matched ground truth bounding boxes. We are only concerned about the predicted offset
of positive proposals, as it is inappropriate to consider the bounding boxes of negative pro-
posals . By minimizing Eq. (3), the R-AP method forces predicted offset ∆x j,∆y j,∆w j,∆h j
approaching τx,τy,τw,τh respectively, such that the shape of bounding box b j will be incor-
rect.

3.2 The Robust Adversarial Perturbation (R-AP) Algorithm
To generate the proposed R-AP, we optimize Eq. (1) using an iterative gradient descent
scheme, as mentioned in [22]. Let t denote iteration number. We calculate the gradient of
Llabel +Lshape with respect to image I at t as p̂t . We normalize pt =

λ

‖ p̂t‖2
· p̂t to keep pertur-

bation minimal perceptive and stability of each iteration, where λ is a fixed scale parameter,
‖ · ‖2 is L2 norm metric. Then image It+1 is updated by It − pt and we clip the pixel value
back to [0,255] at the end of each iteration. The process is repeated until (1) the maximum
iteration number T is reached, or (2) positive proposals cease to exist, i.e., ∑

m
j=1 z j = 0, or (3)

Peak Signal-to-Noise Ratio (PSNR) is less than a threshold ε . The algorithm of adversarial
perturbation generation is listed in Algorithm 1.

Note that R-AP is not mutually exclusive to other adversarial perturbation method such as
[22] for object detectors. For instance, we can combine R-AP with method in [22] to generate
more effective adversarial perturbations, since our loss function is based on a different stage
of networks compared to other state-of-the-arts algorithms.

4 Experimental Results
In this section, we report the experimental evaluation of R-AP on several state-of-the-art
object detectors and instance segmentation algorithms. Section 4.1 describes the dataset
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Figure 3: Illustration of R-AP performance under different PSNR value at mAP 0.5 on 6 object detec-
tors.

and evaluation metric. Section 4.2 describes the R-AP settings in all experiments. Section
4.3 and section 4.4 presents the R-AP attack experiments on object detectors and instance
segmentation algorithms respectively.

4.1 Dataset

The performance of the R-AP is evaluated on MS COCO 2014 dataset [12], which is a large
scale dataset containing 80 object categories for multiple tasks, including object detection
and instance segmentation. Experiments are conducted on a subset (random 3000 images)
of the MS COCO 2014 validation set and evaluated using “mean average precision” (mAP)
metric [3] at intersection-over-union (IoU) threshold 0.5 and 0.7.

4.2 R-AP Settings

We generate adversarial perturbations for five different RPN architectures: vgg16 (v16) [18],
mobilenet (mn) [9], resnet50 (rn50), resnet101 (rn101) and resnet152 (rn152) [7], where
the adversarial perturbations are denoted p1, p2, p3, p4, p5, respectively. These RPN ar-
chitectures are extracted from Faster-RCNN (FR) object detectors [17] implemented by
[1]. We also generate Gaussian noise (random) as a perturbation baseline in comparison
to demonstrate the effectiveness of R-AP. Inspired by [22], we accumulate these perturba-
tions as P = α ·∑5

i=1 pi, where α is a scale parameter to control the distortion.
The following parameter values are used throughout the paper: overlap threshold µ1 =

0.1, confidence score threshold µ2 = 0.4, offset τx = τy = τw = τh = 105, scale parameters
λ = 30,α = 0.5, and maximum iteration number T = 210. In general, typical values of
PSNR in lossy image compression is between 30 and 50 dB [20]. Therefore, we set ε = 30
dB as the lower bound of PSNR. In our experiments, all perturbations are terminated at
maximum iteration number T with PSNR > ε .
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4.3 Object Detection

We study six state-of-the-art object detectors, including five Faster-RCNN based methods
FR-v16, FR-mn, FR-rn50, FR-rn101, FR-rn152 with various base networks, and the Re-
gion Fully Convolutional Network RFCN [2]. We denote FR-v16 as vgg16 based Faster-
RCNN in short, and the others are named in the same way accordingly throughout the paper.

Table 1 illustrates the performance of R-AP generated from different RPN on the six ob-
ject detectors, where we report mAP metric at 0.5 and 0.7. The 2nd row of Table 1 (random)
shows the added Gaussian noise as perturbation for a baseline comparison, and the result
shows that the performance degradation is < 1%. In contrast, the R-AP generated from v16,
mn, rn50, rn101, rn152 can each reduce the performance of the object detectors by a larger
amount. Since we extract v16, mn, rn50, rn101, rn152 based RPN from FR-v16, FR-mn,
FR-rn50, FR-rn101, FR-rn152 detectors respectively, the R-AP works as white-box attack
for their corresponding RPNs. Thus, the degradation for the respective object detector (high-
lighted in bold) is significantly larger. For example, the detection performance of FR-v16 is
degraded greatly from 59.2% to 5.1% at mAP 0.5, and from 47.3% to 3.1% at mAP 0.7.

In comparison, the RFCN works as a black-box detector in our experiment. Observe that
in the RFCN column of Table 1, the R-AP generated from v16, mn, rn50, rn101, rn152 based
RPN can effectively reduce the detection performance. In particular, the R-AP based on
rn101 can reduce the performance from 60.1% to 52.0% at mAP 0.5, and from 50.0 to 40.4%
at mAP 0.7. The last row (P for RFCN) shows the scaled accumulation of 5 perturbations
(p1, p2, p3, p4, p5), which essentially represents the combination of effects learned from
multiple networks that can notably degrade the performance of RFCN by 13.1% at mAP 0.5
and 14.1% at mAP 0.7.

The performance of R-AP under different PSNR value on six object detectors are shown
in Figure 3. Observe that Gaussian noise (random) only produces small effects as the PSNR
decreased. In contrast, the mAP curves of v16, mn, rn50, rn101, rn152 in respective detector
plots drop significantly compared to others. The black curve in each plot is the performance
of accumulated perturbation P. We can see in pure black-box object detector RFCN, the
accumulated perturbation curve drops notably and achieves the best results.

We illustrate the visual performance of accumulated P on several object detectors in the
first four rows of Figure 5. Due to the degradation of RPN after R-AP attack, the person
in FR-rn50 (b) is not detected. For the case of FR-mn (d), despite the target is correctly
identified, the bounding box is disturbed to an undesired shape.

4.4 Instance Segmentation

We evaluate the proposed R-AP on attacking two of the state-of-the-art instance segmenta-
tion methods in a black-box setting — FCIS [11] and Mask-RCNN (MR) [8]. Table 2 sum-
marizes the performance degradation after applying R-AP at mAP 0.5 and 0.7. The 2nd row
of the table (random) shows a baseline by adding simple Gaussian noise as the perturbation,
which is known to be ineffective in attacking, i.e. with only < 1% performance decreased.
In contrast, R-AP based on v16, mn, rn50, rn101, rn152 each leads to large degradation of
the performance. In particular, R-AP based on rn101 degrades the performance of FCIS by
10.2% at mAP 0.5 and 9.8% at mAP 0.7, and reduces MR performance by 9.3% at mAP 0.5
and 7.8% at mAP 0.7. Notably, the accumulated perturbation P degrades the performance of
both methods — a decrease of 15.1%/13.2% on FCIS and 16.7%/13.8% on MR.

Figure 4 shows the performance evaluation of the R-AP black-box attack under different
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Table 2: Performance of black-box attack on 2 state-of-the-art instance segmentation algorithms at
mAP 0.5 and 0.7. Lower value denotes better attacking performance.

FCIS [11] MR [8]
origin 61.0/45.8 60.3/45.6
random 60.4/45.6 59.4/45.0
v16 (p1) 54.7/40.0 51.3/38.1
mn (p2) 57.6/42.4 55.5/41.9
rn50 (p3) 52.8/38.2 52.0/38.1
rn101 (p4) 50.8/36.1 51.0/37.8
rn152 (p5) 53.4/39.1 51.9/38.8
P = α ·∑5

i=1 pi 45.9/32.6 43.6/31.8

Figure 4: Illustration of R-AP performance under different PSNR value at mAP 0.5 on 2 instance
segmentation algorithms.

PSNR on the two instance segmentation methods. The blue curve corresponding to Gaussian
noise is mostly flat, which shows the inefficacy of attack. In contrast, R-AP is effective for
both instance segmentation methods. Notably, the black curve corresponding to the accumu-
lated perturbation P achieves the largest degredation among all.

Visual illustration of the accumulated P attack for instance segmentation is shown in the
last two rows in Figure 5. Observe that the object instances are poorly segmented after the
R-AP perturbation.

5 Conclusion
In this paper, we propose a robust adversarial perturbation (R-AP) method to attack deep
proposal-based object detectors and instance segmentation algorithms. To the best of our
knowledge, this work is the first to investigate the universal adversarial attack of the deep
proposal-based models. Our method focuses on attacking Region Proposal Network (RPN),
a component used in most deep proposal-based models, to universally affect the performance
of their respective tasks. We describe a new loss function to not only disturb label prediction
but also degrade shape regression. Evaluations on the MS COCO 2014 dataset shows that
the R-AP can effectively attack several state-of-the-art object detectors and instance segmen-
tation algorithms.

Future work includes conducting further experiments on additional deep proposal-based
models, including the part-based human pose detection. This work also opens up new op-
portunities on how to effectively improve the robustness of RPN-based networks.
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Figure 5: Visual results of the R-AP attack on several mainstream object detectors (first 4 rows) and
instance segmentation algorithms (last 2 rows). Columns (a,c) are the original results, and (b,d) are
the R-AP attacked results.

References
[1] Xinlei Chen and Abhinav Gupta. An implementation of Faster RCNN with study for region

sampling. arXiv 1702.02138, 2017.

[2] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object detection via region-based fully
convolutional networks. In NIPS. 2016.

[3] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The PASCAL visual object classes (VOC) challenge. IJCV, 2010.

[4] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir
Rahmati, and Dawn Song. Robust physical-world attacks on deep learning models. In CVPR,
2018.



LI, ET AL: R-AP ON DEEP PROPOSAL-BASED MODELS 11

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, 2014.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In ICCV, 2017.

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv 1704.04861, 2017.

[10] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In ICLR, 2017.

[11] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional instance-aware
semantic segmentation. In CVPR, 2017.

[12] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV,
2014.

[13] Jiajun Lu, Hussein Sibai, and Evan Fabry. Adversarial examples that fool detectors. arXiv
1712.02494, 2017.

[14] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In CVPR, 2016.

[15] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In CVPR, 2017.

[16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. In EuroS&P, 2016.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. TPAMI, 2017.

[18] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv 1409.1556, 2014.

[19] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv 1312.6199, 2013.

[20] Prabhakar Telagarapu, V Jagan Naveen, A Lakshmi Prasanthi, and G Vijaya Santhi. Image
compression using DCT and wavelet transformations. International Journal of Signal Processing,
Image Processing and Pattern Recognition, 2011.

[21] Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, and Arnold W. M. Smeulders.
Selective search for object recognition. IJCV, 2013.

[22] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial
examples for semantic segmentation and object detection. In ICCV, 2017.

[23] Xiaohui Zeng, Chenxi Liu, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang, and Alan L
Yuille. Adversarial attacks beyond the image space. arXiv 1711.07183, 2017.


