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Abstract

Gaze estimation methods usually regress gaze directions directly from a single face
or eye image. However, due to important variabilities in eye shapes and inner eye struc-
tures amongst individuals, universal models obtain limited accuracies and their output
usually exhibit high variance as well as biases which are subject dependent. Therefore,
increasing accuracy is usually done through calibration, allowing gaze predictions for a
subject to be mapped to his/her specific gaze. In this paper, we introduce a novel im-
age differential method for gaze estimation. We propose to directly train a convolutional
neural network to predict the gaze differences between two eye input images of the same
subject. Then, given a set of subject specific calibration images, we can use the inferred
differences to predict the gaze direction of a novel eye sample. The assumption is that by
allowing the comparison between two eye images, annoyance factors (alignment, eyelid
closing, illumination perturbations) which usually plague single image prediction meth-
ods can be much reduced, allowing better prediction altogether. Experiments on 3 public
datasets validate our approach which constantly outperforms state-of-the-art methods
even when followed by subject specific gaze adaptation.

1 Introduction
As a non-verbal behavior and major indicator of human attention, gaze is an important com-
munication cue which has also been shown to be related with higher-level characteristics
such as personality and mental state. It thus finds applications in many domains like Human-
Robot-Interaction (HRI) [2, 16], Virtual Reality [17], social interaction analysis [10], or
health care [27]. With the development of sensing function on mobile phones, gaze is also
expected to be involved in a wider set of application in mobile scenarios [9, 11, 23].
Related works. Non-invasive vision based gaze estimation has been addressed using two
main paradigms [8]: geometric models, and appearance. Geometric approaches rely on eye
feature extraction (like glints when working with infrared systems, eye corners or iris center
localization) to learn a geometric model of the eye and then infer gaze direction using these
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features and model [1, 22, 24, 29, 30, 31]. However, they usually require high resolution
eye images for robust and accurate feature extraction, are prone to noise or illumination, and
do not handle well head pose variabilities and medium to large head poses. Thus, many
recent methods rely on an appearance based paradigm, directly predicting gaze from an eye
(or face) image input [5, 20, 33, 36], allowing them to be robust when dealing with low to
mid-resolution images and to obtain good generalization performance. Amongst them, deep
neural networks (NN) have been shown to work well. They leverage on large amount of data
to train a regression network capturing the essential features of the eye images under various
conditions like illumination and self-shadow, glasses, impact of head pose. For instance, [33]
relied on simple LeNet type of shallow network applied to eye images and first demonstrated
that NNs outperform most other appearance based methods. Krafka et.al [11] proposed to
combine eyes and faces information together using a multi-channel network. Zhang et.al [34]
trained a weighted network to predict gaze from a full face image. Shrivastava et.al [18]
learned a model from simulated eye images using a generative adversarial network.

Motivation. Nevertheless, even when using deep Neural Network (NN) regressors, the ac-
curacy of appearance-based method has been limited to around 5 to 6 degrees, with a high
inter person variance [5, 18, 20, 33, 34, 36]. This is due to many factors including depen-
dencies on head poses, large eye shape variabilities, and only very subtle eye appearance
changes when looking at targets separated by such small angle differences. For instance,
one factor that can explain why appearance based methods encounter limited accuracy when
building person independent models is that the visual axis is not aligned with the optical axis
(related to the observed iris) [7], and that such alignment differences are subject specific.
Thus, in theory, images of two eyes with the same appearance but with different internal
eyeball structure can correspond to different gaze directions, demonstrating that gaze can
not be fully predicted from the visual appearance.

A straightforward solution to this problem is to learn person-specific models which can
achieve far better accuracy [33]. However, training person-specific appearance models may
require large amounts of personal data, especially for network based methods and even when
conducting simple network fine tuning adaptation. This is not practical in real life applica-
tions. To solve this problem, Lu et.al [13] proposed an adaptive linear regression method
relying on few training samples, but the eye representation (multi-grid normalized mean eye
image) is not robust to environmental changes. Starting from a trained NN, Krafka et.al. [11]
relied on eye images when looking at a grid of 13 dot sample. Feature maps from the last
layer of the pretrained NN were then employed to train a Support-Vector-Regression (SVR)
person specific gaze prediction model. However, SVR regression from a high dimensional
feature vector input is not robust to noise. In another direction, Zhang et.al. [35] proposed
to train person-specific gaze estimators from user interactions with multiple devices, such as
mobile phone, tablet, laptop, or smart TVs, but this does not correspond to the majority of
use cases.

Contributions. In this paper, we first propose a simpler method than the above for adap-
tation. The method learns the linear relationship between the gaze predictions from a pre-
trained NN applied to few training samples and their groundtruth gaze, and is shown to
achieve better results than the state-of-the art SVR method of [11].

Secondly, although the above methods can reduce the subject specific bias between the
subject (test) data and the overall training dataset, it does this by only working with the gaze
prediction or feature outputs, and does not account for the high gaze prediction variance
within each subject’s data. To address this issue, our main contribution is to propose a differ-
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Figure 1: Baseline CNN structure for gaze estimation.

ential gaze estimation approach, by training a differential NN to predict the gaze difference
between two eye images instead of predicting the gaze directly. At training time, a unified
and person independent differential gaze prediction model is built which can be used at test
time for person specific gaze inference relying on only a few calibration samples.

The closest work to ours is Venturelli et.al. [26]. However, they are addressing a different
task (head pose estimation). Furthermore, inspired by the works on face identification, they
trained a siamese network with two distinct depth images as input, but this was done within a
multi-task approach in which both absolute head poses and head pose differences were used
as loss function. Hence, at test time, the pose is directly predicted from only one the parallel
structure. And furthermore, while several layers of our differential networks are used to
predict the gaze difference, in their case the pose differences was only computed from the
network pose prediction output.

Paper organization. First in Sec. 2, we introduce the state-of-the-art NN methods for gaze
prediction. We illustrate the subject specific bias problem and propose a linear adaptation
method to build subject specific gaze prediction models. In Section 3, we introduce our ap-
proach, including the proposed differential NN for differential gaze prediction. Experiments
are presented in Sec. 4, while Sec. 5 concludes the work.

2 Baseline CNN approach and linear adaptation

In this section, we first introduce a standard convolution neural network (CNN) for person
independent gaze estimation. We then show the data bias existing between the training set
and the test data of individuals and present our proposed linear adaptation method.

2.1 Gaze estimation with CNN

Network structure. Fig. 1 presents the standard NN structure for gaze estimation. It con-
sists of three convolutional layers and two fully connected layers1. More precisely, the input
eye image I ∈ RM×N×C, where (M,N,C) = (48,72,3) denote the dimensions and number
of channels of the image, is first whitened. The convolutional layers are then applied and
the resulting feature maps are flattened to be fed into the fully-connected layers. The pre-
dicted gaze direction gp(I) ∈ R2×1 is regressed at the last layer. The details of the network

1Note that it is slightly different from [? ].
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(a) Eyediap (b) MPIIGaze

Figure 2: Scatter plot of the network regression (X-axis) and labeled groundtruth (Y-axis) of
the yaw (left plot) and pitch (right plot) angles for an indiviual eye taken in the (a) Eyediap
dataset; and (b) MPIIGaze dataset.

parameters can be found in the figure.
Loss function. Denoting the gaze groundtruth of an eye image I by ggt(I), we used the
following L1 loss function to train our baseline NN:

L=
1
|D| ∑

I∈D
‖gp(I)−ggt(I)‖1, (1)

where D denotes the training dataset and | · | denotes the cardinality operator.
Network training. The network is optimized with Adam method, with a learning rate ini-
tially set to 0.001 and then divided by 2 after each epoch. In our experiment, 10 epochs are
applied and proved to be sufficient. The mini batch size is 128.

2.2 Bias analysis and linear adaptation
Because each individual eye has specific characteristics (including internal non-visible di-
mensions or structures), in practice, we often observe a data bias between the network re-
gression gp(I) and the labeled groundtruth ggt(I) of the eye images I ∈ DTest belonging to a
single person. This is illustrated in Fig. 2, which provides a scatter plot of the (gp(I),ggt(I))
angle pairs in typical cases, which can be compared with the identity mapping (black lines).

As can be observed, there is usually a linear relationship between ggt(I) and gp(I), which
is illustrated by the red lines in the plots. Thus, when a set Dc of sample calibration points
of a user (usually 9 to 25 points) is available, we propose to learn this relation and obtain an
adapted gaze model gad by fitting a linear model

gad(I) = Agp(I)+B (2)

where A ∈ R2×2 and B ∈ R1×2 are the linear parameters of the model which can be estimated
through least mean square error (LMSE) optimisation using the calibration data.

3 Proposed differential approach

Approach overview. Fig. 3 presents our proposed framework. Its main part is a differential
network designed and trained to predict the differences in gaze direction between two images
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Figure 3: Approach overview. During training, random pairs of samples from the same eye
are used to train a differential network. A test time, given a set of reference samples, gaze
differences are computed and used to infer the gaze of the input image.
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Figure 4: The designed differential network for predicting gaze differences.

of the same eye. At test time, the gaze differences between the input eye image and a set of
reference images are computed first. Then the gaze of the eye image is estimated by adding
these gaze differences to the reference gazes. The details of the different components are
introduced in the following paragraphs.

Differential network architecture. Differential networks have been first proposed in [4]
for signature verification using image matching. Following the deep learning revival, they
have been widely considered for tasks like feature extraction [12, 19, 32], image matching
and retrieval [14, 28], person re-identification [15, 25], or object tracking [3]. They usually
consist of two parallel networks with shared weights, in which a pair of distinct images is
used as input, one for each parallel channel, and the distance between the outputs of each
parallel network is computed as differential network output. Implicitly, when dealing with
discrete category problems, the goal of such differential networks is to learn (usually using
a hinge-loss function) a mapping from the image space to a new feature space such that
samples from the same class are close, while samples from different classes are far. In
the regression case (our case), the loss function is usually defined by comparing the output
distance with the labelled groundtruth.

The network we use is illustrated in Fig. 4, and is slightly modified from the traditional
siamese approach. Each branch in the parallel structure is composed of three convolutional
neural layers, all of them followed by batch normalization and ReLU units. Max pooling
is applied after the first and second layers for reducing the image dimensions. After the
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third layer, the feature maps of the two input images are flatted and concatenated into a new
tensor. Then two fully-connected layers are applied on the tensor to predict the gaze dif-
ference between the two input images. Thus, where traditional siamese approaches would
predict the gaze for each image, and compute the differences from these predictions, our ap-
proach uses neural network layers to predict this difference from an intermediate eye feature
representation.

Loss function. The differential network is trained using a set of random image pairs (I,J)
coming from the same eye in the training data. Denoting by dp(I,J) the gaze difference
predicted by the differential network, we can define the loss function as:

L= ∑
(I,J)∈Dk×Dk

‖dp(I,J)−
(
ggt(I)−ggt(J)

)
‖1, (3)

where Dk is the subset of D that only contains images of the same eye2 of person k.

Network training. The network is optimized with the Adam method, with an initial learning
rate of 0.001 which is divided by 2 after each epoch. In experiments, 20 epochs are applied.
The mini batch size is 128. Note that as the number of possible image pairs is too large, we
have reduced it by using each of the image I ∈ Dk as the first image of a pair, and randomly
selecting the second image J ∈ Dk of the pair. So we have |Dk| pairs for the subject k.

Gaze inference. As the network predicts gaze differences only, the method requires at least
one reference image to predict an absolute gaze vector. In practice, we rely on a small
calibration set Dc of images of the same eye. We then predict the gaze difference between
the test image I and the reference images F , and combining these gaze difference with the
gaze groundtruth of the reference images, we can infer the gaze direction of the test image.
More formally, we have:

gsm(I) =
1
|Dc| ∑

F∈Dc

(
ggt(F)+dp(I,F)

)
. (4)

4 Experimental results and analysis
4.1 Datasets
We validated our algorithm on three public datasets.

Eyediap. This dataset contains 94 videos associated with 16 subjects [6]. Videos belong to
three categories: continuous screen (CS) target, discrete screen (DS) target or floating target
(FT). The CS videos were used in our experiments, which comprises static pose recordings
where subjects approximately maintain the same pose while looking at targets, and dynamic
poses in which subjects perform additional important head movements while looking. From
this data, we cropped around 80K images of the left and right eyes and frontalized them
according to [5]. The labelled world gaze groundtruth was converted accordingly.

MPIIGaze. This dataset [33] contains 1500 left and right eye images of 15 subjects, which
were recorded under various conditions in head pose or illuminations and contains people
with glasses. The provided images are approximately of size 36×60 pixels, and are already
frontalized relying on the head pose yaw and pitch. Note that although in [33] the head pose

2Note that we learn a differential model for the left eye, and one for the right eye.
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is used as input for gaze prediction, this did not improve our results in experiments so it was
not used for the experiments reported below.

UT-Multiview. This dataset [21] comprises 23040 (1280 real and 21760 synthesized) left
and right eye samples for each of the 50 subjects (15 female and 35 male). It was collected
under strict laboratory control condition, with various head pose. Importantly, eye images
are not frontalized. Thus, in experiments, we concatenated the head pose in the network as
described in [33]. More precisely, we concatenated the head pose h(I) ∈ R1×2 of the input
I image with the last fully-connected layers for the baseline CNN (Fig. 1), and did the same
for the differential network, i.e. we concatenated the two head pose h(I) and h(J) of the
differential input pair (I,J) with the last fully-connected layer in Fig. 4.

4.2 Experimental protocol
Cross-Validation. For the Eyediap and MPIIGaze datasets, we applied a leave-one-subject-
out protocol, while due to its size, we used a 3-fold cross-validation protocol for the UT-
Multiview dataset. Note that for this dataset, we train with real and synthesis data, but only
test on real data. Note that these protocols for MPIIGaze and UT-Multiview are the standard
ones used in the original paper and followed by other researchers.

Performance measure. We trained and tested models for the left and right eyes separately,
as we noticed that the left and right eyes may have different structures, and importantly, the
labeled gaze might follow different distributions.

Following the above protocols, the error was defined as the average of the average gaze
angular error computed for each fold. More precisely, if DTest denotes the test data (for a
single subject) of a given fold, the trained model for that fold is evaluated by computing:

E(DTest) =
1

|DTest | ∑
I∈DTest

arccos
(

v̄(gp(I)) · v̄
(
ggt(I)

))
, (5)

where v̄(θ1,θ2) denotes the unitary 3D gaze vector associated with the gaze angles (θ1,θ2).
Note that for the linear adaptation and the differential NN methods, reference images are
required to predict the gaze for the given subject. In this case, we randomly selected 9 points
in the test set DTest for 200 times, and reported the average error computed for each random
selection as defined above.

Tested models. Several methods were tested for comparison. Baseline corresponds to the
generic model introduced in Section 2. Lin-Ad corresponds to the Baseline model followed
by linear adaptation (Section 2.2). SVR-Ad is our implementation of the SVR adaptation
method of [11] built upon the Baseline model above. Diff-NN is the method we propose.

4.3 Experimental results

The experimental results are presented in Fig. 5, in which the left, mid and right plots are
the results on Eyediap, MPIIGaze and UT-multiview datasets. In each sub-figure, the upper
bars indicate the results for the left eye, and the bottom ones for the right eye. The colors
correspond to the different approaches: Baseline (blue), Lin-Ad (orange), SVR-Ad [11] (red),
and our Diff-NN proposed method (green).

Baseline model. First, let us note that under the same protocol, our Baseline model works
slightly better than [33], which reported an error of 6.3◦ on MPIIGaze, and of 5.9◦ on UT-
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(a) Eyediap (b) MPIIGaze (c) UT-multiview

Figure 5: Average angular error on three public datasets. Note that the Baseline method does
not require calibration data.

Multiview, compared to 6.11◦ and 5.95◦ on average in our case. This is probably due to our
network architecture being slightly more complex, while still avoiding over-fitting.

Linear and SVR Adaptation. Results demonstrate that, as expected, calibration helps and
that our linear adaption method can greatly improve the results. The improvements are for the
left and right eyes: 27.7% and 43.3% on Eyediap, 24.7% and 21.8% on UT-Multiview, and
4.9% and 9.4% on MPIIGaze. The difference in gain is most probably due to the recording
protocols. While the Eyediap and UT-Multiview datasets were mainly recorded over the
course of one session, the MPIIGaze dataset was collected in the wild, over a much longer
period of time, and with much more lighting variability (but less head pose variability). This
can be observed in Fig. 2 showing typical scattering plots of the Eyediap and MPIIGaze
datasets. The Eyediap plots follow a more straight and compact linear relationship than
those on the MPIIGaze dataset, reflecting the higher variability within the last dataset. Seen
differently, we can interpret the results as having a session-based adaptation in the Eyediap
and UT-Multiview cases, whereas in MPIIGaze, the adaptation is more subject-based.

Results also show that our linear adaptation Lin-Ad method is working better than the
SVR-Ad adaption approach [11], with an average gain of 6.3%, 1.4% and 21.5% on the
Eyediap, MPIIGaze, and UT-Multiview datasets, respectively. The main reason might be that
in SVR-Ad, the regression weights after the last fully-connected (FC) layer are not exploited,
in spite of their importance regarding the gaze prediction. In addition, finding an appropriate
kernel in the 256 dimensional space of the last FC output might not be so easy, and 9 points
might not be sufficient for regression within such a space.

Differential method. Our approach Diff-NN performs much better than the other two adap-
tation methods which, on average over the 3 datasets, have an error 14.0% (Lin-Ad) and
26.8% (SVR-Ad) higher than ours. In particular, we can note that the gain is particularly
important on the MPIIGaze dataset (21.4% compared to Lin-Ad), demonstrating that our
strategy of directly predicting the gaze differences from pairs of images -hence allowing to
implicitly match and compare these images- using our modified Siamese network is more
powerful, and more robust against eye appearance variations across time, places, or illumi-
nation, than adaptation methods relying on gaze predictions only (Lin-Ad), or on compact
eye image representations (SVR-Ad). On other more ’session-based’ datasets, our linear
adaptation method is already doing well, so that the gain is lower (around 10% on average).

Calibration data variability. The performance of the adaptation methods are computed as
the average over 200 random selection of 9 calibration samples. Depending on the selection
(samples might be noisy, or not distributed well on the gaze grid), results may differ. Fig. 6
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(a) MPIIGaze (b) Eyediap

Figure 6: Distribution and cumulative distribution of angular errors due to random selection
of the calibration images, for two subjects (one from the MPIIGaze dataset, one from the
Eyediap dataset), and for different methods: Diff-NN (green curve), Lin-Ad (blue curve),
Baseline (red; note that this method does not rely on calibration data).

illustrates the variabilities of Lin-Ad and Diff-NN for the different trials of two subjects.
The example on the left shows a typical example where there is a relatively large bias for

the given subject. In that case, whatever the selection of the calibration samples, the results
of both Lin-Ad and Diff-NN are better than the baseline. The example on the right shows one
of the few cases where the baseline is already good, with little bias but nevertheless quite
noisy samples. In that case, there is only around 60% chances to obtain a better result with
the linear adaptation, but still over 80% chances with our approach. Also, importantly, our
Diff-NN approach is less sensitive to the choice of calibration points than Lin-Ad, as can be
seen from the slope of the cumulative curves (steeper for Diff-NN).

4.4 Algorithm complexity

The two adaptation methods do not have the same complexity. Compared to the CNN Base-
line, the linear adaptation only requires the computation of Eq.2, which has negligable com-
putational cost. Our Diff-NN approach, however, requires to predict the gaze differences
between the test sample and Nc reference images, so that we could think the complexity be-
ing of the order of Nc that of Baseline. Fortunately, thanks to our differential architecture
(see Fig. 4), the extra-computation is not as high. Indeed, first we can pre-compute and save
the feature maps at the last convolutional neural layer of all the reference images, so that
the computation of one gaze difference requires mainly the forward pass of one image. Sec-
ondly, the feature maps of the test image also need to be computed only once, which can be
achieved by stacking the feature maps of the reference images in a mini-batch, and compute
all gaze differences in parallel.

Tab. 1 compares the running time (in ms) for the Baseline and the different Diff-NN
options (and Nc = 9 as in reported experiments). They have been obtained by computing the
average run-time of processing 5000 images. The CPU is an Intel(R) Core(TM) i7-5930K
with 6 kernels and 3.50GHz per kernel. The GPU is an Nvidia Tesla K40. The program is
written in Python and Pytorch. Note that as Pytorch library will call multiple kernels for the
computation, the CPU-based run-time is also short. From this Table, we can see that our
Diff-NN method and architecture has a computational complexity close to the baseline.
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Table 1: Run-times (in ms) between the Baseline and our proposed Diff-NN method, using
mini-batch (Diff-NN ∗) computation or not.

CPU GPU
Baseline Diff-NN Diff-NN ∗ Baseline Diff-NN Diff-NN ∗

Run-time 2.5 7.6 3.5 1.4 4.0 1.5

5 Conclusion
This paper aims to improve appearance-based gaze estimation using subject specific mod-
els built from few calibration images. Our main contributions are to propose (1) a linear
adaptation method based on these reference images; (2) a differential NN for predicting gaze
differences instead of gaze direction to alleviate the impact of annoyance factors like illumi-
nation, cropping variability, variabilities in eye shapes. Experimental results on three public
and commonly used datasets prove the efficacy of the proposed methods. More precisely,
while at very little extra computation cost the linear adaptation method can already boost
the results on single session like situations, the differential NN method produces even more
robust and stable results across different sessions of the same user, but costs some more
run-time compared to a baseline CNN.
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