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Abstract
Intrinsic Image Decomposition (IID) is a challenging and interesting computer vision

problem with various applications in several fields. We present novel semantic priors and
an integrated approach for single image IID that involves analyzing image at three hierar-
chical context levels. Local context priors capture scene properties at each pixel within a
small neighborhood. Mid-level context priors encode object level semantics. Global con-
text priors establish correspondences at the scene level. Our semantic priors are designed
on both fixed and flexible regions, using selective search method and Convolutional Neu-
ral Network features. Experiments and analysis of our method indicate the utility of our
weak semantic priors and structured hierarchical analysis in an IID framework. We com-
pare our method with the current state-of-the-art and show results with lesser artifacts.
Finally, we highlight that proper choice and encoding of prior knowledge can produce
competitive results compared to end-to-end deep learning IID methods, signifying the
importance of such priors. We believe that the insights and techniques presented in this
paper would be useful in the future IID research.

1 Introduction and Related Work
Intrinsic image decomposition (IID) is a classic computer vision problem for splitting a
given image (I) into two underlying components: I = R · S where R (reflectance) captures
the color properties of the objects and S (shading) represents direct and indirect lighting in
the scene. IID is useful in several computer vision and image editing applications like image
colorization [37], shadow removal [29], image re-texturing [12], scene relighting [17] etc.
IID is an ill-defined and under-constrained problem [6]. Moreover, IID solutions are also
inherently ambiguous as there can be multiple valid reflectance and shading decompositions
differing by a scalar multiplicative factor [9]. Hence several IID methods depend on auxiliary
scene data in the form of depth [4, 14, 25], user scribbles [10], optical flow [28], multiple
views [31], multiple illuminations [48], focal stacks [42], photo collections [30, 37], etc.
The common idea behind such methods is to approximate textural and shape similarities
using the auxiliary information but having the necessity to acquire additional data as a major
drawback of such methods.

A second category of IID methods work directly on single images. These methods work
under several assumptions and priors as it is hard to gather sufficient information about ge-
ometry, material property and illumination of the scene from a single image. Many such
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methods work on simple images containing a single object with no background [2, 3, 5].
Other methods which work on natural scenes utilize priors like Retinex [32], reflectance
sparsity [20, 45], long vs. short tailed gradient distribution [34], spatio-chromatic clustering
[19], etc. These methods encode interesting insights but are limited when generalizing to
‘wild’ cases with varying lighting and complex textures. Results vary based on how much
significance is given to a prior and the type of optimization framework. Moreover some of
these priors have competing goals e.g. smoothness prior on shading removes texture details
from S as opposed to reflectance sparsity assumption which simplifies color details in R. Re-
cent methods try to solve this issue by sequentially employing two separate optimizations for
shading and reflectance [6, 7, 51]. Based on this insight, our algorithm combines these two
types of optimizations in a single integrated algorithm by alternating between two competing
formulations: smoothness for shading and sparsity for reflectance.

A major challenge associated with IID research is lack of diverse large datasets and
proper evaluation metrics [9]. This arises mainly due to subjective nature of the problem and
difficulty in collecting dense annotations. MIT intrinsic images dataset introduced by Grosse
et al. [23] is limited to a handful of single object images on a black background. Similarly
As-Realistic-As-Possible (ARAP) dataset by Bonneel et al. [9] tries to capture complexity
of natural scenes but is also not large enough for supervised training. Synthetic datasets like
Sintel [11] provide dense annotation but lack sufficient diversity and complexity compared
to the natural scenes. This limits the utility of such datasets in learning based approaches
which aim to work on complete scenes under unrestricted illumination and material property
settings. Yet another challenge in IID research is lack of proper evaluation metric which
reflects both quantitative and qualitative performance. Local Mean Square Error (LMSE)
and Structural Similarity Index Metric (SSIM) are used for synthetic scenes [14, 25] but
require dense ground truth annotations. Bell et al. [6] provide a large manually annotated
dataset called Intrinsic Images in the Wild (IIW) with sparse relative annotations. Their
performance evaluation metric Weighted Human Disagreement Rate (WHDR) gives rela-
tive error rate using these sparse annotations. Some IID methods use supervised learning to
solve related sub-problems using gradient classifiers [46], Bayesian graphical models [13]
and deep neural networks [27, 40, 44, 51]. In [51] and [52] authors learn Convolutional Neu-
ral Network (CNN) priors using sparse IIW annotations which they propagate to other pixels
using a dense Conditional Random Field (CRF) or flood fill the superpixels. Yet another
approach is to use dense ground truth from synthetic scenes like [11]. Such approaches ei-
ther use the underlying depth information [40] or use previously proposed RGBD based IID
solutions to generate ground truth [27]. Synthetic datasets like Sintel do not represent true
reflectance and shading of natural scenes as the dataset was not originally curated with the
intention of IID benchmarking [25]. Due to limited data and significant domain shift, such
end-to-end CNNs are prone to over-fitting and dataset bias [26, 47]. This inference was also
highlighted by Nestmeyer and Gehler [41] who showed how a simple post processing using
guided filtering could improve results from several deep learning IID solutions suggesting
that such solutions are not able to capture the insights of the known IID priors effectively.
Such issues concerning datasets and evaluation along with ill-defined nature of the problem,
make IID a non-trivial problem to solve using deep learning. On the other hand, several
older IID methods were unsupervised [10, 20, 48] and relied on intelligently designed pri-
ors. In our method we try to absorb the advantages of both the approaches. We employ
an ‘off-the-shelf’ pre-trained deep neural network as a black-box to obtain generic features
and introduce new context priors in an unsupervised optimization algorithm. CNNs have
been widely used in computer vision and machine learning literature as black box feature
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Figure 1: Block Diagram: Our method can be understood in three stages. After semantic features
extraction (Stage 0), in each iteration our method alternates between the shading (Stage 1) and re-
flectance optimization (Stage 2) with energy terms computed for both the formulations computed at
three context levels: local, mid-level and global.

extractor [16, 43, 49]. Donahue et al. [16] directly use pre-trained CNNs as a feature extrac-
tor and prove the generality and cross domain applicability of such features on varied tasks
like scene recognition, fine-grained recognition and domain adaptation. Along similar lines,
Sharif Razavian et al. [43] and Yosinski et al. [49] also use these features on increasingly
different tasks and datasets, highlighting their task agnostic characteristics.

Our main contributions in this paper are: (i) We introduce a new technique for encoding
scene semantic information for both fixed and flexible region definitions using CNN and
selective search features. (ii) We present a new iterative integrated IID framework based
on Split-Bregman iterations [22] using two competing IID formulations and generate results
with lesser artifacts. (iii) We analyze scene at three context levels: local context where
optimization weights are based on a small pixel neighborhood; mid-level context which tries
to capture object level semantics and global context where various regions of the image are
linked based on their shared characteristics at the scene level.

We perform experiments to analyze the effect of our new semantic priors at various con-
text levels and illustrate the decompositions generated by our competing formulations over
successive iterations. Finally, we present improved qualitative and competitive quantitative
results with respect to the contemporary IID methods on challenging IIW dataset and ‘wild’
images from the Internet.

2 Method
Our method is as an iterative algorithm alternating between shading and reflectance for-
mulations (Figure 1). Optimizing for reflectance sparsity alone leads to loss of textures in
reflectance while focusing on shading smoothness does not account for reflectance sparsity.
We tackle this adversarial nature of the two formulations by estimating IID in two separate
stages for shading smoothness and reflectance sparsity. An iterative scheme has earlier been
used by Bell et al. [6] and later adapted by Zhou et al. [51]. Our framework differs from them
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as we present a single integrated algorithm without requiring additional steps for building a
dense CRF or a separate optimization framework. We take inspiration from Bi et al. [7] who
use Split-Bregman L1-L2 optimization method ([22]) for image flattening and adapt it to di-
rectly estimate IID. We show that this cleaner integrated approach leads to lesser artifacts in
the results while maintaining good quantitative performance. In order to capture semantic
scene information, we extract two different kinds of features for both fixed grids and flexible
regions which are discussed below:

2.1 Semantic Features

RCNN features ( fb): We divide the input image I into B patches using a fixed non-overlapping
grid of size 30× 30. We pass these patches through Region-based Convolutional Neural
Network (RCNN [21]) pre-trained on ImageNet dataset [15] and extract 4096 dimensional
features fb for each patch with b ∈ {1,2, . . .B} from the last fully connected layer ( f c7) of
the network. We assign this to the center pixel of the patch to obtain a sparse set of re-
gional features for the image. Long et al. [38] show that such features, despite having weak
label training over the entire scene and large receptive fields, encode fine correspondences
between regions as in SiftFlow [36] and hence could be used even in tasks requiring pre-
cise localization like intraclass alignment and keypoints classification. We use fb to estimate
shape similarity and correspondences between image patches.

Selective search features (gi): Selective search or detection proposals [24] give inter-
esting image regions which have higher probability of containing an object. This improves
object detection by avoiding sliding-window search. Hence selective search results could be
used as an indicator of presence of an object (‘objectness’ [24]) in a given region. Compared
to training a Conditional Random Field (CRF) for a finite number of classes like [7, 51] for
dense pixel associations, selective search is class agnostic, has off-the-shelf implementations
available and does not require separate training. We use Multiscale Combinatorial Grouping
(MCG) [1] for capturing object semantics following the conclusions based on recall and de-
tection quality from the survey of selective search techniques by Hosang et al. [24]. MCG
generates dense binary region masks and scores for each detection proposal c ∈ {1,2, . . . ,P}
for a total of P proposals. We form a concatenated feature vector gi of proposal masks
weighed by proposal score at each pixel and normalize it using L2 norm (See supplementary
for sample masks and visualization).

2.2 Shading Formulation

Our shading formulation assumes monochromatic Lambertian illumination and piecewise
constant reflectance [9] and is inspired from [25] which uses depth maps to define pixel
neighbourhoods. We generalize their system for a single image by modifying the priors
using RCNN and selective search features. The intermediate IID results as shading (σ ) and
reflectance (ρ), are estimated by minimizing the following energy function :

Ψ = λgSg +λmSm +λlSl . (1)

Here Sg, Sm and Sl are respectively global, mid-level and local shading priors and λg,λm and
λl are the corresponding weights.

Global context (Sg): Our global shading prior Sg is a combination of a sparse neigh-
bourhood consistency term Sc and a weight propagation term Sp: Sg = Sc + Sp. In [25]
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authors show that under the assumption of Lambertian model, shading at a point can be ap-
proximated using a weighted linear combination of surface normals where the weights are
computed using Local Linear Embedding (LLE) in the neighbourhood N . But unlike [25]
we do not have depth information and therefore we approximate structural similarity using
our pre-computed RCNN features fb as:

Sc = ∑
b

(
σb− ∑

a∈Nb

wc
abσa

)2
. (2)

Here Nb represents the set of 10-nearest neighbours for patch b computed using fb features
and wc are linear combination weights computed using the LLE representation of b overNb.
These are sparse constraints as we assume the center pixel to be the representative of the
entire patch and assign the constraint to it. In order to propagate these these constraints to
the rest of the pixels, we do structure-aware weight propagation using a Laplacian matting
matrix [33]. This approximates shading by an affine function over a base image in a small
local window (N3×3).

Sp = ∑
i

∑
j∈N3×3

wp
i j

(
σi−σ j

)2
. (3)

Here weights wp are computed using the matting Laplacian [33] with reflectance result of the
previous iteration as the base image. For the initial iteration, the base image for the laplacian
is taken as Gaussian smoothened version of I. In [6] global constraints are propagated using
a dense CRF whereas Zhou et al. [51] devised a Nyström approximation to integrate their
proposed CNN reflectance prior for message passing during CRF inference. In comparison,
Laplacian matting term has a closed form solution and is easy to compute [25].

Mid-level context (Sm): For mid-level prior we use selective search features gi which
encode object semantics. Similar to the weight propagation term Sp, we define this prior as:

Sm = ∑
i

∑
j∈N3×3

wm
i j

(
σi−σ j

)2
(4)

where wm
i j = exp

(
− (1−〈gi,g j〉)2

t2
m

)
which penalizes dissimilar gi and g j. This captures the

intuition that in a local neighbourhood if two pixels are predicted to belong to a common
object proposal, then they should have similar shading. This causes shading smoothness
within each detection proposals and preserves texture in the reflectance component.

Local context (Sl): Local context prior is defined following the Retinex model (i.e.
change in chromaticity implies change in reflectance). We use this prior in the logarithmic
form [25] and substitute logρ = log I− logσ to obtain:

Sl = ∑
i

∑
j∈N3×3

wl
i j
(
(log pi− logσi)− (log p j− logσ j)

)2

where wl
i j = exp

(
− (1−〈pi·p j〉)2

t2
c

)[
1+ exp

(
− p2

i +p2
j

t2
b

)]
. Here pi is pixel chromaticity com-

puted as normalized RGB vector. The first term in the product awards higher value to simi-
larly colored pixel pairs. The second term gives higher weight to pairs with very low inten-
sity values. This reduces color artifacts by suppressing chromatic noise in the dark regions.
tm, tc and tb are fixed deviation parameters for weight estimation. We solve this quadratic
optimization problem (σ∗ = argminσ Ψ) using gradient descent and set ρ∗ = I−σ∗.
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2.3 Reflectance Formulation
Unlike our shading formulation (subsection 2.2) which enforces smoothness using L2 terms,
our reflectance formulation enforces color sparsity using L1 terms. The backbone of this
stage is inspired from image flattening work by [7] which uses Split-Bregman method [22]
for optimization. For IID they use flattened image as input and perform a series of steps
like self-adaptive clustering, Gaussian mixture modeling, boosted tree classification, CRF
labeling and L2 energy minimization. We show that we can use Split-Bregman iterations for
direct IID by using proper context priors and alternating between shading and reflectance
formulations. In addition to being a direct approach, our method is also more robust to
clustering artifacts (Figure 4). Our reflectance formulation is given as:

π = γgRg + γmRm + γlRl + γaRa (5)

Here Rg, Rm, Rl and Ra are global, mid-level, local and image approximation terms respec-
tively and γg, γm, γl and γa are the associated weights. We use a similar definition for local
and global prior weights (vl and vg) and have a fixed deviation parameter (t):

vi j = exp
(
−

(ri− r j)
2

2t2

)
. (6)

Here ri is channel normalized CIELab color value with a suppressed luminance [7]. Note
that unlike Bi et al. [7], we re-estimate priors in each iteration which gradually leads to IID
directly instead of image flattening.

Local context (Rl): We define local reflectance energy term by enforcing the piecewise
local image sparsity like Bi et al. [7]:

Rl = ∑
i

∑
j∈N11×11

vl
i j‖Ri−R j‖1 = ‖Az‖1, (7)

where Ri represents the reflectance to be computed at pixel position i. This term enforces
sparsity on reflectance values using local color information in the form of weights vi j in a
11×11 neighbourhood. This term can be rewritten in matrix form by linearizing the color
channels as a single column (z) and assembling a block matrix A of associated pixel weights.

Mid-level context (Rm): As Rl enforces sparsity based only on color similarity in a
small local neighbourhood, for mid-level context we enforce sparsity at object level using
our selective search features g. For ease of computation, we reduce the dimensions of g to
get g̊ using PCA and redefine the weights as :

vm
i j = exp

(
−

(ri− r j)
2

2t2

)(
−

(g̊i− g̊ j)
2

2t2

)
. (8)

This prior enforces reflectance sparsity at object level which leads to colour constancy within
an object. This captures object level semantics better compared to the local reflectance spar-
sity constraints which might lead to over flattening due to ambiguity between edges, textures
and noise in an image.

Rm = ∑
i

∑
j∈N11×11

vm
i j‖Ri−R j‖1 = ‖Bz‖1. (9)

Global context (Rg): The global reflectance prior encodes reflectance similarity at the
scene level which is useful in enforcing colour constancy for various instances and occlusion
disconnected parts of an object in the scene.

Rg = ∑
i∈Q

∑
j∈Q

vg
i j‖Ri−R j‖1 = ‖Cz‖1. (10)
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Figure 2: Iteration analysis (From L to R): Shading formulation results (σ∗) and reflectance formu-
lation results (R∗) for iterations k = 1,3,5,7. Notice how shading gets ‘smoother’ while reflectance
becomes ‘flatter’. The graph shows iterative WHDR reduction for the image with minimum at k = 5.

We define Q as the set of representative pixels obtained from each MCG segmentation by
ranking all the pixels in a segmentation according to minimum distance from the mean.

Image approximation (Ra): This term enforces continuity between the two stages by
forcing the reflectance estimate from the current stage to be similar to the intermediate re-
flectance solution from the previous shading formulation stage:

Ra = ‖Ri−ρ‖2
2 = ‖z−ρ

∗‖2
2 = ‖D‖2

2. (11)

2.4 Iterations and Updates
Using Equation 7, Equation 9, Equation 10 and Equation 11 we can restate Equation 5 in
matrix form as:

π = ‖Az‖1 +‖Bz‖1 +‖Cz‖1 +‖D‖2
2 (12)

This is an L1−L2 minimization problem and can be solved using Split-Bregman iterations
[22] by introducing intermediate variables b and d which reformulates the equation as:

z = argmin
z

(
‖D‖2

2 +θ
(
‖d1−Az−b1‖2

2 +‖d2−Bz−b2‖2
2 +‖d3−Cz−b3‖2

2
))

(13)

Here θ balances the contribution from reflectance sparsity priors vs. prior for shading consis-
tency from previous stage. We recompute priors after each iteration for the two formulations
based on the current values of σ∗ and ρ∗ and gradually update the contribution of various
weighing parameters (λ , γ and θ ), increasing the effect of mid-level and global priors and
reducing the effect of local priors over the course of iterations. We estimate the value of all
the parameters empirically by tuning for optimal results over a small subset of images.

3 Analysis
Framework analysis: In Figure 2 we show quantitative and qualitative performance of our
method for a sample image over successive iterations. Notice how as per the intended design
of our framework the reflectance component from our second formulation gradually gets
more ‘flattened’ while shading from the first formulation becomes smoother . Split-Bregman
method uses reconstruction error as the stopping criterion [7, 22] but in our case it cannot
be directly used to quantify IID performance. Hence we empirically estimate the value of
k. Considering various scene and lighting settings we observed that overall our algorithm
achieves peak perceptual and quantitative performance for k = 5 which can be seen in the
WHDR vs. iterations graph in Figure 2. Still better performance could be obtained if IID
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Figure 3: Qualitative results on IIW (in each set from L to R): Original image, reflectance and shading.
Notice separation of shadows and highlights in shading and color sparsity in reflectance component.

Ablation Analysis
Variant Shading priors Reflectance priors Mean WHDR

v1 Sl Rl +Rm +Rg 32.32
v2 Sl +Sg Rl +Rm +Rg 21.99
v3 Sl +Sm Rl +Rm +Rg 18.15
v4 Sl +Sg +Sm Rl 23.86
v5 Sl +Sg +Sm Rl +Rg 23.81
v6 Sl +Sg +Sm Rl +Rm 18.21
v7 Sl +Sg +Sm Rl +Rm +Rg 18.19

Table 1: Ablation analysis and our results on challenging Internet images highlighting generality of
our method for a variety of scene types and light settings.

quality could be approximated for each image separately without ground truth information.
But devising such a metric is non-trivial and beyond the scope of this paper. From our
experiments we observed that manually selecting optimum k for each image significantly
reduces the error.

Ablation study: In order to highlight the significance of various context priors, we con-
ducted ablation study (Table 1) using different variants of our framework formed by combin-
ing different prior terms. The study was conducted on a small set of randomly selected 289
images from IIW dataset. Variant v1 is essentially iterative Retinex model based smoothing
followed by image flattening. Similarly v4 is only local L1 flattening performed on top of L2
shading formulation. Addition of other context priors on top of these basic variants succes-
sively improves the performance proving the significance of these priors. In v2 and v5, we
introduce the global context priors, leading to significant improvement in performance. No-
tice the large error drop from v1→ v2 is due to our global semantic priors based on RCNN
features ( fb) computed on a fixed grid. In v3 and v6 we introduce mid-level context priors
using selective search features (gi) computed using flexible regions, which further leads to
significant error reduction from v2→ v7 and v5→ v7. This shows the utility of our semantic
priors at various context levels. Overall the combination of all these priors gives the best IID
results both qualitatively and quantitatively.
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4 Results
All our results are generated using a 5th generation Intel i7 3.30 GHz desktop processor.
Most of our prototype implementation is in Matlab with a few sections in C++ suggesting a
significant scope of improvement for runtime efficiency. We show the results of our method
on the IIW dataset in Figure 3. Notice separation of shadows and illumination from light
sources to the shading component and the color consistency in the reflectance component.
To explore the generality of our method beyond IIW dataset (only indoor scenes), we also
experimented with diverse images from the Internet which are shown alongside Table 1. Our
method can work in varying scene types with high complexity and diverse lighting.

We compare our method with other contemporary IID methods which encode scene in-
formation in terms of IID priors ([7], [51] and [6]). The results are shown in Figure 4 for
the entire IIW dataset (red) and the test-split used in [39] (blue). As [51] uses most of IIW
dataset for training, we show their results only on the test-split. The scores are reported as
mentioned in the respective papers or downloaded from the respective project webpages. We
also compare our method with three baselines. Baseline 1 is where only shading formula-
tion is optimized and similarly Baseline 2 is only with the reflectance optimization. Notice
that our Baseline 2 performs better than both [51] and [6] which highlights the strength of
our reflectance priors. Also in order to show how different it is from the underlying im-
age flattening framework, we have Baseline 3 which is computed directly on the results
of edge preserving smoothing from [7]. As can be seen from the graph in Figure 4, our
method achieves significant error reduction in comparison to both [6] and [51] on both the
test-split and the full dataset (WHDR of 17.72 vs. 20.6 and 19.9 respectively on the [39]
test-split). Our method is competitive in performance to both [7] and [41] (with WHDR
17.67 and 17.69 respectively) but with lesser artifacts in reflectance results (Figure 4). Ad-
ditional comparisons with previous IID methods like [50] and [19], with WHDR as 23.20
and 25.46 respectively, are not shown in graph for the sake of clarity. Also note that in our
direct method we do not need to perform separate clustering, classification or CRF labeling
steps. Our semantic priors lead to consistent reflectance values with lesser patchy artifacts.
Furthermore our results handle chromatic noise much better as can be seen in the reflectance
of dark regions.

In parallel to our work in this paper, there are three recent direct deep learning solutions
by Li and Snavely [35], Bi et al. [8] and Fan et al. [18] with respective WHDR scores as
20.3, 17.18 and 15.8 (joint training) on the [39] split. In [35] and [8], authors introduce new
varying illumination datasets and use the illumination invariant property of reflectance for
IID. In [18], authors take inspiration from Nestmeyer and Gehler [41] and perform guidance
filtering within the CNN framework rather than a separate post processing step which leads to
significant error reduction. Based on this observation, we think that properly incorporating
semantic information (perhaps in the form of region proposals or masks) within the deep
network architecture would further improve the IID performance. Even with our current
framework, if we allow for manual tuning of k parameter for each image, chosen based
on image complexity (textures, colours, lighting), the error could be reduced to 15.4. Our
observations are in-line with the conclusions provided by Nestmeyer and Gehler [41] that
using explicit prior knowledge could significantly improve IID performance and future end-
to-end deep learning IID solutions could harness these priors for improved results.

Limitations and Future Work: Also while our priors work on varied scenes and gen-
erate lesser artifacts, in few cases it is difficult for us to distinguish sharp shadows and high-
lights from reflectance variations. Finer textures of similar colour as that of the object, persist
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Figure 4: Qualitative comparisons (L to R): Reflectance from [6], [51], [7] and our method. Quantita-
tive resuts: WHDR on testsplit from [39] and the complete dataset [6] (More results in supplementary).

in shading component due to ambiguity in differentiating local illumination changes with
such textures (this is not an problem with differently coloured textures). These issues are
not unique to our method and are also observed in several other solutions [9]. Still our novel
object semantic priors and alternating iterative model design leads to perceptually better de-
compositions for a large variety of scene and diverse lighting settings. Additional results on
IIW, Internet images and qualitative comparisons are included in the supplementary material.

Discounting the training time, deep learning based solutions generally run faster during
testing in comparison to energy based optimization methods. Hence the unoptimized proto-
type implementation of our method is slower compared to other methods (few seconds vs.
minutes) but this could be significantly improved with better implementation and paralleliza-
tion. Additionally, in order to automatically assign the value of total number of iterations k
based on the lighting and scene complexity, in future we would like to explore the problem of
learning a performance metric for IID respecting both perceptual and quantitative assessment
without ground truth information.

5 Conclusion

In this paper we present new priors which encode class agnostic object semantics using
selective search and pre-trained region-based Convolutional Neural Network features. We
encode these priors by analyzing scene at three hierarchical context levels and use an in-
tegrated optimization framework for single image intrinsic image decomposition without
requiring any additional optimization steps. Our system has two alternating optimization
formulations with competing strategies: first focusing on shading smoothness and the sec-
ond on reflectance sparsity. We highlight the effectiveness of our strategy and semantic priors
with supporting qualitative and quantitative experimentation and results. We hope our work
would draw attention of wider research community towards the utility of semantic priors and
hierarchical analysis for the problem of intrinsic image decomposition and would lead to a
better end-to-end deep learning architecture incorporating these insights.
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