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Abstract

The target in a tracking sequence can be considered as a set of spatiotemporal data
with various locations in different frames, and the problem how to extract spatiotem-
poral information of the target effectively has drawn increasing interest recently. In
this paper, we exploit spatiotemporal information by different-scale-context aggregation
through the proposed pyramid multi-directional recurrent network (PRNet) together with
the FlowNet. The PRNet is proposed to memorize the multi-scale spatiotemporal in-
formation of self-structure of the target. The FlowNet is employed to capture motion
information for discriminating targets from the background. And the two networks form
the FPRNet, being trained jointly to learn more useful spatiotemporal representations
for visual tracking. The proposed tracker is evaluated on OTB50, OTB100 and TC128
benchmarks, and the experimental results show that the proposed FPRNet can effectively
address different challenging cases and achieve better performance than the state-of-the-
art trackers.

1 Introduction
Visual object tracking plays a fundamental role in computer vision. And visual tracking has
been widely applied in various fields such as autonomous driving, human-computer inter-
action and video surveillance, etc. The core task for a single object tracking is to track an
arbitrary target with a bounding box in constantly changing sequences being influenced by
some factors including scale variations, complex backgrounds and occlusions (see Figure 1).

Inspired by the great success of convolutional neural networks (CNNs), many CNN-
based trackers [4, 22, 25, 33, 36, 38] are proposed for the powerful feature representation.
Here, some trackers [33, 38] achieve high performance by a feed-forward pass through the
CNNs pretrained on a large-scale dataset building block for image classification. However,
the fundamental gap between visual tracking and image classification will make it subop-
timal in capturing suitable representations for tracking tasks to some extent. Besides, the
speed of such trackers is approximately 1 fps though the pre-trained network is without a
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Figure 1: A comparison of the proposed FPRNet with the state-of-the-art trackers BACF
[17], ACFN [7], siamfc3s [4] and cfnet [44] with interference factors, scale variations, com-
plex backgrounds and occlusions. The shown sequences (Girl2, CarDark, Basketball) are
from OTB benchmark. And our algorithm efficiently handles these challenging situations
compared to existing approaches.

backward pass operation. Recently, the end-to-end learning convolutional architecture has
gained growing attention to cope with the strict constraints on the speed and precision in
tracking. [4, 25] significantly improve the speed of tracking process by designing a fully of-
fline convolutional network without considering the model update. However, such real-time
trackers are not taking full consideration of the temporal and spatial relation information. In
order to improve the quality of [4, 25], [48] proposes a recurrent filter for memorizing the
various variations of the target appearance during the tracking process.

It is observed that among trackers mentioned above, the inputs of frame t are pairwise
image patches. One is the image patch of the tracked target in frame t−1, and the other one
is the searching image patch in frame t. And the search image patch takes the local spatial
relation information which depend on the result of frame t−1. We argue that different-
scale-context in the whole image provides different spatial relation clues and should be fully
utilized in a proper manner for visual tracking.

To incorporate comprehensive context clues, we propose a pyramid recurrent network
(PRNet). In each scale of context, as many as 8-directional RNN are proposed to gather the
contextual information of the target. Each directional RNN can extract contextual dependen-
cies between parts of the target, which makes it more discriminative to not only background
objects but also similar distractors. Besides, by considering that the different layers in the
CNNs capture different image perspectives, the proposed multiple pyramid RNNs are de-
ployed in different layers of CNNs, which compose into a biger pyramid RNN to strengthens
robustness of the proposed model. Furthermore, the pyramid RNN architecture aggregates
the local and global spatial relation information, which make the final prediction more reli-
able.
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Figure 2: An overview of the proposed FPRNet. The FPRNet is composed of 2 subnet-
works including the proposed PRNet and the FlowNet. The PRNet consists of the feature
extraction part (ResNet101) and 3-different-scale pyramid RNNs which are derived from the
Residual Block 3, Residual Block 4 and Residual Block 5, respectively. The different-scale
feature maps from the 2 subnetworks are concatenated to train the unified FPRNet (resize
the feature maps to the same size). The figure is best viewed in color.

Motion and inter-frame motion in optical flow can enhance the tracking performance
during challenges such as occlusion and deformation. Although some trackers utilize optical
flow to improve tracking performance [18], the flow feature is lack of self-perspectives within
the target (which is characterized in PRNet). Besides, the optical flow itself is a challenging
problem and is often inaccurate, and thus the provided information does not always provide
precise motion information for tracking tasks. In this paper, a unified network FPRNet is
composed of the FlowNet and the pyramid recurrent network (PRNet), which learns more
suitable representations for tracking. The overview of the proposed tracker is shown in
Figure 2.

To evaluate our proposed FPRNet, we carry out extensive experiments on OTB50, OTB100
and TC128 benchmarks. On the challenging OTB50, OTB100 and TC128, the proposed
tracker achieves the best performance in area under curve (AUC).

The main contributions of this work are summarized as follows:
I, We propose a pyramid multi-directional recurrent network (PRNet) to memorize the

different-scale-context based on information of self-structure within the object.
II, We propose an end-to-end flow pyramid recurrent framework FPRNet to improve the

spatiotemporal representations for tracking.
III, Quantitative and qualitative evaluation demonstrate the outstanding performance of

our tracking algorithm compared to the state-of-the-art techniques in 2 public benchmarks:
OTB50 [45], OTB100 [46] and TC128 [31].

The rest of the paper is organized as follows. We briefly review related work in Section
2. The detailed configuration of the proposed algorithm is described in Section 3. The
training details are shown in Section 4. Section 5 illustrates experimental results on the 2
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large tracking benchmarks. Finally, conclusions are drawn in Section 6.

2 Related Work

2.1 Visual Object Tracking
Depending on the appearance model, the tracking methods can be divided into generative
and discriminative model. In one way, generative model searches the most similar candidate
of the target with minimal reconstruction error including [21, 35, 39], etc. In another way,
discriminative model formulates a binary classification problem to separate the target from
background. Quite a few discriminative model based trackers have been proposed, such as
[1, 19, 23].

In order to overcome the high computational burden and run in real-time, a series of
correlation filter based trackers have been proposed [6, 8, 9, 26, 27]. The [6] proposes a
correlation filter tracker via learning the minimum output sum of squared error (MOSSE).
Henriques et al. [26] introduce a well-known kernelized correlation filters (KCF) tracker.
And DSST [9] is proposed to solve the scale problem. MUSTer [27] strengthens the model
stability by a short-long term strategy. C-COT [13], ECO [11] and DeepSRDCF [10] employ
deep features to improve the robustness of the models.

2.2 CNN-based Tracking
Benefiting from the powerful representations of the deep networks, the CNNs have been
recently introduced in visual tracking. Bohyung Han et al. [36] take full advantage of the
end-to-end learning, and achieve the state-of-the-art performance by online updating the net-
work. The TCNN [37] is proposed to strengthen the stability by managing multiple target
appearance models in a tree structure. In order to improve the inter-class classification abil-
ity, Heng Fan et al. [15] adds the recurrent neural networks (RNNs) into CNNs to aware
the self-structure of the object. In addition, more robust appearance model is introduced
in [22]. Such trackers often meet the high computational burden and difficult to be imple-
mented in real-time. On the contrary, [4, 20, 25, 43, 44] have been proposed to accelerate
the speed of tracking process. [43] adopts a two-stream architecture for tracking. [25] pro-
posed a two-stream tracker called GOTURN, which is trained to regress directly from dual
frames to the location in the current frame of the target in the query sample. [4] introduced
a fully-convolutional Siamese network (two stream architecture), which maps an exemplar
of the target and a larger search area of the second frame to a response map. Different from
these trackers, our pyramid recurrent network (PRNet) utilizes 8-directional RNN to gather
the contextual information of the target in each level of the pyramid. The different-scale-
contextual dependencies between parts of the target improves discriminative ability to not
only background objects but also similar distractors.

2.3 Optical Flow for Vision Tasks
Many vision tasks [18, 30, 42, 49, 51] have been proposed with the help of optical flow for
extracting motion information. In video detection, [51] presents flow-guided feature aggre-
gation, an end-to-end learning framework for video object detection. In video action recog-
nition, [42] (OFF) introduces a compact motion representation for video action recognition

Citation
Citation
{Han, Comaniciu, Zhu, and Davis} 2008

Citation
Citation
{Mei and Ling} 2010

Citation
Citation
{Ross, Lim, Lin, and Yang} 2008

Citation
Citation
{Babenko, Yang, and Belongie} 2011

Citation
Citation
{Grabner, Leistner, and Bischof} 2008

Citation
Citation
{Hare, Saffari, and Torr} 2016

Citation
Citation
{Bolme, Beveridge, Draper, and Lui} 2010

Citation
Citation
{Danelljan, Hager, Khan, and Felsberg} 2015{}

Citation
Citation
{Danelljan, HÃ¤ger, Khan, and Felsberg} 2015{}

Citation
Citation
{Henriques, Caseiro, Martins, and Batista} 2015

Citation
Citation
{Hong, Chen, Wang, and Mei} 2015

Citation
Citation
{Bolme, Beveridge, Draper, and Lui} 2010

Citation
Citation
{Henriques, Caseiro, Martins, and Batista} 2015

Citation
Citation
{Danelljan, HÃ¤ger, Khan, and Felsberg} 2015{}

Citation
Citation
{Hong, Chen, Wang, and Mei} 2015

Citation
Citation
{Danelljan, Robinson, Khan, and Felsberg} 2016{}

Citation
Citation
{Danelljan, Bhat, Khan, and Felsberg} 2016{}

Citation
Citation
{Danelljan, HÃ¤ger, Khan, and Felsberg} 2015{}

Citation
Citation
{Nam and Han} 2016

Citation
Citation
{Nam, Baek, and Han} 2016

Citation
Citation
{Fan and Ling} 2016

Citation
Citation
{Han, Sim, and Adam} 2017

Citation
Citation
{Bertinetto, Valmadre, Henriques, Vedaldi, and Torr} 2016

Citation
Citation
{Guo, Feng, Zhou, Huang, Wan, and Wang} 2017

Citation
Citation
{Held, Thrun, and Savarese} 2016

Citation
Citation
{Tao, Gavves, and Smeulders} 2016

Citation
Citation
{Valmadre, Bertinetto, Henriques, Vedaldi, and Torr} 2017

Citation
Citation
{Tao, Gavves, and Smeulders} 2016

Citation
Citation
{Held, Thrun, and Savarese} 2016

Citation
Citation
{Bertinetto, Valmadre, Henriques, Vedaldi, and Torr} 2016

Citation
Citation
{Gladh, Danelljan, Khan, and Felsberg} 2016

Citation
Citation
{Li, Xie, Wei, Wang, and Lin} 

Citation
Citation
{Sun, Kuang, Ouyang, Sheng, and Zhang} 2017

Citation
Citation
{Zhang, Zhuo, Huang, and Kankanhalli} 2017{}

Citation
Citation
{Zhu, Wang, Dai, Yuan, and Wei} 2017

Citation
Citation
{Zhu, Wang, Dai, Yuan, and Wei} 2017

Citation
Citation
{Sun, Kuang, Ouyang, Sheng, and Zhang} 2017



DING MA, WEI BU, XIANGQIAN WU: FPRNET 5

(a) (b)
Figure 3: (a) An overview of the proposed 8-directional RNN architecture. Each directional
RNN are concatenated to form the final 8-directional RNN, and ⊕ is a concatenation opera-
tor; (b) For the RightDown/RightUp-directional RNN, we adopt the affine transformation on
feature maps, and set the same operations on Down/Up-directional RNN
.

which enables the network to distill temporal information through a fast and robust approach.
In video saliency detection, [30] enhances the temporal coherence of the per-frame feature
by exploiting both motion information in terms of optical flow and sequential feature evolu-
tion encoding in terms of LSTM networks. In video segmentation, [49] formulates a unified
segmentation framework based on a compositional model by combining saliency flow detec-
tion with motion estimation. And in tracking task, [18] just employs flow feature which is
not trained end-to-end. By contrast, we apply the FlowNet [14] to characterize the motion
information of the target, and the unified end-to-end tracking framework FPRNet is com-
posed of PRNet and the FlowNet, which learns more suitable spatiotemporal representations
for tracking.

3 The Proposed FPRNet

In our observation, some tracking failures are partially related to contextual relationships
within the different receptive fields. Thus a deep network with a compresive different-scale-
context clues can much improve the discriminative ability for separating the target from com-
plex background and similar distractors. Besides, the motion information from the FlowNet
is utilized to enhance the spatiotemporal representations. In the rest of this section, we will
introduce the details of 8-directional RNN architecture in Section 3.1. Then, the proposed
pyramid recurrent network (PRNet) will be shown in Section 3.2. Finally, the unified pyra-
mid recurrent network (FPRNet) will be illustrated in Section 3.3.

3.1 8-directional RNN

The details of our proposed 8-directional RNN are shown in Figure 3. For our problem,
we extend the traditional RNN to two dimensions by computing along each row and each
column of the image with the RNN. And the IRNN [29] is selected for its fast speed and
small parameter search space.

In our 8-directional IRNN, the feature map is represented by a graph. The vertex in each
graph relies on its predecessor. Based on the local input, the hidden output acts as a non-
linear function on its predecessor. Each IRNN shares the same structure. The IRNNs in 8
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Figure 4: The example of pyramid RNN architecture which is derived from the
Residual Block.

directions are represented as follows:

h∗i, j←max(W∗
hhh∗i, j−1 +h∗i, j,0) (1)

where ∗ denotes the direction of RNN. For each direction, we gather all IRNNs together
with a single matrix multiplication. As is shown in Figure 3a, R1, R2, R3, R4, R5, R6, R7 and
R8 represent the RNN in 8 different directions, respectively: right, left, up, down, rightup,
leftdown, rightdown and leftup. After the 8-directional RNN, each cell on the output layer is
the combination of local and global, and can be as the global summary of the object feature
map. And the output layer o can be expressed as follows:

o = g( ∑
R1,...,R8

V h∗i, j + c) (2)

where V is the matrix parameters, c is the bias term, and g(·) is the elementwise non-
linear activation functions.

3.2 PRNet
On the contrary to [2, 47], we add another 4-directional IRNN (rightup, leftdown, rightdown
and leftup) to gather more directions of IRNNs for coping with the various appearance vari-
ation of the target (see Figure 3b). For the RightDown IRNN given a 7× 7 feature map,
firstly, we do affine transformation on the feature map. Then, the size of the feature map has
changed from 7×7 to 7×13. The white area of the affine transformed feature map is filled
with 0, and the other areas are the translation shift. As a result, the RightDown IRNN oper-
ation of the 7×7 feature map turns into a down IRNN operation of the 7×13 feature map.
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Finally, a inverse transformation is performed to restore the size of the affine transformed
feature map to 7×7. Similarly, IRNN in the other three directions takes the same operation.

The example of pyramid RNN architecture which is derived from the Residual Block is
shown in Figure 4. Given a residual block, we first gather the feature maps of a residual
block and upsampled flow, then the concatenated features are fed into a pyramid recurrent
architecture to harvest different sub-region recurrent representations. In the pyramid RNN
architecture, each pyramid level separates the feature map into different sub-regions and
multi-directional recurrent representations of the feature map is made in each sub-region.
The output of different levels in the pyramid recurrent architecture contains the recurrent
information with varied sizes. Then the low-dimension feature maps are directly resampled
to get features of the same size via bilinear interpolation. Finally, different levels of recurrent
features are concatenated to form the comprehensive feature representation, which carries
both local and global context recurrent information. And a 1× 1 convolutional layer is
used to reduce the dimension of concatenated features. Finally, the representation is fed
into a fully-connected layer to get the predicted coordinates at this pyramid. The predicted
coordinates is calculated by L1 loss.

The PRNet is composed of the feature extraction part (ResNet101) and 3 pyramid RNN
architecture. The number of pyramid level is set to 4. Each pyramid RNN architecture can
predict coordinates, so the loss of PRNet is expressed as: LPR = LP1 +LP2 +LP3.

3.3 FPRNet
In order to make communications between PRNet and FlowNet, we propose a unified frame-
work FPRNet, to jointly learn the coordinates of bounding box and optical flow. Therefore,
the global loss is calculated by:

L (X) = LPR(X)+λL f (X)

L f (Xt ,Xt+1) = ∑
i, j
((ui j−δui j)

2 +(vi j−δvi j)
2) (3)

where L f is the endpoint error (EPE) loss [14]. And the λ is set to 0.5.
As is shown in Figure 2, the features are propagated between PRNet and FlowNet at

different scales for the final predictions. In detail, features from PRNet are resized to match
the features of FlowNet and both of the features are concatenated, vice versa. The two sub-
networks are jointly learnt at feature space for characterizing useful feature representations
(location and motion) at different scales.

4 Network Training and Implementation
In this section, we utilize the coordinates of the bounding box at a time by iteratively updating
both PRNet and FlowNet and gradually optimize the target function.

4.1 Network Training
Offline Training The feature extraction part and FlowNet are initialized with [24] and [14],
respectively. When training the PRNet, we fix the weights of the FlowNet, and train the
network on the ILSVRC2015 [40]. We starts the learning rate from 1e−8 and decreases it
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by half for every 10000 iterations and continue for approximately 650,000 iterations which
takes roughly one week. On the contrary, FlowNet is trained with the Scene Flow dataset
[34] by freezing the weights of FlowNet. To balance the weights between two subnetworks,
we employ a λ in the combined loss.
Online Training for Tracking In the first frame, to adapt the model on a specific object for
online tracking, we finetune the PRNet using the coordinates of bounding box in the first
frame on each individual sequence.

4.2 Network Implementation
We utilize a modified version of the Caffe [28] framework. The inputs are the two consecu-
tive frames (whole image) and the coordinates of bounding box in the previous frame. The
input size is 854×480. In each pyramid RNN, the convolutional layers has 512 units. All of
the fully-connected layers has 4 units. The ADAM gradient optimizer is employed with the
default momentum and weight decay.

5 Experimental Results and Analysis
To evaluate the proposed FPRNet tracker, we tested the proposed method on 2 benchmark
datasets: Object Tracking Benchmark (OTB) [45, 46] and TC128 [31] comparing with ex-
isting trackers.

We test our tracker on two OTB datasets: OTB50[45] which has 50 video sequences,
and OTB100 [46] which has 100 video sequences including OTB50. And the OTB50 and
OTB100 dataset include 50 and 100 sequences respectively tagged with 11 attributes. The
tracking performance was measured by conducting a one-pass evaluation (OPE) based on
two metrics: center location error and overlap ratio. The center location error measures the
distance between the center of the tracked frame and the ground truth, and the bounding
box overlaped ratio measures the Intersection-over-Union (IOU) ratio between the tracked
bounding box and the ground truth.The TC128 dataset contains 128 color sequences with 11
challenge factor annotations.

5.1 State-of-the-art Comparison
Experiments on OTB50 and OTB100 Dataset

We compare the proposed RRNet tracker on both OTB50 and OTB100 datasets with
the following recent published 14 trackers: MCPF [50], PTAV [16], HCF [33], CREST
[41], SRDCFdecon [12], BACF [17], ACFN [7], SRDCF [8], CSR-DCF [32], MUSTer [27],
SAMF_AT [5], Staple [3], siamfc3s [4] and cfnet [44]. The OPE criteria on OTB is to
evaluate our RRNet. The results are shown in Figure 5 (Left two images are the plots of
precision and success rate on OTB50 dataset, and right two images are the plots of precision
and success rate on OTB100 dataset). According to Figure 5, our FPRNet achieves the best
performance among the state-of-the-arts on both datasets. The precision and the success
plots are 0.854 and 0.613 on OTB50, and 0.878 and 0.653 on OTB 100, respectively.
Experiments on TC128 Dataset

The TC128 dataset is a challenging benchmark with 128 full color videos[31]. The
11 challenge factors for each sequence are also provided. A comparison with state-of-the-
art trackers in precision plots is shown in Figure 6a. Among the compared methods, our
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Figure 5: (a) and (b) are the precision and success plots on OTB50, respectively. (c) and (d)
are the precision and success plots on OTB100, respectively.

approach improves the precision score from 0.7739 of the state-of-the-art tracker to 0.7777.
The Figure 6b shows the success plot over all the 128 videos in the TC128 dataset. The
FPRNet tracker outperforms state-of-the-art approaches with an AUC score of 0.5657.

5.2 Attribute Analysis and Discussion

In the OTB100 dataset, different videos are annotated with 11 attributes, including fast mo-
tion (FM), background clutter (BC), motion blur (MB), deformation (DEF), illumination
variation (IV), in-plane rotation (IPR), low resolution (LR), occlusion (OCC), out-of-plane
rotation (OPR), out-of-view (OV), and scale variation (SV). Table 1 contains the different
attributes success score on the OTB100 dataset. By considering the speed and attributes
(the FPRNet tracker ranks top 1 on 10 out of 11 attributes in success plots) in Table 1, our
FPRNet are more robust than the state-of-the-arts trackers.

According to the experimental results, the proposed FPRNet tracker achieves high per-
formance. The possible reasons are listed as follows. (1) The FPRNet tracker exploits the
spatial details and semantic information from different level of feature pyramid recurrent
subnetwork, which can effectively process the frames containing the target with different ap-
pearance variances. (2) The comprehensive context-aware information effectively can han-
dle the background clutters, in-plane rotations and out-of-plane rotations and other difficult
cases, which can result in large appearance variance. (3) The jointly representations from
two subnetworks can provide more useful spatiotemporal information for tracking.
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Tracker FPRNet MCPF PTAV CREAST ACFN BACF

FM 0.613 0.608 0.582 0.606 0.517 0.518
BC 0.656 0.601 0.649 0.618 0.536 0.625
MB 0.622 0.573 0.590 0.608 0.556 0.563
DEF 0.656 0.620 0.640 0.664 0.611 0.596
IV 0.657 0.628 0.632 0.644 0.567 0.630
BC 0.656 0.601 0.649 0.618 0.536 0.625
IPR 0.621 0.598 0.580 0.599 0.515 0.556
LR 0.622 0.598 0.563 0.546 0.414 0.512
OCC 0.627 0.595 0.596 0.575 0.538 0.584
OPR 0.647 0.608 0.607 0.599 0.560 0.582
OV 0.585 0.553 0.570 0.566 0.494 0.525
SV 0.629 0.620 0.599 0.573 0.529 0.551
OverAll 0.653 0.628 0.631 0.623 0.573 0.608

Table 1: success scores of average AUC of the 6 state-of-the-art trackers under different
attributes of test sequences in OPE on OTB100. (The red fonts indicate the best performance,
the blue fonts indicate the second best ones and the green fonts marks the third best ones.)

0 10 20 30 40 50

Distance threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n

Precision plots
FPRNet [0.7777]

MCPF [0.7739]

DeepSRDCF [0.7377]

SRDCFdecon [0.7269]

SRDCF [0.6941]

MEEM(OPP) [0.6753]

Struck(HSV) [0.6448]

KCF(HSV) [0.5607]

ASLA(LAB) [0.5598]

MIL(LAB) [0.5399]

Frag(HSV) [0.5382]

OAB(LAB) [0.5266]

LOT(HSV) [0.5002]

FCT(OPP) [0.4989]

SemiT(OPP) [0.4873]

CSK(OPP) [0.4651]

CT(OPP) [0.4543]

DFT(TRGB) [0.4076] 0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots
FPRNet [0.5657]

MCPF [0.5446]

DeepSRDCF [0.5367]

SRDCFdecon [0.5347]

SRDCF [0.5097]

MEEM(OPP) [0.4829]

Struck(HSV) [0.4640]

Frag(HSV) [0.4075]

ASLA(LAB) [0.4065]

KCF(HSV) [0.4053]

MIL(LAB) [0.3925]

OAB(LAB) [0.3886]

SemiT(OPP) [0.3648]

FCT(OPP) [0.3568]

LOT(HSV) [0.3505]

CSK(OPP) [0.3500]

CT(OPP) [0.3357]

DFT(TRGB) [0.3164]

(a) (b)
Figure 6: The precision plots and success plots on TC128 dataset are shown in (a) and (b).

6 Conclusions
An end-to-end tracking algorithm based on pyramid recurrent network (PRNet) and the
FlowNet, which is referred to as FPRNet, is proposed in this paper. The FPRNet tracker
predicts the coordinates of bounding box at different levels of pyramid with motion infor-
mation from FlowNet. The FPRNet has achieved outstanding performance in 2 large public
tracking benchmarks. Since our framework is a very flexible with great rooms for adding
more pyramid RNNs and we will investigate to extend this work to design more efficient
tracking algorithms in the future.
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